1
|
Nardin S, Sacco G, Lagodin D'Amato A, Barcellini L, Rovere M, Santamaria S, Marconi S, Coco S, Genova C. Updates in pharmacotherapy for non-small cell lung cancer: a focus on emerging tubulin inhibitors. Expert Opin Pharmacother 2024; 25:1051-1069. [PMID: 38935538 DOI: 10.1080/14656566.2024.2369196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION The treatment landscape of non-small cell lung cancer (NSCLC) has seen significant advancements in recent years, marked by a shift toward target agents and immune checkpoint inhibitors (ICIs). However, chemotherapy remains a cornerstone of treatment, alone or in combination. Microtubule-targeting agents, such as taxanes and vinca alkaloids, play a crucial role in clinical practice in both early and advanced settings in NSCLC. AREA COVERED This review outlines the mechanisms of action, present significance, and prospective advancements of microtubule-targeting agents (MTAs), with a special highlight on new combinations in phase 3 trials. The online databases PubMed, Web of Science, Cochrane Library, and ClinicalTrials.gov were searched using the terms 'Microtubule-targeting agents' and 'non-small cell lung cancer' or synonyms, with a special focus over the last 5 years of publications. EXPERT OPINION Despite the emergence of immunotherapy, MTA remains crucial, often used alongside or after immunotherapy, especially in squamous cell lung cancer. Next-generation sequencing expands treatment options, but reliable biomarkers for immunotherapy are lacking. While antibody-drug conjugates (ADCs) show promise, managing toxicities remain vital. In the early stages, MTAs, possibly with ICIs, are standard, while ADCs may replace traditional chemotherapy in the advanced stages. Nevertheless, MTAs remain essential in subsequent lines or for patients with contraindications.
Collapse
Affiliation(s)
- Simone Nardin
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genoa, Genoa, Italy
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluca Sacco
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genoa, Genoa, Italy
- U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Agostina Lagodin D'Amato
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genoa, Genoa, Italy
- U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucrezia Barcellini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genoa, Genoa, Italy
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Rovere
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sara Santamaria
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Marconi
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carlo Genova
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genoa, Genoa, Italy
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
2
|
Thammathong J, Chisam KB, Tessmer GE, Womack CB, Sidrak MM, Weissmiller AM, Banerjee S. Fused Imidazopyrazine-Based Tubulin Polymerization Inhibitors Inhibit Neuroblastoma Cell Function. ACS Med Chem Lett 2023; 14:1284-1294. [PMID: 37736192 PMCID: PMC10510670 DOI: 10.1021/acsmedchemlett.3c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Targeting the colchicine binding site on tubulin is a promising approach for cancer treatment to overcome the limitations of current tubulin polymerization inhibitors. New classes of colchicine binding site inhibitors (CBSIs) are continually being uncovered; however, balancing metabolic stability and cellular potency remains an issue that needs to be resolved. Therefore, we designed and synthesized a series of novel fused imidazopyridine and -pyrazine CBSIs and evaluated their cellular activity, metabolic stability, and tubulin-binding properties. Evidence shows that the imidazo[1,2-a]pyrazine series are effective against neuroblastoma cell lines marked by MYCN amplification. Further assessment shows that a combination of an imidazo[1,2-a]pyrazine core with a trimethoxyphenyl ring D results in the highest cellular activity and binding characteristics compared with a dichloromethoxyphenyl or difluoromethoxyphenyl ring D. However, the metabolic stability of compounds with a dichloromethoxyphenyl or difluoromethoxyphenyl ring D is significantly higher than that of those containing a trimethoxyphenyl ring D, suggesting that improved metabolic stability is achieved with a moderate impact on potency.
Collapse
Affiliation(s)
- Joshua Thammathong
- Department
of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Kaylee B. Chisam
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Garrett E. Tessmer
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Carl B. Womack
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Mario M. Sidrak
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - April M. Weissmiller
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Souvik Banerjee
- Department
of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
3
|
Zhang SX, Liu W, Ai B, Sun LL, Chen ZS, Lin LZ. Current Advances and Outlook in Gastric Cancer Chemoresistance: A Review. Recent Pat Anticancer Drug Discov 2021; 17:26-41. [PMID: 34587888 DOI: 10.2174/1574892816666210929165729] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Surgical resection of the lesion is the standard primary treatment of gastric cancer. Unfortunately, most patients are already in the advanced stage of the disease when they are diagnosed with gastric cancer. Alternative therapies, such as radiation therapy and chemotherapy, can achieve only very limited benefits. The emergence of cancer drug resistance has always been the major obstacle to the cure of tumors. The main goal of modern cancer pharmacology is to determine the underlying mechanism of anticancer drugs. OBJECTIVE Here, we mainly review the latest research results related to the mechanism of chemotherapy resistance in gastric cancer, the application of natural products in overcoming the chemotherapy resistance of gastric cancer, and the new strategies currently being developed to treat tumors based on immunotherapy and gene therapy. CONCLUSION The emergence of cancer drug resistance is the main obstacle in achieving alleviation and final cure for gastric cancer. Mixed therapies are considered to be a possible way to overcome chemoresistance. Natural products are the main resource for discovering new drugs specific for treating chemoresistance, and further research is needed to clarify the mechanism of natural product activity in patients. .
