1
|
Gong Y, Gong D, Liu S, Gong X, Xiong J, Zhang J, Jiang L, Liu J, Zhu L, Luo H, Xu K, Yang X, Li B. Deciphering the role of NcRNAs in Pancreatic Cancer immune evasion and drug resistance: a new perspective for targeted therapy. Front Immunol 2024; 15:1480572. [PMID: 39555076 PMCID: PMC11563824 DOI: 10.3389/fimmu.2024.1480572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024] Open
Abstract
Pancreatic cancer (PC) is a very aggressive digestive system tumor, known for its high mortality rate, low cure rate, low survival rate and poor prognosis. In particular, pancreatic ductal adenocarcinoma (PADC), which accounts for more than 90% of PC cases, has an overall 5-year survival rate of only 5%, which is an extremely critical situation. Early detection and effective treatment of PC is extremely difficult, which leads many patients to despair. In the current medical context, targeted therapy, as an important strategy for cancer treatment, is expected. However, the problems of immune escape and drug resistance in PC have become two major obstacles that are difficult to be overcome by targeted therapy. How to break through these two difficulties has become a key issue to be solved in the field of PC therapy. In recent years, non-coding RNAs (ncRNAs) have continued to heat up in the field of cancer research. NcRNAs play a pivotal role in gene regulation, cell differentiation, development, and disease processes, and their important roles in the genesis, development, and therapeutic response of PC have been gradually revealed. More importantly, ncRNAs have many advantages as therapeutic targets, such as high specificity and low side effects, making them a new favorite in the field of PC therapy. Therefore, the aim of this paper is to provide new ideas and methods for the targeted therapy of PC by reviewing the mechanism of action of four major ncRNAs (circRNAs, lncRNAs, miRNAs, siRNAs) in both immune escape and drug resistance of PC. It is expected that an effective way to overcome immune escape and drug resistance can be found through in-depth study of ncRNA, bringing a ray of hope to PC patients.
Collapse
Affiliation(s)
- Yu Gong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Desheng Gong
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- General Surgery Department, The TCM Hospital of Longquanyi, Chengdu, China
| | - Sinian Liu
- Department of Pathology, Xichong People’s Hospital, Nanchong, China
| | - Xiangjin Gong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Jingwen Xiong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Jinghan Zhang
- Department of Anesthesia, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Zhu
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Huiyang Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Viegas C, Patrício AB, Prata J, Fonseca L, Macedo AS, Duarte SOD, Fonte P. Advances in Pancreatic Cancer Treatment by Nano-Based Drug Delivery Systems. Pharmaceutics 2023; 15:2363. [PMID: 37765331 PMCID: PMC10536303 DOI: 10.3390/pharmaceutics15092363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic cancer represents one of the most lethal cancer types worldwide, with a 5-year survival rate of less than 5%. Due to the inability to diagnose it promptly and the lack of efficacy of existing treatments, research and development of innovative therapies and new diagnostics are crucial to increase the survival rate and decrease mortality. Nanomedicine has been gaining importance as an innovative approach for drug delivery and diagnosis, opening new horizons through the implementation of smart nanocarrier systems, which can deliver drugs to the specific tissue or organ at an optimal concentration, enhancing treatment efficacy and reducing systemic toxicity. Varied materials such as lipids, polymers, and inorganic materials have been used to obtain nanoparticles and develop innovative drug delivery systems for pancreatic cancer treatment. In this review, it is discussed the main scientific advances in pancreatic cancer treatment by nano-based drug delivery systems. The advantages and disadvantages of such delivery systems in pancreatic cancer treatment are also addressed. More importantly, the different types of nanocarriers and therapeutic strategies developed so far are scrutinized.
Collapse
Affiliation(s)
- Cláudia Viegas
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal;
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana B. Patrício
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Prata
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Leonor Fonseca
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana S. Macedo
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- LAQV, REQUIMTE, Applied Chemistry Lab—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia O. D. Duarte
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Fonte
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
3
|
Mohammadzadeh V, Rahiman N, Hosseinikhah SM, Barani M, Rahdar A, Jaafari MR, Sargazi S, Zirak MR, Pandey S, Bhattacharjee R, Gupta AK, Thakur VK, Sibuh BZ, Gupta PK. Novel EPR-enhanced strategies for targeted drug delivery in pancreatic cancer: An update. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Delaney LJ, Eisenbrey JR, Brown D, Brody JR, Jimbo M, Oeffinger BE, Stanczak M, Forsberg F, Liu JB, Wheatley MA. Gemcitabine-loaded microbubble system for ultrasound imaging and therapy. Acta Biomater 2021; 130:385-394. [PMID: 34082100 DOI: 10.1016/j.actbio.2021.05.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Ultrasound imaging presents many positive attributes, including safety, real-time imaging, universal accessibility, and cost. However, inherent difficulties in discrimination between soft tissues and tumors prompted development of stabilized microbubble contrast agents. This presents the opportunity to develop agents in which drug is entrapped in the microbubble shell. We describe preparation and characterization of theranostic poly(lactide) (PLA) and pegylated PLA (PEG-PLA) shelled microbubbles that entrap gemcitabine, a commonly used drug for pancreatic cancer (PDAC). Entrapping 6 wt% gemcitabine did not significantly affect drug activity, microbubble morphology, or ultrasound contrast activity compared with unmodified microbubbles. In vitro microbubble concentrations yielding ≥ 500nM entrapped gemcitabine were needed for complete cell death in MIA PaCa-2 PDAC drug sensitivity assays, compared with 62.5 nM free gemcitabine. In vivo administration of gemcitabine-loaded microbubbles to xenograft MIA PaCa-2 PDAC tumors in athymic mice was well tolerated and provided substantial tumoral image enhancement before and after destructive ultrasound pulses. However, no significant differences in tumor growth were observed among treatment groups, in keeping with the in vitro observation that much higher doses of gemcitabine are required to mirror free gemcitabine activity. STATEMENT OF SIGNIFICANCE: The preliminary results shown here are encouraging and support further investigation into increased gemcitabine loading. Encapsulation of gemcitabine within polylactic acid (PLA) microbubbles does not damage its activity towards pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) cells. Excellent imaging and evidence of penetration into the highly desmoplastic PDAC tumors is demonstrated. Microbubble destruction was confirmed in vivo, showing that elevated mechanical index shatters the microbubbles for enhanced delivery. The potential to slow PDAC growth in vivo is shown, but higher gemcitabine concentrations are required. Current efforts are directed at increasing drug loading by inclusion of drug-carrying nanoparticles for effective in vivo treatment.
