1
|
Qian K, Gao S, Jiang Z, Ding Q, Cheng Z. Recent advances in mitochondria-targeting theranostic agents. EXPLORATION (BEIJING, CHINA) 2024; 4:20230063. [PMID: 39175881 PMCID: PMC11335472 DOI: 10.1002/exp.20230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
For its vital role in maintaining cellular activity and survival, mitochondrion is highly involved in various diseases, and several strategies to target mitochondria have been developed for specific imaging and treatment. Among these approaches, theranostic may realize both diagnosis and therapy with one integrated material, benefiting the simplification of treatment process and candidate drug evaluation. A variety of mitochondria-targeting theranostic agents have been designed based on the differential structure and composition of mitochondria, which enable more precise localization within cellular mitochondria at disease sites, facilitating the unveiling of pathological information while concurrently performing therapeutic interventions. Here, progress of mitochondria-targeting theranostic materials reported in recent years along with background information on mitochondria-targeting and therapy have been briefly summarized, determining to deliver updated status and design ideas in this field to readers.
Collapse
Affiliation(s)
- Kun Qian
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Shu Gao
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhaoning Jiang
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Qihang Ding
- Department of ChemistryKorea UniversitySeoulRepublic of Korea
| | - Zhen Cheng
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
2
|
Lee SY, Kwon J, Lee KA. Bcl2l10 induces metabolic alterations in ovarian cancer cells by regulating the TCA cycle enzymes SDHD and IDH1. Oncol Rep 2021; 45:47. [PMID: 33649794 PMCID: PMC7934226 DOI: 10.3892/or.2021.7998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/03/2021] [Indexed: 01/07/2023] Open
Abstract
Bcl2‑like‑10 (Bcl2l10) has both oncogenic and tumor suppressor functions depending on the type of cancer. It has been previously demonstrated that the suppression of Bcl2l10 in ovarian cancer SKOV3 and A2780 cells causes cell cycle arrest and enhances cell proliferation, indicating that Bcl2l10 is a tumor suppressor gene in ovarian cancer cells. The aim of the present study was to identify possible downstream target genes and investigate the underlying mechanisms of action of Bcl2l10 in ovarian cancer cells. RNA sequencing (RNA‑Seq) was performed to obtain a list of differentially expressed genes (DEGs) in Bcl2l10‑suppressed SKOV3 and A2780 cells. The RNA‑Seq data were validated by reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis, and the levels of metabolites after Bcl2l10‑knockdown were measured using colorimetric assay kits. Pathway enrichment analysis revealed that the commonly downregulated genes in SKOV3 and A2780 cells after Bcl2l10‑knockdown were significantly enriched in metabolic pathways. The analysis of the DEGs identified from RNA‑Seq and validated by RT‑qPCR revealed that succinate dehydrogenase complex subunit D (SDHD) and isocitrate dehydrogenase 1 (IDH1), which are key enzymes of the TCA cycle that regulate oncometabolite production, may be potential downstream targets of Bcl2l10. Furthermore, Bcl2l10‑knockdown induced the accumulation of succinate and isocitrate through the downregulation of SDHD and IDH1. The present study was the first to elucidate the metabolic regulatory functions of Bcl2l10 in ovarian cancer cells, and the results indicated that Bcl2l10 may serve as a potential therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Su-Yeon Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Jinie Kwon
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea,Correspondence to: Professor Kyung-Ah Lee, Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang, Seongnam, Gyeonggi 13488, Republic of Korea, E-mail:
| |
Collapse
|
3
|
Kim MS, Gernapudi R, Cedeño YC, Polster BM, Martinez R, Shapiro P, Kesari S, Nurmemmedov E, Passaniti A. Targeting breast cancer metabolism with a novel inhibitor of mitochondrial ATP synthesis. Oncotarget 2020; 11:3863-3885. [PMID: 33196708 PMCID: PMC7597410 DOI: 10.18632/oncotarget.27743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 01/17/2023] Open
Abstract
Inhibitors of mitochondrial respiration and ATP synthesis may promote the selective killing of respiration-competent cancer cells that are critical for tumor progression. We previously reported that CADD522, a small molecule inhibitor of the RUNX2 transcription factor, has potential for breast cancer treatment. In the current study, we show that CADD522 inhibits mitochondrial oxidative phosphorylation by decreasing the mitochondrial oxygen consumption rate (OCR) and ATP production in human breast cancer cells in a RUNX2-independent manner. The enzyme activity of mitochondrial ATP synthase was inhibited by CADD522 treatment. Importantly, results from cellular thermal shift assays that detect drug-induced protein stabilization revealed that CADD522 interacts with both α and β subunits of the F1-ATP synthase complex. Differential scanning fluorimetry also demonstrated interaction of α subunits of the F1-ATP synthase to CADD522. These results suggest that CADD522 might target the enzymatic F1 subunits in the ATP synthase complex. CADD522 increased the levels of intracellular reactive oxygen species (ROS), which was prevented by MitoQ, a mitochondria-targeted antioxidant, suggesting that cancer cells exposed to CADD522 may elevate ROS from mitochondria. CADD522-increased mitochondrial ROS levels were enhanced by exogenously added pro-oxidants such as hydrogen peroxide or tert-butyl hydroperoxide. Conversely, CADD522-mediated cell growth inhibition was blocked by N-acetyl-l-cysteine, a general ROS scavenger. Therefore, CADD522 may exert its antitumor activity by increasing mitochondrial driven cellular ROS levels. Collectively, our data suggest in vitro proof-of-concept that supports inhibition of mitochondrial ATP synthase and ROS generation as contributors to the effectiveness of CADD522 in suppression of tumor growth.