Collapse
Affiliation(s)
- Sheng-Xiong Zhang
- Guangdong Province Work Injury Rehabilitation Hospital, Guangzhou, 510440. China
| | - Wei Liu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006. China
| | - Bo Ai
- Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Ling-Ling Sun
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405. China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, New York. United States
| | - Li-Zhu Lin
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405. China
| |
Collapse
|
4
|
Banerjee S, Mahmud F, Deng S, Ma L, Yun MK, Fakayode SO, Arnst KE, Yang L, Chen H, Wu Z, Lukka PB, Parmar K, Meibohm B, White SW, Wang Y, Li W, Miller DD. X-ray Crystallography-Guided Design, Antitumor Efficacy, and QSAR Analysis of Metabolically Stable Cyclopenta-Pyrimidinyl Dihydroquinoxalinone as a Potent Tubulin Polymerization Inhibitor. J Med Chem 2021; 64:13072-13095. [PMID: 34406768 PMCID: PMC9206499 DOI: 10.1021/acs.jmedchem.1c01202] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small molecules that interact with the colchicine binding site in tubulin have demonstrated therapeutic efficacy in treating cancers. We report the design, syntheses, and antitumor efficacies of new analogues of pyridopyrimidine and hydroquinoxalinone compounds with improved drug-like characteristics. Eight analogues, 5j, 5k, 5l, 5m, 5n, 5r, 5t, and 5u, showed significant improvement in metabolic stability and demonstrated strong antiproliferative potency in a panel of human cancer cell lines, including melanoma, lung cancer, and breast cancer. We report crystal structures of tubulin in complex with five representative compounds, 5j, 5k, 5l, 5m, and 5t, providing direct confirmation for their binding to the colchicine site in tubulin. A quantitative structure-activity relationship analysis of the synthesized analogues showed strong ability to predict potency. In vivo, 5m (4 mg/kg) and 5t (5 mg/kg) significantly inhibited tumor growth as well as melanoma spontaneous metastasis into the lung and liver against a highly paclitaxel-resistant A375/TxR xenograft model.
Collapse
Affiliation(s)
- Souvik Banerjee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department of Physical Sciences, College of STEM, University of Arkansas Fort Smith, Fort Smith, Arkansas 72913, United States
| | - Foyez Mahmud
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lingling Ma
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Sayo O Fakayode
- Department of Physical Sciences, College of STEM, University of Arkansas Fort Smith, Fort Smith, Arkansas 72913, United States
| | - Kinsie E Arnst
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Pradeep B Lukka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Keyur Parmar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
5
|
A novel synthetic microtubule inhibitor exerts antiproliferative effects in multidrug resistant cancer cells and cancer stem cells. Sci Rep 2021; 11:10822. [PMID: 34031528 PMCID: PMC8144389 DOI: 10.1038/s41598-021-90337-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
The success of cancer chemotherapy is limited by multidrug resistance (MDR), which is mainly caused by P-glycoprotein (P-gp) overexpression. In the present study, we describe a novel microtubule inhibitor, 5-(N-methylmaleimid-3-yl)-chromone (SPC-160002), that can be used to overcome MDR. A synthetic chromone derivative, SPC-160002, showed a broad spectrum of anti-proliferative effects on various human cancer cells without affecting P-gp expression and its drug efflux function. Treatment with SPC-160002 arrested the cell cycle at the M phase, as evidenced using fluorescence-activated cell sorting analysis, and increased the levels of mitotic marker proteins, including cyclin B, pS10-H3, and chromosomal passenger complex. This mitotic arrest by SPC-160002 was mediated by promoting and stabilizing microtubule polymerization, similar to the mechanism observed in case of taxane-based drugs. Furthermore, SPC-160002 suppressed the growth and sphere-forming activity of cancer stem cells. Our data herein strongly suggest that SPC-160002, a novel microtubule inhibitor, can be used to overcome MDR and can serve as an attractive candidate for anticancer drugs.