Collapse
Affiliation(s)
- Lauren J Delaney
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA; Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David Brown
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Jonathan R Brody
- Department of Surgery Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Masaya Jimbo
- Department of Surgery Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E Oeffinger
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Maria Stanczak
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Margaret A Wheatley
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Rahmati M, Ebrahim S, Hashemi S, Motamedi M, Moosavi MA. New insights on the role of autophagy in the pathogenesis and treatment of melanoma. Mol Biol Rep 2020; 47:9021-9032. [DOI: 10.1007/s11033-020-05886-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
|
6
|
Pancreatic ductal adenocarcinomas from Mexican patients present a distinct genomic mutational pattern. Mol Biol Rep 2020; 47:5175-5184. [PMID: 32583281 DOI: 10.1007/s11033-020-05592-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in humans, with less than 5% 5-year survival rate. PDAC is characterized by a small number of recurrent mutations, including KRAS, CDKN2A, TP53, and SMAD4 and a long "tail" of infrequent mutated genes. Most of the studies have been performed in US and European populations, so new studies are needed to describe the mutational landscape of these tumors in other cohorts. The present study analyzed the exome and transcriptome of four PDAC tumors from Mexican patients. We found a paucity of the previously described recurrent mutations, with mutations in only three genes (HERC2, CNTNAP2 and HMCN1) previously reported in PDAC with a frequency > 1%. In addition, we discovered several recurrent putative copy number aberrations in SKP2, BRAF, CSSF1R, FOXE1, JAK2 and MET genes and in genes previously reported as putative drivers in PDAC, including KRAS, SF3B1, BRAF, MYC and MET. Although a larger cohort is needed to validate these findings, our results could be pointing toward potential differences in contributing factors for PDAC in Latin-American populations.
Collapse
|
7
|
Manzano I, Vezeau G, Salis H, Zydney AL. RNA size and 3-dimensional structure determine ultrafiltration behavior of small RNA molecules. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Urrutia G, Salmonson A, Toro-Zapata J, de Assuncao TM, Mathison A, Dusetti N, Iovanna J, Urrutia R, Lomberk G. Combined Targeting of G9a and Checkpoint Kinase 1 Synergistically Inhibits Pancreatic Cancer Cell Growth by Replication Fork Collapse. Mol Cancer Res 2019; 18:448-462. [PMID: 31822519 DOI: 10.1158/1541-7786.mcr-19-0490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Because of its dismal outcome, pancreatic ductal adenocarcinoma (PDAC) remains a therapeutic challenge making the testing of new pharmacologic tools a goal of paramount importance. Here, we developed a rational approach for inhibiting PDAC growth based on leveraging cell-cycle arrest of malignant cells at a phase that shows increased sensitivity to distinct epigenomic inhibitors. Specifically, we simultaneously inhibited checkpoint kinase 1 (Chk1) by prexasertib and the G9a histone methyltransferase with BRD4770, thereby targeting two key pathways for replication fork stability. Methodologically, the antitumor effects and molecular mechanisms of the combination were assessed by an extensive battery of assays, utilizing cell lines and patient-derived cells as well as 3D spheroids and xenografts. We find that the prexasertib-BRD4770 combination displays a synergistic effect on replication-associated phenomena, including cell growth, DNA synthesis, cell-cycle progression at S phase, and DNA damage signaling, ultimately leading to a highly efficient induction of cell death. Moreover, cellular and molecular data reveal that the synergistic effect of these pathways can be explained, at least in large part, by the convergence of both Chk1 and G9a functions at the level of the ATR-RPA-checkpoint pathway, which is operational during replication stress. Thus, targeting the epigenetic regulator G9a, which is necessary for replication fork stability, combined with inhibition of the DNA damage checkpoint, offers a novel approach for controlling PDAC growth through replication catastrophe. IMPLICATIONS: This study offers an improved, context-dependent, paradigm for the use of epigenomic inhibitors and provides mechanistic insight into their potential therapeutic use against PDAC.
Collapse
Affiliation(s)
- Guillermo Urrutia
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ann Salmonson
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jorge Toro-Zapata
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Thiago M de Assuncao
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin.,Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Angela Mathison
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin.,Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Raul Urrutia
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin.,Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gwen Lomberk
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin. .,Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
9
|
Santos-Rebelo A, Kumar P, Pillay V, Choonara YE, Eleutério C, Figueira M, Viana AS, Ascensão L, Molpeceres J, Rijo P, Correia I, Amaral J, Solá S, Rodrigues CMP, Gaspar MM, Reis CP. Development and Mechanistic Insight into the Enhanced Cytotoxic Potential of Parvifloron D Albumin Nanoparticles in EGFR-Overexpressing Pancreatic Cancer Cells. Cancers (Basel) 2019; 11:cancers11111733. [PMID: 31694306 PMCID: PMC6895893 DOI: 10.3390/cancers11111733] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer is one of the most lethal cancers, with an extremely poor prognosis. The development of more effective therapies is thus imperative. Natural origin compounds isolated from Plectranthus genus, such as parvifloron D (PvD), have cytotoxic and antiproliferative activity against human tumour cells. However, PvD is a very low water-soluble compound, being nanotechnology a promising alternative strategy to solve this problem. Therefore, the aim of this study was to optimize a nanosystem for preferential delivery of PvD to pancreatic tumour cells. Albumin nanoparticles (BSA NPs) were produced through a desolvation method. Glucose cross-linking and bioactive functionalization profiles of BSA platform were elucidated and analysed using static lattice atomistic simulations in vacuum. Using the optimized methodology, PvD was encapsulated (yield higher than 80%) while NPs were characterized in terms of size (100–400 nm) and morphology. Importantly, to achieve a preferential targeting to pancreatic cancer cells, erlotinib and cetuximab were attached to the PvD-loaded nanoparticle surface, and their antiproliferative effects were evaluated in BxPC3 and Panc-1 cell lines. Erlotinib conjugated NPs presented the highest antiproliferative effect toward pancreatic tumour cells. Accordingly, cell cycle analysis of the BxPC3 cell line showed marked accumulation of tumour cells in G1-phase and cell cycle arrest promoted by NPs. As a result, erlotinib conjugated PvD-loaded BSA NPs must be considered a suitable and promising carrier to deliver PvD at the tumour site, improving the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ana Santos-Rebelo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.S.-R.); (P.R.)
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Ctra. A2 km 33,600 Campus Universitario, 28871 Alcalá de Henares, Spain;
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.K.); (V.P.); (Y.E.C.)
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.K.); (V.P.); (Y.E.C.)
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.K.); (V.P.); (Y.E.C.)
| | - Carla Eleutério
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (C.E.); (M.F.)
| | - Mariana Figueira
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (C.E.); (M.F.)
