1
|
Kaspar F, Brandt F, Westarp S, Eilert L, Kemper S, Kurreck A, Neubauer P, Jacob CR, Schallmey A. Biased Borate Esterification during Nucleoside Phosphorylase-Catalyzed Reactions: Apparent Equilibrium Shifts and Kinetic Implications. Angew Chem Int Ed Engl 2023; 62:e202218492. [PMID: 36655928 DOI: 10.1002/anie.202218492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/20/2023]
Abstract
Biocatalytic nucleoside (trans-)glycosylations catalyzed by nucleoside phosphorylases have evolved into a practical and convenient approach to the preparation of modified nucleosides, which are important pharmaceuticals for the treatment of various cancers and viral infections. However, the obtained yields in these reactions are generally determined exclusively by the innate thermodynamic properties of the nucleosides involved, hampering the biocatalytic access to many sought-after target nucleosides. We herein report an additional means for reaction engineering of these systems. We show how apparent equilibrium shifts in phosphorolysis and glycosylation reactions can be effected through entropically driven, biased esterification of nucleosides and ribosyl phosphates with inorganic borate. Our multifaceted analysis further describes the kinetic implications of this in situ reactant esterification for a model phosphorylase.
Collapse
Affiliation(s)
- Felix Kaspar
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany.,Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355, Berlin, Germany
| | - Felix Brandt
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106, Braunschweig, Germany
| | - Sarah Westarp
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355, Berlin, Germany.,BioNukleo GmbH, Ackerstraße 76, 13355, Berlin, Germany
| | - Lea Eilert
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany.,Present address: Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Sebastian Kemper
- Institute for Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355, Berlin, Germany.,BioNukleo GmbH, Ackerstraße 76, 13355, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355, Berlin, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106, Braunschweig, Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| |
Collapse
|
2
|
Drenichev MS, Dorinova EO, Varizhuk IV, Oslovsky VE, Varga MA, Esipov RS, Lykoshin DD, Alexeev CS. Synthesis of Fluorine-Containing Analogues of Purine Deoxynucleosides: Optimization of Enzymatic Transglycosylation Conditions. DOKL BIOCHEM BIOPHYS 2022; 503:52-58. [PMID: 35538278 PMCID: PMC9090681 DOI: 10.1134/s1607672922020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022]
Abstract
In this work, a comparative analysis of the conditions of transglycosylation reactions catalyzed by E. coli nucleoside phosphorylases was carried out, and the optimal conditions for the formation of various nucleosides were determined. Under the optimized conditions of transglycosylation reaction, fluorine-containing derivatives of N6-benzyl-2'-deoxyadenosine, potential inhibitors of replication of enteroviruses in a cell, were obtained starting from the corresponding ribonucleosides.
Collapse
Affiliation(s)
- M S Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E O Dorinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - I V Varizhuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - V E Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - M A Varga
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - R S Esipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - D D Lykoshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - C S Alexeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Drenichev MS, Oslovsky VE, Zenchenko AA, Danilova CV, Varga MA, Esipov RS, Lykoshin DD, Alexeev CS. Comparative Analysis of Enzymatic Transglycosylation Using E. coli Nucleoside Phosphorylases: A Synthetic Concept for the Preparation of Purine Modified 2′-Deoxyribonucleosides from Ribonucleosides. Int J Mol Sci 2022; 23:2795. [PMID: 35269937 PMCID: PMC8911250 DOI: 10.3390/ijms23052795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
A comparative analysis of the transglycosylation conditions catalyzed by E. coli nucleoside phosphorylases, leading to the formation of 2'-deoxynucleosides, was performed. We demonstrated that maximal yields of 2'-deoxynucleosides, especially modified, can be achieved under small excess of glycosyl-donor (7-methyl-2'-deoxyguanosine, thymidine) and a 4-fold lack of phosphate. A phosphate concentration less than equimolar one allows using only a slight excess of the carbohydrate residue donor nucleoside to increase the reaction's output. A three-step methodology was elaborated for the preparative synthesis of purine-modified 2'-deoxyribonucleosides, starting from the corresponding ribonucleosides.