Collapse
|
6
|
Zöllner SK, Selvanathan SP, Graham GT, Commins RMT, Hong SH, Moseley E, Parks S, Haladyna JN, Erkizan HV, Dirksen U, Hogarty MD, Üren A, Toretsky JA. Inhibition of the oncogenic fusion protein EWS-FLI1 causes G 2-M cell cycle arrest and enhanced vincristine sensitivity in Ewing's sarcoma. Sci Signal 2017; 10:10/499/eaam8429. [PMID: 28974650 DOI: 10.1126/scisignal.aam8429] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ewing's sarcoma (ES) is a rare and highly malignant cancer that grows in the bones or surrounding tissues mostly affecting adolescents and young adults. A chimeric fusion between the RNA binding protein EWS and the ETS family transcription factor FLI1 (EWS-FLI1), which is generated from a chromosomal translocation, is implicated in driving most ES cases by modulation of transcription and alternative splicing. The small-molecule YK-4-279 inhibits EWS-FLI1 function and induces apoptosis in ES cells. We aimed to identify both the underlying mechanism of the drug and potential combination therapies that might enhance its antitumor activity. We tested 69 anticancer drugs in combination with YK-4-279 and found that vinca alkaloids exhibited synergy with YK-4-279 in five ES cell lines. The combination of YK-4-279 and vincristine reduced tumor burden and increased survival in mice bearing ES xenografts. We determined that independent drug-induced events converged to cause this synergistic therapeutic effect. YK-4-279 rapidly induced G2-M arrest, increased the abundance of cyclin B1, and decreased EWS-FLI1-mediated generation of microtubule-associated proteins, which rendered cells more susceptible to microtubule depolymerization by vincristine. YK-4-279 reduced the expression of the EWS-FLI1 target gene encoding the ubiquitin ligase UBE2C, which, in part, contributed to the increase in cyclin B1. YK-4-279 also increased the abundance of proapoptotic isoforms of MCL1 and BCL2, presumably through inhibition of alternative splicing by EWS-FLI1, thus promoting cell death in response to vincristine. Thus, a combination of vincristine and YK-4-279 might be therapeutically effective in ES patients.
Collapse
Affiliation(s)
- Stefan K Zöllner
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA.,Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Saravana P Selvanathan
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Garrett T Graham
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Ryan M T Commins
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Sung Hyeok Hong
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Eric Moseley
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Sydney Parks
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Jessica N Haladyna
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Hayriye V Erkizan
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Uta Dirksen
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Michael D Hogarty
- Division of Oncology, Children's Hospital of Philadelphia, Colket Translational Research Building, Room 3020, 3501 Civic Center Boulevard, Philadelphia, PA 19014, USA
| | - Aykut Üren
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Jeffrey A Toretsky
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA.
| |
Collapse
|
7
|
Mitotic cell death induction by targeting the mitotic spindle with tubulin-inhibitory indole derivative molecules. Oncotarget 2017; 8:19738-19759. [PMID: 28160569 PMCID: PMC5386718 DOI: 10.18632/oncotarget.14980] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
Tubulin-targeting molecules are widely used cancer therapeutic agents. They inhibit microtubule-based structures, including the mitotic spindle, ultimately preventing cell division. The final fates of microtubule-inhibited cells are however often heterogeneous and difficult to predict. While recent work has provided insight into the cell response to inhibitors of microtubule dynamics (taxanes), the cell response to tubulin polymerization inhibitors remains less well characterized. Arylthioindoles (ATIs) are recently developed tubulin inhibitors. We previously identified ATI members that effectively inhibit tubulin polymerization in vitro and cancer cell growth in bulk cell viability assays. Here we characterise in depth the response of cancer cell lines to five selected ATIs. We find that all ATIs arrest mitotic progression, yet subsequently yield distinct cell fate profiles in time-lapse recording assays, indicating that molecules endowed with similar tubulin polymerization inhibitory activity in vitro can in fact display differential efficacy in living cells. Individual ATIs induce cytological phenotypes of increasing severity in terms of damage to the mitotic apparatus. That differentially triggers MCL-1 down-regulation and caspase-3 activation, and underlies the terminal fate of treated cells. Collectively, these results contribute to define the cell response to tubulin inhibitors and pinpoint potentially valuable molecules that can increase the molecular diversity of tubulin-targeting agents.