Collapse
Affiliation(s)
- Myoung Sook Kim
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Ramkishore Gernapudi
- Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Brian M. Polster
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), Baltimore, MD, USA
| | - Ramon Martinez
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Elmar Nurmemmedov
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Antonino Passaniti
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), Baltimore, MD, USA
| |
Collapse
|
4
|
Salimi A, Bahiraei T, Ahdeno S, Vatanpour S, Pourahmad J. Evaluation of Cytotoxic Activity of Betanin Against U87MG Human Glioma Cells and Normal Human Lymphocytes and Its Anticancer Potential Through Mitochondrial Pathway. Nutr Cancer 2020; 73:450-459. [PMID: 32420763 DOI: 10.1080/01635581.2020.1764068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recent studies revealed an antioxidant activity and anticancer efficiency of betanin. In this study, we investigated the cytotoxic effects and the possible mechanisms of betanin-induced apoptosis against U87MG human glioma cells and compared the results to those of human normal lymphocytes. MTT assay, caspase-3 activation assays in cells and succinate dehydrogenases (SDH), mitochondrial swelling, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and cytochrome C release assays in isolated mitochondria were obtained from U87MG human glioma cells and noncancerous human lymphocytes The results illustrated the significant cytotoxic effect of betanin on U87MG human glioma cells, with a concentration value that inhibits 50% of the cell growth of 7 µg/ml after 12 h of treatment. MTT assay demonstrated that the betanin is selectively toxic to U87MG human glioma cells, and betanin induced cell apoptosis via activation of caspase-3 along with modulation of apoptosis-related mitochondria. Meanwhile, betanin selectively increased ROS formation, mitochondria swelling, MMP decrease, and cytochrome c release in cancerous mitochondria but in normal mitochondria. Based on the evidence obtained from this study, it is concluded that the betanin is a promising natural compound to fight U87MG human glioma cells via induction of apoptosis through activation of intrinsic pathways.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Tannaz Bahiraei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sana Ahdeno
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saba Vatanpour
- Department of Biology, University of British Columbia, Vancouver, Canada
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Fu A, Hou Y, Yu Z, Zhao Z, Liu Z. Healthy mitochondria inhibit the metastatic melanoma in lungs. Int J Biol Sci 2019; 15:2707-2718. [PMID: 31754341 PMCID: PMC6854369 DOI: 10.7150/ijbs.38104] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/21/2019] [Indexed: 01/10/2023] Open
Abstract
Tumor mitochondria alter their functions to reprogram cell metabolism and then allow tumor cells to rapidly proliferate in the hypoxic and acidic microenvironment. However, roles of normal mitochondria played in tumor progression are still unclear. Here we investigate the normal mitochondrial effect on abnormal metabolism of tumors, and to clarify why the mitochondria have to undergo functional changes in the tumor growth. The mitochondria isolated from healthy mouse livers were intravenously injected into melanoma model mice with lung metastasis, then the tumor growth, animal survival and associated metabolic changes were studied. The results reveal that the mitochondria significantly retard tumor growth and increase survival days of animals. The anti-tumor effect of the mitochondria is related to interfering the tumor cell metabolisms, such as reducing glycolysis and producing an oxidative intracellular environment, all of which are not suitable for tumor cell proliferation. In addition, the mitochondria increases cell apoptosis, necrosis, and mitophagy. These effects are more efficient with the mitochondria isolated from young mouse livers than those from aged mice. Our study not only provides a valuable approach to invest mitochondrial function associated with tumor growth but also offer new insight into tumor therapy through interfering the tumor cell metabolism by healthy mitochondria.
