1
|
Deng L, May JC, McBee JK, Rosen A, Rorrer LC, Clingman R, Fico M, McLean JA, DeBord D. Rounded Turn SLIM Design for High-Resolution Ion Mobility Mass Spectrometry Analysis of Small Molecules. Anal Chem 2024; 96:20179-20188. [PMID: 39661157 DOI: 10.1021/acs.analchem.4c03808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Various rounded turn designs in Structures for Lossless Ion Manipulation (SLIM) were explored via ion trajectory simulations. The optimized design was integrated into a SLIM ion mobility (IM) system coupled with a time-of-flight (TOF) mass spectrometer (MS) for further experimental investigation. The SLIM-TOF IM-MS system was assessed for IM resolution and ion transmission efficiency across a wide m/z range using various RF frequencies and buffer gas combinations. High ion transmission efficiency and high resolution ion mobility (HRIM) separation were achieved for Agilent tune mix ions through a ∼12.8 m serpentine separation path in both nitrogen and helium. In helium, ion transmission for low m/z ions was enhanced at higher RF trapping frequency, enabling the detection of ions with m/z below 50 and all 17 amino acids from a standard mixture. Lossless ion transmission was observed for glycine (m/z 76) in both passthrough and HRIM modes. HRIM resolution was benchmarked using L-isoleucine, L-leucine, and various other isobaric and isomeric metabolites with m/z values of 60-89. This work demonstrates a rounded turn SLIM design that enables HRIM measurements for small molecule analytes, with a particular focus on metabolomics, where IM offers a means to enhance the speed, robustness, and specificity of analytical workflows.
Collapse
Affiliation(s)
- Liulin Deng
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Joshua K McBee
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Adam Rosen
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Leonard C Rorrer
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Ryan Clingman
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Miriam Fico
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Daniel DeBord
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| |
Collapse
|
2
|
Zhao Y, Hadavi D, Dijkgraaf I, Honing M. Coupling of surface plasmon resonance and mass spectrometry for molecular interaction studies in drug discovery. Drug Discov Today 2024; 29:104027. [PMID: 38762085 DOI: 10.1016/j.drudis.2024.104027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Various analytical technologies have been developed for the study of target-ligand interactions. The combination of these technologies gives pivotal information on the binding mechanism, kinetics, affinity, residence time, and changes in molecular structures. Mass spectrometry (MS) offers structural information, enabling the identification and quantification of target-ligand interactions. Surface plasmon resonance (SPR) provides kinetic information on target-ligand interaction in real time. The coupling of MS and SPR complements each other in the studies of target-ligand interactions. Over the last two decades, the capabilities and added values of SPR-MS have been reported. This review summarizes and highlights the benefits, applications, and potential for further research of the SPR-MS approach.
Collapse
Affiliation(s)
- Yuandi Zhao
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Maastricht University, Maastricht, the Netherlands
| | - Darya Hadavi
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Maastricht University, Maastricht, the Netherlands.
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, MUMC+, The Netherlands
| | - Maarten Honing
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Marques Dos Santos M, Li C, Jia S, Thomas M, Gallard H, Croué JP, Carato P, Snyder SA. Formation of halogenated forms of bisphenol A (BPA) in water: Resolving isomers with ion mobility - mass spectrometry and the role of halogenation position in cellular toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133229. [PMID: 38232544 DOI: 10.1016/j.jhazmat.2023.133229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 01/19/2024]
Abstract
Halogenated BPA (XBPA) forms resulting from water chlorination can lead to increased toxicity and different biological effects. While previous studies have reported the occurrence of different XBPAs, analytical limitation have hindered the analysis and differentiation of the many potential isomeric forms. Using online solid-phase extraction - liquid chromatography - ion-mobility - high-resolution mass spectrometry (OSPE-LC-IM-HRMS), we demonstrated a rapid analysis method for the analysis of XBPA forms after water chlorination, with a total analysis time of less than 10 min including extraction and concentration and low detection limits (∼5-80 ng/L range). A multi in-vitro bioassay testing approach for the identified products revealed that cytotoxicity and bioenergetics impacts were largely associated with the presence of halogen atoms at positions 2 or 2' and the overall number of halogens incorporated into the BPA molecule. Different XBPA also showed distinct impacts on oxidative stress, peroxisome proliferator-activated receptor gamma - PPARγ, and inflammatory response. While increased DNA damage was observed for chlorinated water samples (4.14 ± 1.21-fold change), the additive effect of the selected 20 XBPA studied could not explain the increased DNA damage observed, indicating that additional species or synergistic effects might be at play.