Collapse
|
8
|
Yang CPH, Horwitz SB. Taxol ®: The First Microtubule Stabilizing Agent. Int J Mol Sci 2017; 18:ijms18081733. [PMID: 28792473 PMCID: PMC5578123 DOI: 10.3390/ijms18081733] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/14/2022] Open
Abstract
Taxol®, an antitumor drug with significant activity, is the first microtubule stabilizing agent described in the literature. This short review of the mechanism of action of Taxol® emphasizes the research done in the Horwitz’ laboratory. It discusses the contribution of photoaffinity labeled analogues of Taxol® toward our understanding of the binding site of the drug on the microtubule. The importance of hydrogen/deuterium exchange experiments to further our insights into the stabilization of microtubules by Taxol® is addressed. The development of drug resistance, a major problem that arises in the clinic, is discussed. Studies describing differential drug binding to distinct β-tubulin isotypes are presented. Looking forward, it is suggested that the β-tubulin isotype content of a tumor may influence its responses to Taxol®.
Collapse
Affiliation(s)
- Chia-Ping Huang Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
- Department of Obstetrics and Gynecology and Women's Health, Division of Gynecologic Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Susan Band Horwitz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
9
|
Hardin C, Shum E, Singh AP, Perez-Soler R, Cheng H. Emerging treatment using tubulin inhibitors in advanced non-small cell lung cancer. Expert Opin Pharmacother 2017; 18:701-716. [DOI: 10.1080/14656566.2017.1316374] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Pavana RK, Choudhary S, Bastian A, Ihnat MA, Bai R, Hamel E, Gangjee A. Discovery and preclinical evaluation of 7-benzyl-N-(substituted)-pyrrolo[3,2-d]pyrimidin-4-amines as single agents with microtubule targeting effects along with triple-acting angiokinase inhibition as antitumor agents. Bioorg Med Chem 2017; 25:545-556. [PMID: 27894589 PMCID: PMC5191990 DOI: 10.1016/j.bmc.2016.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023]
Abstract
The utility of cytostatic antiangiogenic agents (AA) in cancer chemotherapy lies in their combination with cytotoxic chemotherapeutic agents. Clinical combinations of AA with microtubule targeting agents (MTAs) have been particularly successful. The discovery, synthesis and biological evaluations of a series of 7-benzyl-N-substituted-pyrrolo[3,2-d]pyrimidin-4-amines are reported. Novel compounds which inhibit proangiogenic receptor tyrosine kinases (RTKs) including vascular endothelial growth factor receptor-2 (VEGFR-2), platelet-derived growth factor receptor-β (PDGFR-β) and epidermal growth factor receptor (EGFR), along with microtubule targeting in single molecules are described. These compounds also inhibited blood vessel formation in the chicken chorioallantoic membrane (CAM) assay, and some potently inhibited tubulin assembly (with activity comparable to that of combretastatin A-4 (CA)). In addition, some of the analogs circumvent the most clinically relevant tumor resistance mechanisms (P-glycoprotein and β-III tubulin expression) to microtubule targeting agents (MTA). These MTAs bind at the colchicine site on tubulin. Two analogs displayed two to three digit nanomolar GI50 values across the entire NCI 60 tumor cell panel and one of these, compound 7, freely water soluble as its HCl salt, afforded excellent in vivo antitumor activity against an orthotopic triple negative 4T1 breast cancer model and was superior to doxorubicin.
Collapse
Affiliation(s)
- Roheeth Kumar Pavana
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Shruti Choudhary
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Anja Bastian
- Department of Physiology, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States
| | - Michael A Ihnat
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Oklahoma City, OK 73117, United States
| | - Ruoli Bai
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
11
|
Busiek KK, Margolin W. Bacterial actin and tubulin homologs in cell growth and division. Curr Biol 2016; 25:R243-R254. [PMID: 25784047 DOI: 10.1016/j.cub.2015.01.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.
Collapse
Affiliation(s)
- Kimberly K Busiek
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, USA.
| |
Collapse
|
12
|
Nascimento AV, Gattacceca F, Singh A, Bousbaa H, Ferreira D, Sarmento B, Amiji MM. Biodistribution and pharmacokinetics of Mad2 siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models. Nanomedicine (Lond) 2016; 11:767-81. [PMID: 26980454 PMCID: PMC4910968 DOI: 10.2217/nnm.16.14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The present study focuses on biodistribution profile and pharmacokinetic parameters of EGFR-targeted chitosan nanoparticles (TG CS nanoparticles) for siRNA/cisplatin combination therapy of lung cancer. MATERIAL & METHODS Mad2 siRNA was encapsulated in EGFR targeted and nontargeted (NTG) CS nanoparticles by electrostatic interaction. The biodistribution of the nanoparticles was assessed qualitatively and quantitatively in cisplatin (DDP) sensitive and resistant lung cancer xenograft model. RESULTS TG nanoparticles showed a consistent and preferential tumor targeting ability with rapid clearance from the plasma to infiltrate and sustain within the tumor up to 96 h. They exhibit a sixfold higher tumor targeting efficiency compared with the NTG nanoparticles. CONCLUSION TG nanoparticles present as an attractive drug delivery platform for RNAi therapeutics against NSCLC.