Collapse
Affiliation(s)
- Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yixue Hou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhenyao Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zizhen Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zesheng Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Neagu M, Constantin C, Popescu ID, Zipeto D, Tzanakakis G, Nikitovic D, Fenga C, Stratakis CA, Spandidos DA, Tsatsakis AM. Inflammation and Metabolism in Cancer Cell-Mitochondria Key Player. Front Oncol 2019; 9:348. [PMID: 31139559 PMCID: PMC6527883 DOI: 10.3389/fonc.2019.00348] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer metabolism is an essential aspect of tumorigenesis, as cancer cells have increased energy requirements in comparison to normal cells. Thus, an enhanced metabolism is needed in order to accommodate tumor cells' accelerated biological functions, including increased proliferation, vigorous migration during metastasis, and adaptation to different tissues from the primary invasion site. In this context, the assessment of tumor cell metabolic pathways generates crucial data pertaining to the mechanisms through which tumor cells survive and grow in a milieu of host defense mechanisms. Indeed, various studies have demonstrated that the metabolic signature of tumors is heterogeneous. Furthermore, these metabolic changes induce the exacerbated production of several molecules, which result in alterations that aid an inflammatory milieu. The therapeutic armentarium for oncology should thus include metabolic and inflammation regulators. Our expanding knowledge of the metabolic behavior of tumor cells, whether from solid tumors or hematologic malignancies, may provide the basis for the development of tailor-made cancer therapies.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Doctoral School, Biology Faculty, University of Bucharest, Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Carolina Constantin
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Iulia Dana Popescu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donato Zipeto
- Department Neuroscience, Biomedicine and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Concettina Fenga
- Biomedical, Odontoiatric, Morphological and Functional Images Department, Occupational Medicine Section, University of Messina, Messina, Italy
| | - Constantine A Stratakis
- Section on Genetics & Endocrinology (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Greece
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Greece
| |
Collapse
|
7
|
Mesenchymal stem cells and their mitochondrial transfer: a double-edged sword. Biosci Rep 2019; 39:BSR20182417. [PMID: 30979829 PMCID: PMC6500894 DOI: 10.1042/bsr20182417] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/17/2019] [Accepted: 04/01/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction has been linked to many diseases including organ degeneration and cancer. Mesenchymal stem cells/stromal cells (MSCs) provide a valuable source for stem cell-based therapy and represent an emerging therapeutic approach for tissue regeneration. Increasing evidence suggests that MSCs can directly donate mitochondria to recover from cell injury and rescue mitochondrial damage-provoked tissue degeneration. Meanwhile, cancer cells and cancer stromal cells also cross-talk through mitochondrial exchange to regulate cancer metastasis. This review summarizes the research on MSCs and their mitochondrial transfer. It provides an overview of the biology, function, niches and signaling that play a role in tissue repair. It also highlights the pathologies of cancer growth and metastasis linked to mitochondrial exchange between cancer cells and surrounding stromal cells. It becomes evident that the function of MSC mitochondrial transfer is a double-edged sword. MSC mitochondrial transfer may be a pharmaceutical target for tissue repair and cancer therapy.
Collapse
|
8
|
Fan LH, Wang ZB, Li QN, Meng TG, Dong MZ, Hou Y, Ouyang YC, Schatten H, Sun QY. Absence of mitochondrial DNA methylation in mouse oocyte maturation, aging and early embryo development. Biochem Biophys Res Commun 2019; 513:912-918. [PMID: 31005257 DOI: 10.1016/j.bbrc.2019.04.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/14/2019] [Indexed: 01/24/2023]
Abstract
Mitochondrial DNA (mtDNA) is important for oxidative phosphorylation; dysfunctions can play a role in many mitochondrial diseases and can also affect the aging of cells and individuals. DNA methylation is an important epigenetic modification that plays a critical role in regulating gene expression. While recent studies have revealed the existence of mtDNA methylation there are still controversies about mtDNA methylation due to the special structure of mtDNA. Mitochondria and DNA methylation are both essential for regulating oocyte maturation and early embryo development, but whether mtDNA methylation changes during this process is unknown. By employing bisulfite sequencing, we found that in the process of mouse oocyte maturation, postovulatory oocyte aging, and early embryo development, all analyzed mitochondrial genes, including 16S-CpGI, DCR, ND6, 12S, and ATP8, lacked 5'mC. Thus, mtDNA methylation does not occur in the oocyte and early embryo.