Collapse
Affiliation(s)
- Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia; (M.S.D.); (V.E.O.); (A.A.Z.); (C.V.D.); (M.A.V.)
| | - Vladimir E. Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia; (M.S.D.); (V.E.O.); (A.A.Z.); (C.V.D.); (M.A.V.)
| | - Anastasia A. Zenchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia; (M.S.D.); (V.E.O.); (A.A.Z.); (C.V.D.); (M.A.V.)
| | - Claudia V. Danilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia; (M.S.D.); (V.E.O.); (A.A.Z.); (C.V.D.); (M.A.V.)
| | - Mikhail A. Varga
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia; (M.S.D.); (V.E.O.); (A.A.Z.); (C.V.D.); (M.A.V.)
| | - Roman S. Esipov
- Laboratory of Biopharmaceutical Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, GSP-7, 117997 Moscow, Russia; (R.S.E.); (D.D.L.)
| | - Dmitry D. Lykoshin
- Laboratory of Biopharmaceutical Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, GSP-7, 117997 Moscow, Russia; (R.S.E.); (D.D.L.)
| | - Cyril S. Alexeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia; (M.S.D.); (V.E.O.); (A.A.Z.); (C.V.D.); (M.A.V.)
| |
Collapse
|
4
|
Hellendahl KF, Kaspar F, Zhou X, Yang Z, Huang Z, Neubauer P, Kurreck A. Optimized Biocatalytic Synthesis of 2-Selenopyrimidine Nucleosides by Transglycosylation*. Chembiochem 2021; 22:2002-2009. [PMID: 33594780 PMCID: PMC8251958 DOI: 10.1002/cbic.202100067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/16/2021] [Indexed: 01/09/2023]
Abstract
Selenium-modified nucleosides are powerful tools to study the structure and function of nucleic acids and their protein interactions. The widespread application of 2-selenopyrimidine nucleosides is currently limited by low yields in established synthetic routes. Herein, we describe the optimization of the synthesis of 2-Se-uridine and 2-Se-thymidine derivatives by thermostable nucleoside phosphorylases in transglycosylation reactions using natural uridine or thymidine as sugar donors. Reactions were performed at 60 or 80 °C and at pH 9 under hypoxic conditions to improve the solubility and stability of the 2-Se-nucleobases in aqueous media. To optimize the conversion, the reaction equilibria in analytical transglycosylation reactions were studied. The equilibrium constants of phosphorolysis of the 2-Se-pyrimidines were between 5 and 10, and therefore differ by an order of magnitude from the equilibrium constants of any other known case. Hence, the thermodynamic properties of the target nucleosides are inherently unfavorable, and this complicates their synthesis significantly. A tenfold excess of sugar donor was needed to achieve 40-48 % conversion to the target nucleoside. Scale-up of the optimized conditions provided four Se-containing nucleosides in 6-40 % isolated yield, which compares favorably to established chemical routes.
Collapse
Affiliation(s)
- Katja F. Hellendahl
- Technische Universität Berlin Faculty III Process Sciences, Institute of Biotechnology Chair of Bioprocess EngineeringAckerstraße 7613355BerlinGermany
| | - Felix Kaspar
- Technische Universität Berlin Faculty III Process Sciences, Institute of Biotechnology Chair of Bioprocess EngineeringAckerstraße 7613355BerlinGermany
- BioNukleo GmbHAckerstraße 7613355BerlinGermany
| | - Xinrui Zhou
- Sichuan University, College of Life Sciences Key Laboratory of Bio-Resource and Eco-Environment Ministry of EducationNo. 17 People's South Road Section 3610041ChengduP. R. China
| | - Zhaoyi Yang
- Sichuan University, College of Life Sciences Key Laboratory of Bio-Resource and Eco-Environment Ministry of EducationNo. 17 People's South Road Section 3610041ChengduP. R. China
| | - Zhen Huang
- Sichuan University, College of Life Sciences Key Laboratory of Bio-Resource and Eco-Environment Ministry of EducationNo. 17 People's South Road Section 3610041ChengduP. R. China
| | - Peter Neubauer
- Technische Universität Berlin Faculty III Process Sciences, Institute of Biotechnology Chair of Bioprocess EngineeringAckerstraße 7613355BerlinGermany
| | - Anke Kurreck
- Technische Universität Berlin Faculty III Process Sciences, Institute of Biotechnology Chair of Bioprocess EngineeringAckerstraße 7613355BerlinGermany
- BioNukleo GmbHAckerstraße 7613355BerlinGermany
| |
Collapse
|
5
|
Kaspar F, Neubauer P, Kurreck A. The Peculiar Case of the Hyper-thermostable Pyrimidine Nucleoside Phosphorylase from Thermus thermophilus*. Chembiochem 2021; 22:1385-1390. [PMID: 33258231 PMCID: PMC8247850 DOI: 10.1002/cbic.202000679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Indexed: 12/16/2022]
Abstract
The poor solubility of many nucleosides and nucleobases in aqueous solution demands harsh reaction conditions (base, heat, cosolvent) in nucleoside phosphorylase-catalyzed processes to facilitate substrate loading beyond the low millimolar range. This, in turn, requires enzymes that can withstand these conditions. Herein, we report that the pyrimidine nucleoside phosphorylase from Thermus thermophilus is active over an exceptionally broad pH (4-10), temperature (up to 100 °C) and cosolvent space (up to 80 % (v/v) nonaqueous medium), and displays tremendous stability under harsh reaction conditions with predicted total turnover numbers of more than 106 for various pyrimidine nucleosides. However, its use as a biocatalyst for preparative applications is critically limited due to its inhibition by nucleobases at low concentrations, which is unprecedented among nonspecific pyrimidine nucleoside phosphorylases.