Collapse
Affiliation(s)
- Ana Vanessa Nascimento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Portugal
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Florence Gattacceca
- Institut de Recherche en Cancérologie de Montpellier IRCM, INSERM U1194, ICM, Université de Montpellier, Montpellier, France
| | - Amit Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Portugal
| | - Domingos Ferreira
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Ferrara R, Pilotto S, Peretti U, Caccese M, Kinspergher S, Carbognin L, Karachaliou N, Rosell R, Tortora G, Bria E. Tubulin inhibitors in non-small cell lung cancer: looking back and forward. Expert Opin Pharmacother 2016; 17:1113-29. [DOI: 10.1517/14656566.2016.1157581] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- R. Ferrara
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - S. Pilotto
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - U. Peretti
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - M. Caccese
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - S. Kinspergher
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - L. Carbognin
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - R. Rosell
- Pangaea Biotech, Barcelona, Spain
- Instituto Oncológico Dr Rosell, Quiron-Dexeus University Hospital, Barcelona, Spain
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain
- Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
- Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti., Badalona, Spain
| | - G. Tortora
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - E. Bria
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
14
|
Paclitaxel Through the Ages of Anticancer Therapy: Exploring Its Role in Chemoresistance and Radiation Therapy. Cancers (Basel) 2015; 7:2360-71. [PMID: 26633515 PMCID: PMC4695897 DOI: 10.3390/cancers7040897] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 11/21/2022] Open
Abstract
Paclitaxel (Taxol®) is a member of the taxane class of anticancer drugs and one of the most common chemotherapeutic agents used against many forms of cancer. Paclitaxel is a microtubule-stabilizer that selectively arrests cells in the G2/M phase of the cell cycle, and found to induce cytotoxicity in a time and concentration-dependent manner. Paclitaxel has been embedded in novel drug formulations, including albumin and polymeric micelle nanoparticles, and applied to many anticancer treatment regimens due to its mechanism of action and radiation sensitizing effects. Though paclitaxel is a major anticancer drug which has been used for many years in clinical treatments, its therapeutic efficacy can be limited by common encumbrances faced by anticancer drugs. These encumbrances include toxicities, de novo refraction, and acquired multidrug resistance (MDR). This article will give a current and comprehensive review of paclitaxel, beginning with its unique history and pharmacology, explore its mechanisms of drug resistance and influence in combination with radiation therapy, while highlighting current treatment regimens, formulations, and new discoveries.
Collapse
|
15
|
Peloruside A is a microtubule-stabilizing agent with exceptional anti-migratory properties in human endothelial cells. Oncoscience 2015; 2:585-95. [PMID: 26244166 PMCID: PMC4506362 DOI: 10.18632/oncoscience.169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/08/2015] [Indexed: 11/25/2022] Open
Abstract
Peloruside A is a novel antimitotic drug originally isolated from the marine sponge Mycale hentschieli. Previous studies showed that peloruside A stabilizes microtubules by binding to a site on tubulin distinct from paclitaxel, another microtubule stabilizing drug. Peloruside A blocks mitosis, but little is known about the effects on other cellular activities. Here we report that peloruside A is the most potent microtubule inhibitor yet tested for its ability to block endothelial cell migration. Quantitative analysis indicated that it inhibits microtubule dynamics and endothelial cell migration at 1/200(th) of the concentration needed to inhibit cell division (the cytotoxic concentration), indicating that it could potentially have a large margin of safety when used to specifically target angiogenesis. By comparison, paclitaxel, a well-known cancer therapeutic drug, suppresses cell migration at 1/13(th) of its cytotoxic concentration; and vinblastine suppresses cell migration at just slightly below its cytotoxic antimitotic concentration. Thus, different microtubule targeted drugs have varying relative potencies for inhibition of cell migration versus cell division. The results suggest that peloruside A may be an especially useful agent for anti-angiogenesis therapy and point to the likelihood that other antimitotic drugs might be found with an even larger potential margin of safety.