Collapse
Affiliation(s)
- Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Qian-Nan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
9
|
Gao Y, Yang F, Yang X, Zhang L, Yu H, Cheng X, Xu S, Pan J, Wang K, Li P. Mitochondrial metabolism is inhibited by the
HIF
1α‐
MYC
‐
PGC
‐1β axis in
BRAF
V600E thyroid cancer. FEBS J 2019; 286:1420-1436. [DOI: 10.1111/febs.14786] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 11/17/2018] [Accepted: 02/13/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Yanyan Gao
- Key Laboratory of Nuclear Medicine Ministry of Health Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi China
- Center for Vascular Biology Institute for Translational Medicine College of Medicine Qingdao University China
| | - Fang Yang
- Center of System Medicine Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Xiu‐An Yang
- School of Basic Medical Science Chengde Medical University China
| | - Li Zhang
- Key Laboratory of Nuclear Medicine Ministry of Health Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi China
| | - Huixin Yu
- Key Laboratory of Nuclear Medicine Ministry of Health Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi China
| | - Xian Cheng
- Key Laboratory of Nuclear Medicine Ministry of Health Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi China
| | - Shichen Xu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi China
| | - Jie Pan
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi China
| | - Kun Wang
- Center for Developmental Cardiology Institute for Translational Medicine College of Medicine Qingdao University Qingdao China
| | - Peifeng Li
- Center for Vascular Biology Institute for Translational Medicine College of Medicine Qingdao University China
| |
Collapse
|
10
|
Damgaci S, Ibrahim‐Hashim A, Enriquez‐Navas PM, Pilon‐Thomas S, Guvenis A, Gillies RJ. Hypoxia and acidosis: immune suppressors and therapeutic targets. Immunology 2018; 154:354-362. [PMID: 29485185 PMCID: PMC6002221 DOI: 10.1111/imm.12917] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
Due to imbalances between vascularity and cellular growth patterns, the tumour microenvironment harbours multiple metabolic stressors including hypoxia and acidosis, which have significant influences on remodelling both tumour and peritumoral tissues. These stressors are also immunosuppressive and can contribute to escape from immune surveillance. Understanding these effects and characterizing the pathways involved can identify new targets for therapy and may redefine our understanding of traditional anti-tumour therapies. In this review, the effects of hypoxia and acidosis on tumour immunity will be summarized, and how modulating these parameters and their sequelae can be a useful tool for future therapeutic interventions is discussed.
Collapse
Affiliation(s)
- Sultan Damgaci
- Department of Cancer PhysiologyH. Lee Moffitt Cancer CenterTampaFLUSA
- Institute of Biomedical EngineeringBogazici UniversityIstanbulTurkey
| | | | | | - Shari Pilon‐Thomas
- Department of ImmunologyH. Lee Moffitt Cancer CenterTampaFLUSA
- Department of Cutaneous OncologyH. Lee Moffitt Cancer CenterTampaFLUSA
| | - Albert Guvenis
- Institute of Biomedical EngineeringBogazici UniversityIstanbulTurkey
| | - Robert J. Gillies
- Department of Cancer PhysiologyH. Lee Moffitt Cancer CenterTampaFLUSA
- Department of RadiologyH. Lee Moffitt Cancer CenterTampaFLUSA
| |
Collapse
|
11
|
Mesenchymal Stem Cells in Sepsis and Associated Organ Dysfunction: A Promising Future or Blind Alley? Stem Cells Int 2017; 2017:7304121. [PMID: 29098010 PMCID: PMC5618761 DOI: 10.1155/2017/7304121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/06/2017] [Indexed: 12/17/2022] Open
Abstract
Sepsis, newly defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection, is the most common cause of death in ICUs and one of the principal causes of death worldwide. Although substantial progress has been made in the understanding of fundamental mechanisms of sepsis, translation of these advances into clinically effective therapies has been disappointing. Given the extreme complexity of sepsis pathogenesis, the paradigm “one disease, one drug” is obviously flawed and combinations of multiple targets that involve early immunomodulation and cellular protection are needed. In this context, the immune-reprogramming properties of cell-based therapy using mesenchymal stem cells (MSC) represent an emerging therapeutic strategy in sepsis and associated organ dysfunction. This article provides an update of the current knowledge regarding MSC in preclinical models of sepsis and sepsis-induced acute kidney injury. Recommendations for further translational research in this field are discussed.