| | - Ana S. Viana
- CQB, CQE, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016 Lisboa, Portugal;
| | - Lia Ascensão
- CESAM, Universidade de Lisboa, Faculdade de Ciências, Campo Grande 1749-016 Lisboa, Portugal;
| | - Jesús Molpeceres
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Ctra. A2 km 33,600 Campus Universitario, 28871 Alcalá de Henares, Spain;
| | - Patrícia Rijo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.S.-R.); (P.R.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Departamento de Engenharia Química, Universidade de Lisboa,1049-001 Lisboa, Portugal;
| | - Joana Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Catarina Pinto Reis
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (C.E.); (M.F.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
- IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217-946-400; Fax: +351-217-946-470
| |
Collapse
|
10
|
Tanaka HY, Kano MR. Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment. Cancer Sci 2018; 109:2085-2092. [PMID: 29737600 PMCID: PMC6029832 DOI: 10.1111/cas.13630] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer is known for its dismal prognosis despite efforts to improve therapeutic outcome. Recently, cancer nanomedicine, application of nanotechnology to cancer diagnosis and treatment, has gained interest for treatment of pancreatic cancer. The enhanced permeability and retention (EPR) effect that promotes selective accumulation of nanometer‐sized molecules within tumors is the theoretical rationale of treatment. However, it is clear that EPR may be insufficient in pancreatic cancer as a result of stromal barriers within the tumor microenvironment (TME). These limit intratumoral accumulation of macromolecules. The TME and stromal barriers inside it consist of various stromal cell types which interact both with each other and with tumor cells. We are only beginning to understand the complexities of the stromal barriers within the TME and its functional consequences for nanomedicine. Understanding the complex crosstalk between barrier stromal cells is challenging because of the difficulty of modeling pancreatic cancer TME. Here we provide an overview of stromal barriers within the TME. We also describe the preclinical models, both in vivo and in vitro, developed to study them. We furthermore discuss the critical gaps in our understanding, and how we might formulate a better strategy for using nanomedicine against pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y Tanaka
- Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsunobu R Kano
- Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama, Japan
| |
Collapse
|
11
|
Kim M, Kim DM, Kim KS, Jung W, Kim DE. Applications of Cancer Cell-Specific Aptamers in Targeted Delivery of Anticancer Therapeutic Agents. Molecules 2018; 23:E830. [PMID: 29617327 PMCID: PMC6017884 DOI: 10.3390/molecules23040830] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
Aptamers are single-stranded oligonucleotides that specifically bind and interact with their corresponding targets, including proteins and cells, through unique three-dimensional structures. Numerous aptamers have been developed to target cancer biomarkers with high specificity and affinity, and some are employed as versatile guiding ligands for cancer-specific drug delivery and anti-cancer therapeutics. In this review, we list the aptamers that target tumor surface biomarkers and summarize the representative applications of aptamers as agonists and antagonists that activate anti-cancer and inactivate pro-cancer biomarkers, respectively. In addition, we describe applications of aptamer-drug or aptamer-oligonucleotide conjugates that can deliver therapeutic agents, including small interfering RNAs, micro RNAs, short hairpin RNAs, and chemotherapeutic molecules, to cancer cells. Moreover, we provide examples of aptamer- conjugated nano-vehicles, in which cancer-targeting oligonucleotide aptamers are conjugated with nano-vehicles such as liposomes, micelles, polymeric nanoparticles, and quantum dots. Conjugation of aptamers with anti-cancer drugs and nano-vehicles will facilitate innovative applications of aptamer-based cancer therapeutics.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Dong-Min Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Keun-Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea.
| | - Woong Jung
- Department of Emergency Medicine Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea.
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
12
|
Targeting Ligand Specificity Linked to Tumor Tissue Topological Heterogeneity via Single-Cell Micro-Pharmacological Modeling. Sci Rep 2018; 8:3638. [PMID: 29483578 PMCID: PMC5827036 DOI: 10.1038/s41598-018-21883-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
Abstract
Targeted therapy has held promise to be a successful anticancer treatment due to its specificity towards tumor cells that express the target receptors. However, not all targeting drugs used in the clinic are equally effective in tumor eradication. To examine which biochemical and biophysical properties of targeted agents are pivotal for their effective distribution inside the tumor and their efficient cellular uptake, we combine mathematical micro-pharmacological modeling with in vivo imaging of targeted human xenograft tumors in SCID mice. The mathematical model calibrated to experimental data was used to explore properties of the targeting ligand (diffusion and affinity) and ligand release schemes (rates and concentrations) with a goal to identify the properties of cells and ligands that enable high receptor saturation. By accounting for heterogeneities typical of in vivo tumors, our model was able to identify cell- and tissue-level barriers to efficient drug uptake. This work provides a base for utilizing experimentally measurable properties of a ligand-targeted agent and patient-specific attributes of the tumor tissue to support the development of novel targeted imaging agents and for improvement in their delivery to individual tumor cells.
Collapse
|
13
|
Karolak A, Rejniak KA. Micropharmacology: An In Silico Approach for Assessing Drug Efficacy Within a Tumor Tissue. Bull Math Biol 2018; 81:3623-3641. [PMID: 29423880 DOI: 10.1007/s11538-018-0402-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/30/2018] [Indexed: 12/25/2022]
Abstract
Systemic chemotherapy is one of the main anticancer treatments used for most kinds of clinically diagnosed tumors. However, the efficacy of these drugs can be hampered by the physical attributes of the tumor tissue, such as tortuous vasculature, dense and fibrous extracellular matrix, irregular cellular architecture, tumor metabolic gradients, and non-uniform expression of the cell membrane receptors. This can impede the transport of therapeutic agents to tumor cells in sufficient quantities. In addition, tumor microenvironments undergo dynamic spatio-temporal changes during tumor progression and treatment, which can also obstruct drug efficacy. To examine ways to improve drug delivery on a cell-to-tissue scale (single-cell pharmacology), we developed the microscale pharmacokinetics/pharmacodynamics (microPKPD) modeling framework. Our model is modular and can be adjusted to include only the mathematical equations that are crucial for a biological problem under consideration. This modularity makes the model applicable to a broad range of pharmacological cases. As an illustration, we present two specific applications of the microPKPD methodology that help to identify optimal drug properties. The hypoxia-activated drugs example uses continuous drug concentrations, diffusive-advective transport through the tumor interstitium, and passive transmembrane drug uptake. The targeted therapy example represents drug molecules as discrete particles that move by diffusion and actively bind to cell receptors. The proposed modeling approach takes into account the explicit tumor tissue morphology, its metabolic landscape and/or specific receptor distribution. All these tumor attributes can be assessed from patients' diagnostic biopsies; thus, the proposed methodology can be developed into a tool suitable for personalized medicine, such as neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Aleksandra Karolak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Katarzyna A Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA. .,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
14
|
Knapp KA, Pires ES, Adair SJ, Mandal A, Mills AM, Olson WC, Slingluff CL, Parsons JT, Bauer TW, Bullock TN, Herr JC. Evaluation of SAS1B as a target for antibody-drug conjugate therapy in the treatment of pancreatic cancer. Oncotarget 2018; 9:8972-8984. [PMID: 29507667 PMCID: PMC5823626 DOI: 10.18632/oncotarget.23944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022] Open
Abstract
Successful therapeutic options remain elusive for pancreatic cancer. The exquisite sensitivity and specificity of humoral and cellular immunity may provide therapeutic approaches if antigens specific for pancreatic cancer cells can be identified. Here we characterize SAS1B (ovastacin, ASTL, astacin-like), a cancer-oocyte antigen, as an attractive immunotoxin target expressed at the surface of human pancreatic cancer cells, with limited expression among normal tissues. Immunohistochemistry shows that most pancreatic cancers are SAS1Bpos (68%), while normal pancreatic ductal epithelium is SAS1Bneg. Pancreatic cancer cell lines developed from patient-derived xenograft models display SAS1B cell surface localization, in addition to cytoplasmic expression, suggesting utility for SAS1B in multiple immunotherapeutic approaches. When pancreatic cancer cells were treated with an anti-SAS1B antibody-drug conjugate, significant cell death was observed at 0.01-0.1 μg/mL, while SAS1Bneg human keratinocytes were resistant. Cytotoxicity was correlated with SAS1B cell surface expression; substantial killing was observed for tumors with low steady state SAS1B expression, suggesting a substantial proportion of SAS1Bpos tumors can be targeted in this manner. These results demonstrate SAS1B is a surface target in pancreatic cancer cells capable of binding monoclonal antibodies, internalization, and delivering cytotoxic drug payloads, supporting further development of SAS1B as a novel target for pancreatic cancer.