Collapse
|
16
|
Dostál V, Libusová L. Microtubule drugs: action, selectivity, and resistance across the kingdoms of life. PROTOPLASMA 2014; 251:991-1005. [PMID: 24652407 DOI: 10.1007/s00709-014-0633-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/06/2014] [Indexed: 05/23/2023]
Abstract
Microtubule drugs such as paclitaxel, colchicine, vinblastine, trifluralin, or oryzalin form a chemically diverse group that has been reinforced by a large number of novel compounds over time. They all share the ability to change microtubule properties. The profound effects of disrupted microtubule systems on cell physiology can be used in research as well as anticancer treatment and agricultural weed control. The activity of microtubule drugs generally depends on their binding to α- and β-tubulin subunits. The microtubule drugs are often effective only in certain taxonomic groups, while other organisms remain resistant. Available information on the molecular basis of this selectivity is summarized. In addition to reviewing published data, we performed sequence data mining, searching for kingdom-specific signatures in plant, animal, fungal, and protozoan tubulin sequences. Our findings clearly correlate with known microtubule drug resistance determinants and add more amino acid positions with a putative effect on drug-tubulin interaction. The issue of microtubule network properties in plant cells producing microtubule drugs is also addressed.
Collapse
Affiliation(s)
- V Dostál
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43, Prague 2, Czech Republic
| | | |
Collapse
|
17
|
Gangjee A, Pavana RK, Ihnat MA, Thorpe JE, Disch BC, Bastian A, Bailey-Downs LC, Hamel E, Bai R. Discovery of antitubulin agents with antiangiogenic activity as single entities with multitarget chemotherapy potential. ACS Med Chem Lett 2014; 5:480-4. [PMID: 24900865 DOI: 10.1021/ml4004793] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/27/2014] [Indexed: 01/09/2023] Open
Abstract
Antiangiogenic agents (AA) are cytostatic, and their utility in cancer chemotherapy lies in their combination with cytotoxic chemotherapeutic agents. Clinical combinations of vascular endothelial growth factor receptor-2 (VEGFR2) inhibitors with antitubulin agents have been particularly successful. We have discovered a novel, potentially important analogue, that combines potent VEGFR2 inhibitory activity (comparable to that of sunitinib) with potent antitubulin activity (comparable to that of combretastatin A-4 (CA)) in a single molecule, with GI50 values of 10(-7) M across the entire NCI 60 tumor cell panel. It potently inhibited tubulin assembly and circumvented the most clinically relevant tumor resistance mechanisms (P-glycoprotein and β-III tubulin expression) to antimicrotubule agents. The compound is freely water-soluble as its HCl salt and afforded excellent antitumor activity in vivo, superior to docetaxel, sunitinib, or Temozolomide, without any toxicity.
Collapse
Affiliation(s)
- Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Roheeth Kumar Pavana
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Michael A. Ihnat
- Department
of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Oklahoma
City, Oklahoma 73117, United States
| | - Jessica E. Thorpe
- Department
of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Oklahoma
City, Oklahoma 73117, United States
| | | | - Anja Bastian
- Department
of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Oklahoma
City, Oklahoma 73117, United States
| | - Lora C. Bailey-Downs
- Department
of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Oklahoma
City, Oklahoma 73117, United States
| | - Ernest Hamel
- Screening
Technologies Branch, Developmental Therapeutics Program, Division
of Cancer Treatment and Diagnosis, Frederick National Laboratory for
Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Rouli Bai
- Screening
Technologies Branch, Developmental Therapeutics Program, Division
of Cancer Treatment and Diagnosis, Frederick National Laboratory for
Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
18
|
Lesma G, Sacchetti A, Bai R, Basso G, Bortolozzi R, Hamel E, Silvani A, Vaiana N, Viola G. Hemiasterlin analogues incorporating an aromatic, and heterocyclic type C-terminus: design, synthesis and biological evaluation. Mol Divers 2014; 18:357-73. [PMID: 24500310 DOI: 10.1007/s11030-014-9507-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/13/2014] [Indexed: 02/06/2023]
Abstract
A representative series of structural analogs of the antimitotic tripeptides hemiasterlins have been designed and synthesized, as potential inhibitors of tubulin polymerization. Relying also on a computational approach, we aimed to explore unknown extensive changes at the C-fragment, by incorporating the conformationally required double bond into five- and six-membered rings. Key steps of the synthetic strategy are a dynamic resolution affording the A-fragment in 97 % ee and the preparation of six new cyclic C fragments, all potentially able to interact with tubulin by means of H bonds. Unexpectedly, biological evaluation of these analogs did not provide evidences neither for cytotoxic effect nor for inhibition of tubulin polymerization.