Collapse
|
12
|
Lytovchenko O, Kunji ERS. Expression and putative role of mitochondrial transport proteins in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:641-654. [PMID: 28342810 DOI: 10.1016/j.bbabio.2017.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Cancer cells undergo major changes in energy and biosynthetic metabolism. One of them is the Warburg effect, in which pyruvate is used for fermentation rather for oxidative phosphorylation. Another major one is their increased reliance on glutamine, which helps to replenish the pool of Krebs cycle metabolites used for other purposes, such as amino acid or lipid biosynthesis. Mitochondria are central to these alterations, as the biochemical pathways linking these processes run through these organelles. Two membranes, an outer and inner membrane, surround mitochondria, the latter being impermeable to most organic compounds. Therefore, a large number of transport proteins are needed to link the biochemical pathways of the cytosol and mitochondrial matrix. Since the transport steps are relatively slow, it is expected that many of these transport steps are altered when cells become cancerous. In this review, changes in expression and regulation of these transport proteins are discussed as well as the role of the transported substrates. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Oleksandr Lytovchenko
- Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
13
|
Galactomannan from Schizolobium amazonicum seed and its sulfated derivatives impair metabolism in HepG2 cells. Int J Biol Macromol 2017; 101:464-473. [DOI: 10.1016/j.ijbiomac.2017.03.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022]
|
14
|
Lan YL, Wang X, Xing JS, Yu ZL, Lou JC, Ma XC, Zhang B. Anti-cancer effects of dopamine in human glioma: involvement of mitochondrial apoptotic and anti-inflammatory pathways. Oncotarget 2017; 8:88488-88500. [PMID: 29179451 PMCID: PMC5687621 DOI: 10.18632/oncotarget.19691] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023] Open
Abstract
Despite the emergence of innovative cancer treatment strategies, the global burden imposed by malignant glioma is expected to increase; thus, new approaches for treating the disease are urgently required. Dopamine, a monoamine catecholamine neurotransmitter, is currently regarded as an important endogenous regulator of tumor growth. Dopamine may play an important role in glioma treatment; however, the mechanism underlying the anti-tumor activity of dopamine remains poorly understood. Here, we explored the potential roles of dopamine in glioma and highlight the importance of endogenous regulators of tumor growth. We report that dopamine inhibited glioma cell proliferation. We investigated the biological functions of dopamine via migration, colony formation and apoptosis assays in glioma cells. We also evaluated cytochrome c release from the mitochondria and p50 and p65 subcellular localization by fluorescence microscopy. We performed western blotting and real-time quantitative polymerase chain reaction to detect apoptosis and inflammatory marker protein and gene expression levels, respectively. NF-κB p50/p65 nuclear localization was analyzed after U87MG and U251 cells were treated with dopamine. The in vivo anti-tumor efficacy of dopamine was also analyzed in xenograft mice. Taken together, our results indicated that dopamine induced apoptosis by activating the cytochrome c and caspase-dependent apoptotic pathway. Moreover, dopamine markedly down-regulated inflammation-related protein expression levels and p50/p65 NF-κB nuclear localization in tumor cells, thereby inhibiting increases in tumor weight and size in xenograft mice. Thus, therapies targeting the mitochondrial apoptotic and anti-inflammatory signaling pathways regulated by dopamine may represent promising treatments for human glioma.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.,Department of Neurosurgery, The Third People's Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian 116033, China.,Department of Pharmacy, Dalian Medical University, Dalian 116044, China.,Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Xun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.,Department of Neurosurgery, The Third People's Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian 116033, China
| | - Jin-Shan Xing
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhen-Long Yu
- Department of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jia-Cheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiao-Chi Ma
- Department of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
15
|
Masgras I, Sanchez-Martin C, Colombo G, Rasola A. The Chaperone TRAP1 As a Modulator of the Mitochondrial Adaptations in Cancer Cells. Front Oncol 2017; 7:58. [PMID: 28405578 PMCID: PMC5370238 DOI: 10.3389/fonc.2017.00058] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Mitochondria can receive, integrate, and transmit a variety of signals to shape many biochemical activities of the cell. In the process of tumor onset and growth, mitochondria contribute to the capability of cells of escaping death insults, handling changes in ROS levels, rewiring metabolism, and reprograming gene expression. Therefore, mitochondria can tune the bioenergetic and anabolic needs of neoplastic cells in a rapid and flexible way, and these adaptations are required for cell survival and proliferation in the fluctuating environment of a rapidly growing tumor mass. The molecular bases of pro-neoplastic mitochondrial adaptations are complex and only partially understood. Recently, the mitochondrial molecular chaperone TRAP1 (tumor necrosis factor receptor associated protein 1) was identified as a key regulator of mitochondrial bioenergetics in tumor cells, with a profound impact on neoplastic growth. In this review, we analyze these findings and discuss the possibility that targeting TRAP1 constitutes a new antitumor approach.