Collapse
Affiliation(s)
- Kiley A Knapp
- Department of Pathology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Eusebio S Pires
- Department of Cell Biology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Department of Obstetrics and Gynecology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Sara J Adair
- Department of Surgery, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Arabinda Mandal
- Department of Cell Biology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Anne M Mills
- Department of Pathology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Walter C Olson
- Department of Surgery, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Craig L Slingluff
- Department of Surgery, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - J Thomas Parsons
- Department of Microbiology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Todd W Bauer
- Department of Surgery, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Timothy N Bullock
- Department of Pathology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - John C Herr
- Department of Pathology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Department of Cell Biology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
15
|
Quirin KA, Kwon JJ, Alioufi A, Factora T, Temm CJ, Jacobsen M, Sandusky GE, Shontz K, Chicoine LG, Clark KR, Mendell JT, Korc M, Kota J. Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 8:8-20. [PMID: 29349096 PMCID: PMC5675991 DOI: 10.1016/j.omtm.2017.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Recombinant adeno-associated virus (rAAV)-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9) expressing GFP in a self-complementary (sc) AAV vector under an EF1α promoter (scAAV.GFP) following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 1012 viral genomes (vg). Intraductal delivery of 1 × 1011 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 1011 vg. In a KrasG12D-driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.
Collapse
Affiliation(s)
- Kayla A Quirin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Jason J Kwon
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Arafat Alioufi
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Tricia Factora
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | | | - Max Jacobsen
- Department of Pathology, IUSM, Indianapolis, IN 46202, USA
| | | | - Kim Shontz
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Louis G Chicoine
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - K Reed Clark
- Dimension Therapeutics, Cambridge, MA 02139, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Murray Korc
- The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN 46202, USA.,Pancreatic Cancer Signature Center, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN 46202, USA.,Department of Biochemistry and Molecular Biology, IUSM, Indianapolis, IN 43202, USA.,Department of Medicine, IUSM, Indianapolis, IN 43202, USA
| | - Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA.,The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN 46202, USA.,Pancreatic Cancer Signature Center, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Farr N, Wang YN, D'Andrea S, Starr F, Partanen A, Gravelle KM, McCune JS, Risler LJ, Whang SG, Chang A, Hingorani SR, Lee D, Hwang JH. Hyperthermia-enhanced targeted drug delivery using magnetic resonance-guided focussed ultrasound: a pre-clinical study in a genetic model of pancreatic cancer. Int J Hyperthermia 2017; 34:284-291. [PMID: 28715967 DOI: 10.1080/02656736.2017.1336675] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The lack of effective treatment options for pancreatic cancer has led to a 5-year survival rate of just 8%. Here, we evaluate the ability to enhance targeted drug delivery using mild hyperthermia in combination with the systemic administration of a low-temperature sensitive liposomal formulation of doxorubicin (LTSL-Dox) using a relevant model for pancreas cancer. MATERIALS AND METHODS Experiments were performed in a genetically engineered mouse model of pancreatic cancer (KPC mice: LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre). LTSL-Dox or free doxorubicin (Dox) was administered via a tail vein catheter. A clinical magnetic resonance-guided high intensity focussed ultrasound (MR-HIFU) system was used to plan treatment, apply the HIFU-induce hyperthermia and monitor therapy. Post-therapy, total Dox concentration in tumour tissue was determined by HPLC and confirmed with fluorescence microscopy. RESULTS Localized hyperthermia was successfully applied and monitored with a clinical MR-HIFU system. The mild hyperthermia heating algorithm administered by the MR-HIFU system resulted in homogenous heating within the region of interest. MR-HIFU, in combination with LTSL-Dox, resulted in a 23-fold increase in the localised drug concentration and nuclear uptake of doxorubicin within the tumour tissue of KPC mice compared to LTSL-Dox alone. Hyperthermia, in combination with free Dox, resulted in a 2-fold increase compared to Dox alone. CONCLUSION This study demonstrates that HIFU-induced hyperthermia in combination with LTSL-Dox can be a non-invasive and effective method in enhancing the localised delivery and penetration of doxorubicin into pancreatic tumours.
Collapse
Affiliation(s)
- Navid Farr
- a Department of Bioengineering , University of Washington , Seattle , WA , USA
| | - Yak-Nam Wang
- b Applied Physics Laboratory , University of Washington , Seattle , WA , USA
| | - Samantha D'Andrea
- c Department of Medicine , University of Washington , Seattle , WA , USA
| | - Frank Starr
- b Applied Physics Laboratory , University of Washington , Seattle , WA , USA
| | - Ari Partanen
- d Philips, Clinical Science MR Therapy , Andover , MA , USA
| | - Kayla M Gravelle
- c Department of Medicine , University of Washington , Seattle , WA , USA
| | - Jeannine S McCune
- e Pharmacokinetics Laboratory , University of Washington , Seattle , WA , USA
| | - Linda J Risler
- e Pharmacokinetics Laboratory , University of Washington , Seattle , WA , USA
| | - Stella G Whang
- c Department of Medicine , University of Washington , Seattle , WA , USA
| | - Amy Chang
- f Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Sunil R Hingorani
- c Department of Medicine , University of Washington , Seattle , WA , USA.,f Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Donghoon Lee
- g Department of Radiology , University of Washington , Seattle , WA , USA
| | - Joo Ha Hwang
- c Department of Medicine , University of Washington , Seattle , WA , USA
| |
Collapse
|
17
|
杨 晓. 细胞内锌稳态调控及其在胰腺癌发生发展过程中的作用. Shijie Huaren Xiaohua Zazhi 2017; 25:1615-1623. [DOI: 10.11569/wcjd.v25.i18.1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
锌参与300种以上的细胞生理过程, 包括DNA及蛋白合成、酶的活化以及细胞内信号转导过程. 同时锌也是许多酶类, 如碳酸酐酶、基质金属蛋白酶的关键组分, 而这些酶类与缺氧、血管生成、细胞增殖及肿瘤转移密切相关, 因此, 锌的获取对于恶性肿瘤的生长和进展非常重要. 细胞内锌离子的浓度变化受到ZnT1、ZIP4、金属硫蛋白及金属转录因子1等的调控, 细胞内锌稳态是多种调控机制参与下锌内流、锌外流和保留之间动态平衡的结果. 已有大量研究证实锌稳态调控失衡与胰腺癌的发生和转移有关, 因此, 锌及锌稳态的调控异常在胰腺癌的发生发展中具有重要作用.