Collapse
Affiliation(s)
- Felix Kaspar
- Department of Biotechnology, Chair of Bioprocess EngineeringTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
- BioNukleo GmbHAckerstraße 7613355BerlinGermany
| | - Peter Neubauer
- Department of Biotechnology, Chair of Bioprocess EngineeringTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Anke Kurreck
- Department of Biotechnology, Chair of Bioprocess EngineeringTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
- BioNukleo GmbHAckerstraße 7613355BerlinGermany
| |
Collapse
|
6
|
Artsemyeva JN, Remeeva EA, Buravskaya TN, Konstantinova ID, Esipov RS, Miroshnikov AI, Litvinko NM, Mikhailopulo IA. Anion exchange resins in phosphate form as versatile carriers for the reactions catalyzed by nucleoside phosphorylases. Beilstein J Org Chem 2020; 16:2607-2622. [PMID: 33133292 PMCID: PMC7588730 DOI: 10.3762/bjoc.16.212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
In the present work, we suggested anion exchange resins in the phosphate form as a source of phosphate, one of the substrates of the phosphorolysis of uridine, thymidine, and 1-(β-ᴅ-arabinofuranosyl)uracil (Ara-U) catalyzed by recombinant E. coli uridine (UP) and thymidine (TP) phosphorylases. α-ᴅ-Pentofuranose-1-phosphates (PF-1Pis) obtained by phosphorolysis were used in the enzymatic synthesis of nucleosides. It was found that phosphorolysis of uridine, thymidine, and Ara-U in the presence of Dowex® 1X8 (phosphate; Dowex-nPi) proceeded smoothly in the presence of magnesium cations in water at 20-50 °C for 54-96 h giving rise to quantitative formation of the corresponding pyrimidine bases and PF-1Pis. The resulting PF-1Pis can be used in three routes: (1) preparation of barium salts of PF-1Pis, (2) synthesis of nucleosides by reacting the crude PF-1Pi with an heterocyclic base, and (3) synthesis of nucleosides by reacting the ionically bound PF-1Pi to the resin with an heterocyclic base. These three approaches were tested in the synthesis of nelarabine, kinetin riboside, and cladribine with good to excellent yields (52-93%).
Collapse
Affiliation(s)
- Julia N Artsemyeva
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| | - Ekaterina A Remeeva
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| | - Tatiana N Buravskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| | - Irina D Konstantinova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 GSP-7, Moscow B-437, Russian Federation
| | - Roman S Esipov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 GSP-7, Moscow B-437, Russian Federation
| | - Anatoly I Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 GSP-7, Moscow B-437, Russian Federation
| | - Natalia M Litvinko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| | - Igor A Mikhailopulo
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| |
Collapse
|
7
|
Gong Y, Chen L, Zhang W, Salter R. Transglycosylation in the Modification and Isotope Labeling of Pyrimidine Nucleosides. Org Lett 2020; 22:5577-5581. [PMID: 32628494 DOI: 10.1021/acs.orglett.0c01941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transglycosylation of pyrimidine nucleosides is demonstrated in a one-pot synthesis of uridine derivatives under microwave irradiation. Inductive activation of 2',3',5'-tri-O-acetyl uridine with a 5-nitro group produces a more-reactive glycosyl donor. Under optimized Vorbrüggen conditions, the 5-nitrouridine facilitates a reversible nucleobase exchange with a series of 5-substituted uracils. The protocol is also exemplified in a gram-scale reaction under thermal heating. The strategy provides easy access to isotopically labeled uridine.
Collapse
Affiliation(s)
- Yong Gong
- Discovery Sciences, Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Lu Chen
- Discovery Sciences, Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Wei Zhang
- Discovery Sciences, Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Rhys Salter
- Discovery Sciences, Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| |
Collapse
|