Collapse
Affiliation(s)
- Giordano Lesma
- Dipartimento di Chimica, Università di Milano, via Golgi 19, Milan, 20133, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ganguly A, Yang H, Zhang H, Cabral F, Patel KD. Microtubule dynamics control tail retraction in migrating vascular endothelial cells. Mol Cancer Ther 2013; 12:2837-46. [PMID: 24107446 DOI: 10.1158/1535-7163.mct-13-0401] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drugs that target microtubules are potent inhibitors of angiogenesis, but their mechanism of action is not well understood. To explore this, we treated human umbilical vein endothelial cells with paclitaxel, vinblastine, and colchicine and measured the effects on microtubule dynamics and cell motility. In general, lower drug concentrations suppressed microtubule dynamics and inhibited cell migration whereas higher concentrations were needed to inhibit cell division; however, surprisingly, large drug-dependent differences were seen in the relative concentrations needed to inhibit these two processes. Suppression of microtubule dynamics did not significantly affect excursions of lamellipodia away from the nucleus or prevent cells from elongating; but, it did inhibit retraction of the trailing edges that are normally enriched in dynamic microtubules, thereby limiting cell locomotion. Complete removal of microtubules with a high vinblastine concentration caused a loss of polarity that resulted in roundish, rather than elongated, cells, rapid but nondirectional membrane activity, and little cell movement. The results are consistent with a model in which more static microtubules stabilize the leading edge of migrating cells, whereas more dynamic microtubules locate to the rear where they can remodel and allow tail retraction. Suppressing microtubule dynamics interferes with tail retraction, but removal of microtubules destroys the asymmetry needed for cell elongation and directional motility. The prediction that suppressing microtubule dynamics might be sufficient to prevent angiogenesis was supported by showing that low concentrations of paclitaxel could prevent the formation of capillary-like structures in an in vitro tube formation assay.
Collapse
Affiliation(s)
- Anutosh Ganguly
- Corresponding Authors: Kamala D. Patel, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary T2N 4N1, Alberta, Canada.
| | | | | | | | | |
Collapse
|
20
|
Ravanbakhsh S, Gajewski M, Greiner R, Tuszynski JA. Determination of the optimal tubulin isotype target as a method for the development of individualized cancer chemotherapy. Theor Biol Med Model 2013; 10:29. [PMID: 23634782 PMCID: PMC3651705 DOI: 10.1186/1742-4682-10-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/17/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND As microtubules are essential for cell growth and division, its constituent protein β-tubulin has been a popular target for various treatments, including cancer chemotherapy. There are several isotypes of human β-tubulin and each type of cell expresses its characteristic distribution of these isotypes. Moreover, each tubulin-binding drug has its own distribution of binding affinities over the various isotypes, which further complicates identifying the optimal drug selection. An ideal drug would preferentially bind only the tubulin isotypes expressed abundantly by the cancer cells, but not those in the healthy cells. Unfortunately, as the distributions of the tubulin isotypes in cancer cells overlap with those of healthy cells, this ideal scenario is clearly not possible. We can, however, seek a drug that interferes significantly with the isotype distribution of the cancer cell, but has only minor interactions with those of the healthy cells. METHODS We describe a quantitative methodology for identifying this optimal tubulin isotype profile for an ideal cancer drug, given the isotype distribution of a specific cancer type, as well as the isotype distributions in various healthy tissues, and the physiological importance of each such tissue. RESULTS We report the optimal isotype profiles for different types of cancer with various routes of delivery. CONCLUSIONS Our algorithm, which defines the best profile for each type of cancer (given the drug delivery route and some specified patient characteristics), will help to personalize the design of pharmaceuticals for individual patients. This paper is an attempt to explicitly consider the effects of the tubulin isotype distributions in both cancer and normal cell types, for rational chemotherapy design aimed at optimizing the drug's efficacy with minimal side effects.
Collapse
Affiliation(s)
- Siamak Ravanbakhsh
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
| | | | | | | |
Collapse
|
21
|
Romagnoli R, Baraldi PG, Salvador MK, Preti D, Tabrizi MA, Bassetto M, Brancale A, Hamel E, Castagliuolo I, Bortolozzi R, Basso G, Viola G. Synthesis and biological evaluation of 2-(alkoxycarbonyl)-3-anilinobenzo[b]thiophenes and thieno[2,3-b]pyridines as new potent anticancer agents. J Med Chem 2013; 56:2606-18. [PMID: 23445496 PMCID: PMC3646584 DOI: 10.1021/jm400043d] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two new series of inhibitors of tubulin polymerization based on the 2-(alkoxycarbonyl)-3-(3',4',5'-trimethoxyanilino)benzo[b]thiophene and thieno[2,3-b]pyridine molecular skeletons were synthesized and evaluated for antiproliferative activity on a panel of cancer cell lines, inhibition of tubulin polymerization, cell cycle effects, and in vivo potency. Antiproliferative activity was strongly dependent on the position of the methyl group on the benzene portion of the benzo[b]thiophene nucleus, with the greatest activity observed when the methyl was located at the C-6 position. Also, in the smaller thieno[2,3-b]pyridine series, the introduction of the methyl group at the C-6 position resulted in improvement of antiproliferative activity to the nanomolar level. The most active compounds (4i and 4n) did not induce cell death in normal human lymphocytes, suggesting that the compounds may be selective against cancer cells. Compound 4i significantly inhibited in vivo the growth of a syngeneic hepatocellular carcinoma in Balb/c mice.