Collapse
|
18
|
Mathison A, Salmonson A, Missfeldt M, Bintz J, Williams M, Kossak S, Nair A, de Assuncao TM, Christensen T, Buttar N, Iovanna J, Huebert R, Lomberk G. Combined AURKA and H3K9 Methyltransferase Targeting Inhibits Cell Growth By Inducing Mitotic Catastrophe. Mol Cancer Res 2017; 15:984-997. [PMID: 28442587 DOI: 10.1158/1541-7786.mcr-17-0063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Abstract
The current integrative pathobiologic hypothesis states that pancreatic cancer (PDAC) develops and progresses in response to an interaction between known oncogenes and downstream epigenomic regulators. Congruently, this study tests a new combinatorial therapy based on the inhibition of the Aurora kinase A (AURKA) oncogene and one of its targets, the H3K9 methylation-based epigenetic pathway. This therapeutic combination is effective at inhibiting the in vitro growth of PDAC cells both, in monolayer culture systems, and in three-dimensional spheroids and organoids. The combination also reduces the growth of PDAC xenografts in vivo Mechanistically, it was found that inhibiting methyltransferases of the H3K9 pathway in cells, which are arrested in G2-M after targeting AURKA, decreases H3K9 methylation at centromeres, induces mitotic aberrations, triggers an aberrant mitotic check point response, and ultimately leads to mitotic catastrophe. Combined, these data describe for the first time a hypothesis-driven design of an efficient combinatorial treatment that targets a dual oncogenic-epigenomic pathway to inhibit PDAC cell growth via a cytotoxic mechanism that involves perturbation of normal mitotic progression to end in mitotic catastrophe. Therefore, this new knowledge has significant mechanistic value as it relates to the development of new therapies as well as biomedical relevance.Implications: These results outline a model for the combined inhibition of a genetic-to-epigenetic pathway to inhibit cell growth and suggest an important and provocative consideration for harnessing the capacity of cell-cycle inhibitors to enhance the future use of epigenetic inhibitors. Mol Cancer Res; 15(8); 984-97. ©2017 AACR.
Collapse
Affiliation(s)
- Angela Mathison
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ann Salmonson
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mckenna Missfeldt
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jennifer Bintz
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Monique Williams
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Sarah Kossak
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Asha Nair
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Thiago M de Assuncao
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Trace Christensen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Navtej Buttar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Robert Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Gwen Lomberk
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota. .,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota.,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
19
|
Au M, Emeto TI, Power J, Vangaveti VN, Lai HC. Emerging Therapeutic Potential of Nanoparticles in Pancreatic Cancer: A Systematic Review of Clinical Trials. Biomedicines 2016; 4:E20. [PMID: 28536387 PMCID: PMC5344258 DOI: 10.3390/biomedicines4030020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer is an aggressive disease with a five year survival rate of less than 5%, which is associated with late presentation. In recent years, research into nanomedicine and the use of nanoparticles as therapeutic agents for cancers has increased. This article describes the latest developments in the use of nanoparticles, and evaluates the risks and benefits of nanoparticles as an emerging therapy for pancreatic cancer. The Preferred Reporting Items of Systematic Reviews and Meta-Analyses checklist was used. Studies were extracted by searching the Embase, MEDLINE, SCOPUS, Web of Science, and Cochrane Library databases from inception to 18 March 2016 with no language restrictions. Clinical trials involving the use of nanoparticles as a therapeutic or prognostic option in patients with pancreatic cancer were considered. Selected studies were evaluated using the Jadad score for randomised control trials and the Therapy CA Worksheet for intervention studies. Of the 210 articles found, 10 clinical trials including one randomised control trial and nine phase I/II clinical trials met the inclusion criteria and were analysed. These studies demonstrated that nanoparticles can be used in conjunction with chemotherapeutic agents increasing their efficacy whilst reducing their toxicity. Increased efficacy of treatment with nanoparticles may improve the clinical outcomes and quality of life in patients with pancreatic cancer, although the long-term side effects are yet to be defined. The study registration number is CRD42015020009.
Collapse
Affiliation(s)
- Minnie Au
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Douglas, Townsville QLD 4811, Australia.
- Townsville Cancer Centre, The Townsville Hospital, Townsville QLD 4814, Australia.
| | - Theophilus I Emeto
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Douglas, Townsville QLD 4811, Australia.
| | - Jacinta Power
- Townsville Cancer Centre, The Townsville Hospital, Townsville QLD 4814, Australia.
| | - Venkat N Vangaveti
- College of Medicine and Dentistry, James Cook University, James Cook Drive, Douglas, Townsville QLD 4811, Australia.
| | - Hock C Lai
- Townsville Cancer Centre, The Townsville Hospital, Townsville QLD 4814, Australia.
| |
Collapse
|
20
|
Novel targets for paclitaxel nano formulations: Hopes and hypes in triple negative breast cancer. Pharmacol Res 2016; 111:577-591. [PMID: 27461138 DOI: 10.1016/j.phrs.2016.07.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
Triple negative breast cancer is defined as one of the utmost prevailing breast cancers worldwide, possessing an inadequate prognosis and treatment option limited to chemotherapy and radiotherapy, creating a challenge for researchers as far as developing a specific targeted therapy is concerned. The past research era has shown several promising outcomes for TNBC such as nano-formulations of the chemotherapeutic agents already used for the management of the malignant tumor. Taking a glance at paclitaxel nano formulations, it has been proven beneficial in several researches in the past decade; nevertheless its solubility is often a challenge to scientists in achieving success. We have henceforth discussed the basic heterogeneity of triple negative breast cancer along with the current management options as well as a brief outlook on pros and cons of paclitaxel, known as the most widely used chemotherapeutic agent for the treatment of the disease. We further analyzed the need of nanotechnology pertaining to the problems encountered with the current paclitaxel formulations available discussing the strategic progress in various nano-formulations till date taking into account the basic research strategies required in terms of solubility, permeability, physicochemical properties, active and passive targeting. A thorough review in recent advances in active targeting for TNBC was carried out whereby the various ligands which are at present finding its way into TNBC research such as hyaluronic acid, folic acid, transferrin, etc. were discussed. These ligands have specific receptor affinity to TNBC tumor cells hence can be beneficial for novel drug targeting approaches. Conversely, there are currently several novel strategies in the research pipeline whose targeting ligands have not yet been studied. Therefore, we reviewed upon the numerous novel receptor targets along with the respective nano-formulation aspects which have not yet been fully researched upon and could be exemplified as outstanding target strategies for TNBC which is currently an urgent requirement.