Collapse
Affiliation(s)
- Mauricius Marques Dos Santos
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Caixia Li
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Shenglan Jia
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Mikael Thomas
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Hervé Gallard
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Pascal Carato
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, France; INSERM CIC1402, Université de Poitiers, IHES Research Group, Poitiers, France
| | - Shane Allen Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore.
| |
Collapse
|
4
|
Alhazmi HA, Albratty M. Analytical Techniques for the Characterization and Quantification of Monoclonal Antibodies. Pharmaceuticals (Basel) 2023; 16:291. [PMID: 37259434 PMCID: PMC9967501 DOI: 10.3390/ph16020291] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 08/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are a fast-growing class of biopharmaceuticals. They are widely used in the identification and detection of cell makers, serum analytes, and pathogenic agents, and are remarkably used for the cure of autoimmune diseases, infectious diseases, or malignancies. The successful application of therapeutic mAbs is based on their ability to precisely interact with their appropriate target sites. The precision of mAbs rely on the isolation techniques delivering pure, consistent, stable, and safe lots that can be used for analytical, diagnostic, or therapeutic applications. During the creation of a biologic, the key quality features of a particular mAb, such as structure, post-translational modifications, and activities at the biomolecular and cellular levels, must be characterized and profiled in great detail. This implies the requirement of powerful state of the art analytical techniques for quality control and characterization of mAbs. Until now, various analytical techniques have been developed to characterize and quantify the mAbs according to the regulatory guidelines. The present review summarizes the major techniques used for the analyses of mAbs which include chromatographic, electrophoretic, spectroscopic, and electrochemical methods in addition to the modifications in these methods for improving the quality of mAbs. This compilation of major analytical techniques will help students and researchers to have an overview of the methodologies employed by the biopharmaceutical industry for structural characterization of mAbs for eventual release of therapeutics in the drug market.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
5
|
Seeing the complete picture: proteins in top-down mass spectrometry. Essays Biochem 2022; 67:283-300. [PMID: 36468679 DOI: 10.1042/ebc20220098] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Abstract
Top-down protein mass spectrometry can provide unique insights into protein sequence and structure, including precise proteoform identification and study of protein–ligand and protein–protein interactions. In contrast with the commonly applied bottom-up approach, top-down approaches do not include digestion of the protein of interest into small peptides, but instead rely on the ionization and subsequent fragmentation of intact proteins. As such, it is fundamentally the only way to fully characterize the composition of a proteoform. Here, we provide an overview of how a top-down protein mass spectrometry experiment is performed and point out recent applications from the literature to the reader. While some parts of the top-down workflow are broadly applicable, different research questions are best addressed with specific experimental designs. The most important divide is between studies that prioritize sequence information (i.e., proteoform identification) versus structural information (e.g., conformational studies, or mapping protein–protein or protein–ligand interactions). Another important consideration is whether to work under native or denaturing solution conditions, and the overall complexity of the sample also needs to be taken into account, as it determines whether (chromatographic) separation is required prior to MS analysis. In this review, we aim to provide enough information to support both newcomers and more experienced readers in the decision process of how to answer a potential research question most efficiently and to provide an overview of the methods that exist to answer these questions.
Collapse
|
6
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|