Collapse
Affiliation(s)
- Romeo Romagnoli
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Pier Giovanni Baraldi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Maria Kimatrai Salvador
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Delia Preti
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Mojgan Aghazadeh Tabrizi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | | | - Roberta Bortolozzi
- Laboratorio di Oncoematologia, Dipartimento di Salute della Donna e del Bambino, Università di Padova, 35128 Padova, Italy
| | - Giuseppe Basso
- Laboratorio di Oncoematologia, Dipartimento di Salute della Donna e del Bambino, Università di Padova, 35128 Padova, Italy
| | - Giampietro Viola
- Laboratorio di Oncoematologia, Dipartimento di Salute della Donna e del Bambino, Università di Padova, 35128 Padova, Italy
| |
Collapse
|
22
|
Berbari NF, Sharma N, Malarkey EB, Pieczynski JN, Boddu R, Gaertig J, Guay-Woodford L, Yoder BK. Microtubule modifications and stability are altered by cilia perturbation and in cystic kidney disease. Cytoskeleton (Hoboken) 2012; 70:24-31. [PMID: 23124988 DOI: 10.1002/cm.21088] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 11/11/2022]
Abstract
Disruption of the primary cilium is associated with a growing number of human diseases collectively termed ciliopathies. Ciliopathies present with a broad range of clinical features consistent with the near ubiquitous nature of the organelle and its role in diverse signaling pathways throughout development and adult homeostasis. The clinical features associated with cilia dysfunction can include such phenotypes as polycystic kidneys, skeletal abnormalities, blindness, anosmia, and obesity. Although the clinical relevance of the primary cilium is evident, the effects that cilia dysfunction has on the cell and how this contributes to disease remains poorly understood. Here, we show that loss of ciliogenesis genes such as Ift88 and Kif3a lead to increases in post-translational modifications on cytosolic microtubules. This effect was observed in cilia mutant kidney cells grown in vitro and in vivo in cystic kidneys. The hyper-acetylation of microtubules resulting from cilia loss is associated with both altered microtubule stability and increased α-tubulin acetyl-transferase activity. Intriguingly, the effect on microtubules was also evident in renal samples from patients with autosomal recessive polycystic kidneys. These findings indicate that altered microtubule post-translational modifications may influence some of the phenotypes observed in ciliopathies.
Collapse
Affiliation(s)
- Nicolas F Berbari
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yin S, Zeng C, Hari M, Cabral F. Random mutagenesis of β-tubulin defines a set of dispersed mutations that confer paclitaxel resistance. Pharm Res 2012; 29:2994-3006. [PMID: 22669706 DOI: 10.1007/s11095-012-0794-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/21/2012] [Indexed: 01/14/2023]
Abstract
PURPOSE Previous research showed that mutations in β1-tubulin are frequently involved in paclitaxel resistance but the question of whether the mutations are restricted by cell-type specific differences remains obscure. METHODS To circumvent cellular constraints, we randomly mutagenized β-tubulin cDNA, transfected it into CHO cells, and selected for paclitaxel resistance. RESULTS A total of 26 β1-tubulin mutations scattered throughout the sequence were identified and a randomly chosen subset were confirmed to confer paclitaxel resistance using site-directed mutagenesis of β-tubulin cDNA and transfection into wild-type cells. Immunofluorescence microscopy and biochemical fractionation studies indicated that cells expressing mutant tubulin had decreased microtubule polymer and frequently suffered mitotic defects that led to the formation of large multinucleated cells, suggesting a resistance mechanism that involves destabilization of the microtubule network. Consistent with this conclusion, the mutations were predominantly located in regions that are likely to be involved in lateral or longitudinal subunit interactions. Notably, fourteen of the new mutations overlapped previously reported mutations in drug resistant cells or in patients with developmental brain abnormalities. CONCLUSIONS A random mutagenesis approach allowed isolation of a wider array of drug resistance mutations and demonstrated that similar mutations can cause paclitaxel resistance and human neuronal abnormalities.
Collapse
Affiliation(s)
- Shanghua Yin
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, 6431 Fannin St., Houston, Texas 77030, USA
| | | | | | | |
Collapse
|