Collapse
|
21
|
Wysocka O, Kulbacka J, Saczko J. Adjuvant, neoadjuvant, and experimental regimens in overcoming pancreatic ductal adenocarcinoma. PRZEGLAD GASTROENTEROLOGICZNY 2016; 11:155-162. [PMID: 27713776 PMCID: PMC5047971 DOI: 10.5114/pg.2016.61438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 07/01/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is one of the most aggressive and deadly malignancies. Despite better understanding of its biology and pathogenesis, contemporary treatment regimens are still insufficient. Along with the introduction of new treatment agents and combination therapy, the response rates are increasing, but these scores do not go with overall survival, and results are frequently conflicting. Therefore, contemporary medicine faces the challenge of expanding the knowledge base and practice on all grounds - pathology, factor risk, diagnosis, and finally surgical and palliative treatment of this disease. This paper provides a review of current adjuvant and neoadjuvant regimens and the role of experimental therapies in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Olga Wysocka
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
22
|
Malfanti A, Miletto I, Bottinelli E, Zonari D, Blandino G, Berlier G, Arpicco S. Delivery of Gemcitabine Prodrugs Employing Mesoporous Silica Nanoparticles. Molecules 2016; 21:522. [PMID: 27110750 PMCID: PMC6273405 DOI: 10.3390/molecules21040522] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/25/2022] Open
Abstract
In this paper, mesoporous silica nanoparticles (MSNs) were studied as vehicles for the delivery of the antitumoral drug gemcitabine (GEM) and of its 4-(N)-acyl derivatives, (4-(N)-valeroyl-(C5GEM), 4-(N)-lauroyl-(C12GEM) and 4-(N)-stearoyl-gemcitabine (C18GEM)). The loading of the GEM lipophilic prodrugs on MSNs was explored with the aim to obtain both a physical and a chemical protection of GEM from rapid plasmatic metabolization. For this purpose, MSNs as such or with grafted aminopropyl and carboxyethyl groups were prepared and characterized. Then, their different drug loading capacity in relation to the nature of the functional group was evaluated. In our experimental conditions, GEM was not loaded in any MSNs, while C12GEM was the most efficiently encapsulated and employed for further evaluation. The results showed that loading capacity increased with the presence of functional groups on the nanoparticles; similarly, the presence of functional groups on MSNs' surface influenced the drug release profile. Finally, the cytotoxicity of the different preparations was evaluated and data showed that C12GEM loaded MSNs are less cytotoxic than the free drug with an activity that increased with the incubating time, indicating that all these systems are able to release the drug in a controlled manner. Altogether, the results demonstrate that these MSNs could be an interesting system for the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Alessio Malfanti
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125 Torino, Italy.
| | - Ivana Miletto
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Emanuela Bottinelli
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Daniele Zonari
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125 Torino, Italy.
| | - Giulia Blandino
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125 Torino, Italy.
| | - Gloria Berlier
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Silvia Arpicco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125 Torino, Italy.
| |
Collapse
|
23
|
Yu X, Jin C. Application of albumin-based nanoparticles in the management of cancer. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:4. [PMID: 26610927 DOI: 10.1007/s10856-015-5618-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Over the past three decades, tremendous progress has been made in cancer prevention and treatment. Despite these advances, a substantial number of cancer cases experience early recurrence and metastases. Thus, the better management of cancer, especially developing more effective drugs for combating cancer cells, is an arduous task. Albumin-based nanoparticles are emerging as a promising approach to replace the traditional way of carrying therapeutic drugs to a tumor site. In this review, we describe the basic knowledge on albumin-based nanoparticles, recent progress of using albumin-based nanoparticles in the diagnosis and treatment of cancer, and the application of nanoparticle albumin bound (Nab) paclitaxel for the treatment of lung, breast and pancreatic cancer. Last but not least, we try to discuss future goals and perspectives in the field of drug delivery research, thereby facilitating the antitumor activity.
Collapse
Affiliation(s)
- Xinzhe Yu
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Middle Urumqi Road 12#, Shanghai, 200040, China.
| | - Chen Jin
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Middle Urumqi Road 12#, Shanghai, 200040, China.
| |
Collapse
|
24
|
Phan VHG, Lee E, Maeng JH, Thambi T, Kim BS, Lee D, Lee DS. Pancreatic cancer therapy using an injectable nanobiohybrid hydrogel. RSC Adv 2016; 6:41644-41655. [DOI: 10.1039/c6ra07934b] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Nanobiohybrid hydrogels, composed of biocompatible inorganic nanoparticles and biodegradable polymeric hydrogels, have been developed as the sustained delivery carrier of gemcitabine for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- V. H. Giang Phan
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Eunhye Lee
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Jin Hee Maeng
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Thavasyappan Thambi
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Bong Sup Kim
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Donheang Lee
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| |
Collapse
|
25
|
Lomberk GA, Urrutia R. The Triple-Code Model for Pancreatic Cancer: Cross Talk Among Genetics, Epigenetics, and Nuclear Structure. Surg Clin North Am 2015; 95:935-52. [PMID: 26315515 DOI: 10.1016/j.suc.2015.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic adenocarcinoma is painful, generally incurable, and frequently lethal. The current progression model indicates that this cancer evolves by mutations and deletions in key oncogenes and tumor suppressor genes. This article describes an updated, more comprehensive model that includes concepts from the fields of epigenetics and nuclear architecture. Widespread use of next-generation sequencing for identifying genetic and epigenetic changes genome-wide will help identify and validate more and better markers for this disease. Epigenetic alterations are amenable to pharmacologic manipulations, thus this new integrated paradigm will contribute to advance this field from a mechanistic and translational point of view.
Collapse
Affiliation(s)
- Gwen A Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street Southwest, Guggenheim 10-24A, Rochester, MN 55905, USA.
| | - Raul Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Guggenheim 10-42C, Rochester, MN 55905, USA; Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Guggenheim 10-42C, Rochester, MN 55905, USA; Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Guggenheim 10-42C, Rochester, MN 55905, USA.
| |
Collapse
|
26
|
Lucero-Acuña A, Jeffery JJ, Abril ER, Nagle RB, Guzman R, Pagel MD, Meuillet EJ. Nanoparticle delivery of an AKT/PDK1 inhibitor improves the therapeutic effect in pancreatic cancer. Int J Nanomedicine 2014; 9:5653-65. [PMID: 25516710 PMCID: PMC4263440 DOI: 10.2147/ijn.s68511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The K-ras mutation in pancreatic cancer can inhibit drug delivery and increase drug resistance. This is exemplified by the therapeutic effect of PH-427, a small molecule inhibitor of AKT/PDK1, which has shown a good therapeutic effect against a BxPC3 pancreatic cancer model that has K-ras, but has a poor therapeutic effect against a MiaPaCa-2 pancreatic cancer model with mutant K-ras. To increase the therapeutic effect of PH-427 against the MiaPaCa-2 pancreatic cancer model with mutant K-ras, we encapsulated PH-427 into poly(lactic-co-glycolic acid) nanoparticles (PNP) to form drug-loaded PH-427-PNP. PH-427 showed a biphasic release from PH-427-PNP over 30 days during studies in sodium phosphate buffer, and in vitro studies revealed that the PNP was rapidly internalized into MiaPaCa-2 tumor cells, suggesting that PNP can improve PH-427 delivery into cells harboring mutant K-ras. In vivo studies of an orthotopic MiaPaCa-2 pancreatic cancer model showed reduced tumor load with PH-427-PNP as compared with treatment using PH-427 alone or with no treatment. Ex vivo studies confirmed the in vivo results, suggesting that PNP can improve drug delivery to pancreatic cancer harboring mutant K-ras.
Collapse
Affiliation(s)
- Armando Lucero-Acuña
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Justin J Jeffery
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Edward R Abril
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Raymond B Nagle
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Roberto Guzman
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Mark D Pagel
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA ; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA ; Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Emmanuelle J Meuillet
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, USA ; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
27
|
Nahire R, Hossain R, Patel R, Paul S, Meghnani V, Ambre AH, Gange KN, Katti KS, Leclerc E, Srivastava DK, Sarkar K, Mallik S. pH-triggered echogenicity and contents release from liposomes. Mol Pharm 2014; 11:4059-68. [PMID: 25271780 PMCID: PMC4224524 DOI: 10.1021/mp500186a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Liposomes are representative lipid
nanoparticles widely used for
delivering anticancer drugs, DNA fragments, or siRNA to cancer cells.
Upon targeting, various internal and external triggers have been used
to increase the rate for contents release from the liposomes. Among
the internal triggers, decreased pH within the cellular lysosomes
has been successfully used to enhance the rate for releasing contents.
However, imparting pH sensitivity to liposomes requires the synthesis
of specialized lipids with structures that are substantially modified
at a reduced pH. Herein, we report an alternative strategy to render
liposomes pH sensitive by encapsulating a precursor which generates
gas bubbles in situ in response to acidic pH. The
disturbance created by the escaping gas bubbles leads to the rapid
release of the encapsulated contents from the liposomes. Atomic force
microscopic studies indicate that the liposomal structure is destroyed
at a reduced pH. The gas bubbles also render the liposomes echogenic,
allowing ultrasound imaging. To demonstrate the applicability of this
strategy, we have successfully targeted doxorubicin-encapsulated liposomes
to the pancreatic ductal carcinoma cells that overexpress the folate
receptor on the surface. In response to the decreased pH in the lysosomes,
the encapsulated anticancer drug is efficiently released. Contents
released from these liposomes are further enhanced by the application
of continuous wave ultrasound (1 MHz), resulting in substantially
reduced viability for the pancreatic cancer cells (14%).
Collapse
Affiliation(s)
- Rahul Nahire
- Department of Pharmaceutical Sciences, North Dakota State University , Fargo, North Dakota 58108, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xu B, Jin DY, Lou WH, Wang DS. Lipocalin-2 is associated with a good prognosis and reversing epithelial-to-mesenchymal transition in pancreatic cancer. World J Surg 2014; 37:1892-900. [PMID: 23539193 DOI: 10.1007/s00268-013-2009-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lipocalin-2 is a multifaceted modulator in cancer progression. Its clinical significance is not clear in pancreatic cancer. The purpose of this study was to investigate whether lipocalin-2 is associated with good prognosis by reversing epithelial-to-mesenchymal transition (EMT) in pancreatic cancer. METHODS Lipocalin-2, E-cadherin, or vimentin expression was detected in 60 pancreatic adenocarcinoma specimens. Correlations between lipocalin-2 expression and EMT, the clinicopathologic characteristics, and prognosis were investigated. Whether pancreatic cancer cells' migration and invasion (some characteristics of EMT) were affected by lipocalin-2 was also explored. RESULTS High lipocalin-2 expression was significantly associated with a good prognosis in pancreatic cancer (p < 0.05). Overexpression of lipocalin-2 correlated with a lower extent of EMT (p < 0.05), increased E-cadherin expression (p < 0.05), decreased vimentin expression (p < 0.05), and reduced cancer cell migration and invasion in pancreatic cancer. CONCLUSIONS Lipocalin-2 may be considered an epithelial inducer, which may reverse EMT and predict a good prognosis in pancreatic cancer.
Collapse
Affiliation(s)
- Bin Xu
- Department of Hepato-biliary-pancreatic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China.
| | | | | | | |
Collapse
|
29
|
Abstract
Drug delivery systems (DDSs) face several challenges including site-specific delivery, stability, and the programmed release of drugs. Engineered nanoparticle (NP) surfaces with responsive moieties can enhance the efficacy of DDSs for in vitro and in vivo systems. This triggering process can be achieved through both endogenous (biologically controlled release) and exogenous (external stimuli controlled release) activation. In this review, we will highlight recent examples of the use of triggered release strategies of engineered nanomaterials for in vitro and in vivo applications.
Collapse
Affiliation(s)
| | | | | | - Vincent M. Rotello
- Corresponding author at: Department of Chemistry, 710 North Pleasant St., University of Massachusetts, Amherst, MA 01003 USA, Tel.: +1 413 545 058; fax: +1 413 545 4490.
| |
Collapse
|
30
|
Ni X, Long J, Cen P, Chen L, Yang J, Li M. Pancreatic cancer tumour initiating cells: the molecular regulation and therapeutic values. J Cell Mol Med 2012; 16:988-94. [PMID: 22050663 PMCID: PMC3298733 DOI: 10.1111/j.1582-4934.2011.01478.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer is an aggressive solid tumour characterized by its local invasion, early metastasis and resistance to standard chemotherapy or radiation therapy. Tumour initiating cells (TICs) are not only capable of self-renewal and differentiation, but also play an important role in multi-drug resistance, and thus become a popular topic in cancer research especially in pancreatic cancer. In this review, we summarize the current progress of TICs in tumourigenesis, various newly identified surface markers of pancreatic TICs, and the signalling pathways such as epithelial-mesenchymal transition, sonic hedgehog and Notch that regulate TICs. We also discuss the role which microRNA plays in TICs as well as its application in TIC-targeted therapy along with other approaches.
Collapse
Affiliation(s)
- Xiaoling Ni
- The Vivian L Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Medical School, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
31
|
Xu Y, Karmakar A, Heberlein WE, Mustafa T, Biris AR, Biris AS. Multifunctional magnetic nanoparticles for synergistic enhancement of cancer treatment by combinatorial radio frequency thermolysis and drug delivery. Adv Healthc Mater 2012. [PMID: 23184783 DOI: 10.1002/adhm.201200079] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Few-layer, carbon-coated, iron (C/Fe) magnetic nanoparticles (MNPs) were synthesized with controlled sizes ranging from 7 to 9 nm. The additional loading of two anti-cancer drugs, doxorubicin and erlotinib, was achieved through - stacking onto the carbon shells. Controlled release of the drugs was successfully triggered by radio frequency (RF) heating or pH variation. Based on the experimental results, C/Fe MNPs act as heat-inducing agents and are able to thermally destroy cancer cells when RF is applied. It was found that the combination of anti-cancer drugs (in particular a low dose of doxorubicin) and RF treatment demonstrates a synergistic effect in inducing cell death in pancreatic cancer cells. Our findings demonstrate that MNPs can be used as highly efficient multimodal nanocarrier agents for an integrated approach to cancer treatment involving triggered delivery of antineoplastic drugs and RF-induced thermal therapy.
Collapse
Affiliation(s)
- Yang Xu
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave, AR 72204, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Ni X, Yang J, Li M. Imaging-guided curative surgical resection of pancreatic cancer in a xenograft mouse model. Cancer Lett 2012; 324:179-85. [PMID: 22617626 DOI: 10.1016/j.canlet.2012.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer related deaths in North America. The poor survival statistics are due to the fact that there are no reliable tests for early diagnosis and no effective therapies once metastasis has occurred. Surgical resection is the only curative treatment for pancreatic cancer; however, only less than 15% of the patients are eligible for surgery at diagnosis. New therapies are urgently needed for this malignant disease. And combinational therapy including surgery, chemotherapy and molecular targeted therapy may further improve the efficacy of individual therapies. However, a reliable mouse model which mimics the human disease and can be used for testing the surgical treatment and surgery-based combinational therapy is not available. In this study, we have established a mouse model for curative surgical resection of pancreatic cancer. Human pancreatic cancer cells were used to create orthotopic xenografts in nude mice, distal pancreatectomy was performed using imaging-guided technology to remove the pancreatic tumors, and sham surgery was performed in the control group. All mice survived the operation and no complication was observed. Surgical resection at early stage improved the survival rate and quality of life of the mice compared with the sham surgery and surgical resection at the late stage. If combined with other therapies such as chemotherapy and molecular targeted therapy, it could further improve the outcome of pancreatic cancer. This mouse model is a useful tool to study the surgical therapy and the tumor recurrence of pancreatic cancer, and could potentially impact the therapeutic choices for this deadly disease.
Collapse
Affiliation(s)
- Xiaoling Ni
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | |
Collapse
|
33
|
Taghdisi SM, Lavaee P, Ramezani M, Abnous K. Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharm 2010; 77:200-6. [PMID: 21168488 DOI: 10.1016/j.ejpb.2010.12.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/20/2010] [Accepted: 12/03/2010] [Indexed: 12/20/2022]
Abstract
AIM Single-walled carbon nanotubes (SWNTs) have been already used as drug carriers. In this study, we introduced sgc8c aptamer (this aptamer targets leukemia biomarker protein tyrosine kinase-7) to complex between Dau (daunorubicin) and SWNT to enhance targeted delivery of Dau to acute lymphoblastic leukemia T-cells (Molt-4). MATERIAL AND METHODS Dau-aptamer-SWNTs tertiary complex formation was analyzed by visible spectroscopy and spectrofluorophotometric analysis. Dau release profiles from the complex were investigated in pH 7.4 and 5.5. For cytotoxic studies (MTT assay), Molt-4 (target) and U266 (B lymphocyte human myeloma, non-target) cells were treated with Dau, Dau-aptamer-SWNTs tertiary complex. Internalization was analyzed by flow cytometry. Targeted delivery of Dau was antagonized using antisense of aptamer. RESULTS Dau was efficiently loaded onto SWNTs (efficiency ∼ 157%). Dau was released from Dau-aptamer-SWNTs tertiary complex in a pH-dependent manner (higher release rate at pH 5.5). Flow cytometric analysis showed that the tertiary complex was internalized effectively to Molt-4 cells, but not to U266 cells. Cytotoxicity of Dau-aptamer-SWNTs tertiary complex also confirmed internalization data. Dau-aptamer-SWNTs tertiary complex was less cytotoxic in U266 cells when compared to Dau alone. No significant change in viability between Dau- and complex-treated Molt-4 cells was observed. Cytotoxicity of Dau-aptamer-SWNTs complex was efficiently and quickly reversed using antisense in Molt-4 cells. CONCLUSION Dau-aptamer-SWNTs complex is able to selectively target Molt-4 cells. The other advantages of this system are reversibility and pH-dependent release of Dau from its complex.
Collapse
|
34
|
Abstract
Pancreatic cancer has a poor prognosis and is often diagnosed at an advanced stage, which makes it difficult to treat. The low survival rate of patients with pancreatic cancer points towards an increased need for novel therapeutic and chemopreventive strategies and also early detection of this disease. Increased consumption of fruits and vegetables has been associated with a reduced risk of pancreatic cancer. Synthetic and natural, diet-derived bioactive compounds have been evaluated as pancreatic cancer chemopreventive agents and have demonstrated various degrees of efficacy in cellular and in vivo animal models. Some chemopreventive agents (for example, curcumin or resveratrol) have also been reported to sensitize pancreatic cancer cells to standard chemotherapeutic drugs (for example, gemcitabine or erlotinib), which suggests that chemopreventive agents could potentially be used as potentiators of standard chemotherapy. Few clinical trials of pancreatic cancer chemopreventive agents have been completed and some are in early phases. Further development of pancreatic cancer chemopreventive agents may prove to be tremendously valuable for individuals at high risk of developing pancreatic cancer and patients who present with premalignant lesions. This Review discusses the current state of the pancreatic cancer chemoprevention field and highlights the challenges ahead.
Collapse
|
35
|
Zhang Y, Bharadwaj U, Logsdon CD, Chen C, Yao Q, Li M. ZIP4 regulates pancreatic cancer cell growth by activating IL-6/STAT3 pathway through zinc finger transcription factor CREB. Clin Cancer Res 2010; 16:1423-30. [PMID: 20160059 DOI: 10.1158/1078-0432.ccr-09-2405] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Recent studies indicate a strong correlation of zinc transporter ZIP4 and pancreatic cancer progression; however, the underlying mechanisms are unclear. We have recently found that ZIP4 is overexpressed in pancreatic cancer. In this study, we investigated the signaling pathway through which ZIP4 regulates pancreatic cancer growth. EXPERIMENTAL DESIGN The expression of cyclin D1, interleukin 6 (IL-6), and signal transducer and activator of transcription 3 (STAT3) in pancreatic cancer xenografts and cells were examined by real-time PCR, Bio-Plex cytokine assay, and Western blot, respectively. The activity of cAMP response element-binding protein (CREB) is examined by a promoter activity assay. RESULTS Cyclin D1 was significantly increased in the ZIP4 overexpressing MIA PaCa-2 cells (MIA-ZIP4)-injected orthotopic xenografts and was downregulated in the ZIP4-silenced ASPC-1 (ASPC-shZIP4) group. The phosphorylation of STAT3, an upstream activator of cyclin D1, was increased in MIA-ZIP4 cells and decreased in ASPC-shZIP4 cells. IL-6, a known upstream activator for STAT3, was also found to be significantly increased in the MIA-ZIP4 cells and xenografts and decreased in the ASPC-shZIP4 group. Overexpression of ZIP4 led to a 75% increase of IL-6 promoter activity and caused increased phosphorylation of CREB. CONCLUSIONS Our study suggest that ZIP4 overexpression causes increased IL-6 transcription through CREB, which in turn activates STAT3 and leads to increased cyclin D1 expression, resulting in increased cell proliferation and tumor progression in pancreatic cancer. These results elucidated a novel pathway in ZIP4-mediated pancreatic cancer growth and suggest new therapeutic targets, including ZIP4, IL-6, and STAT3, in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yuqing Zhang
- Michael E DeBakey Department of Surgery, Baylor College of Medicine, Molecular Surgeon Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|