Collapse
Affiliation(s)
- Ionica Masgras
- Dipartimento di Scienze Biomediche, Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), Università di Padova , Padova , Italy
| | - Carlos Sanchez-Martin
- Dipartimento di Scienze Biomediche, Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), Università di Padova , Padova , Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche (CNR) , Milano , Italy
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), Università di Padova , Padova , Italy
| |
Collapse
|
16
|
Loureiro R, Magalhães-Novais S, Mesquita KA, Baldeiras I, Sousa IS, Tavares LC, Barbosa IA, Oliveira PJ, Vega-Naredo I. Melatonin antiproliferative effects require active mitochondrial function in embryonal carcinoma cells. Oncotarget 2016; 6:17081-96. [PMID: 26025920 PMCID: PMC4627293 DOI: 10.18632/oncotarget.4012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/08/2015] [Indexed: 12/28/2022] Open
Abstract
Although melatonin oncostatic and cytotoxic effects have been described in different types of cancer cells, the specific mechanisms leading to its antitumoral effects and their metabolic context specificity are still not completely understood. Here, we evaluated the effects of melatonin in P19 embryonal carcinoma stem cells (CSCs) and in their differentiated counterparts, cultured in either high glucose medium or in a galactose (glucose-free) medium which leads to glycolytic suppression and increased mitochondrial metabolism. We found that highly glycolytic P19 CSCs were less susceptible to melatonin antitumoral effects while cell populations relying on oxidative metabolism for ATP production were more affected. The observed antiproliferative action of melatonin was associated with an arrest at S-phase, decreased oxygen consumption, down-regulation of BCL-2 expression and an increase in oxidative stress culminating with caspase-3-independent cell death. Interestingly, the combined treatment of melatonin and dichloroacetate had a synergistic effect in cells grown in the galactose medium and resulted in an inhibitory effect in the highly resistant P19 CSCs. Melatonin appears to exert its antiproliferative activity in P19 carcinoma cells through a mitochondrially-mediated action which in turn allows the amplification of the effects of dichloroacetate, even in cells with a more glycolytic phenotype.
Collapse
Affiliation(s)
- Rute Loureiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Silvia Magalhães-Novais
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Katia A Mesquita
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ines Baldeiras
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,School of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel S Sousa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ludgero C Tavares
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ines A Barbosa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ignacio Vega-Naredo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain
| |
Collapse
|
17
|
Cytotoxic L-amino-acid oxidases from Amanita phalloides and Clitocybe geotropa induce caspase-dependent apoptosis. Cell Death Discov 2016; 2:16021. [PMID: 27551514 PMCID: PMC4979486 DOI: 10.1038/cddiscovery.2016.21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/05/2016] [Accepted: 02/14/2016] [Indexed: 11/26/2022] Open
Abstract
L-amino-acid oxidases (LAO) purified from fungi induce cell death in various mammalian cells including human tumor cell lines. The mechanism, however, remains poorly understood. In this study, we aimed to define a precise mechanism of cell death induced in Jurkat and MCF7 cancer cell lines by ApLAO and CgLAO, LAOs isolated from Amanita phalloides and Clitocybe geotropa, respectively. Cell death induced by both LAOs is shown to be concentration- and time-dependent, with higher toxic effects in Jurkat cells. LAO activity is required for the cytotoxicity. Detailed study on Jurkat cells further demonstrated that ApLAO and CgLAO both induce the intrinsic mitochondrial pathway of apoptosis, accompanied by a time-dependent depolarization of the mitochondrial membrane through the generation of reactive oxygen species. Treatment with the LAOs resulted in an increased ratio of the expression of proapoptotic Bax to that of antiapoptotic Bcl-2, subsequently leading to the activation of caspase-9 and -3. However, the pancaspase inhibitor, Z-VAD-FMK, did not completely abolish the cell death induced by either ApLAO or CgLAO, suggesting an alternative pathway for LAO-induced apoptosis. Indeed, caspase-8 activity in ApLAO- and CgLAO-treated cells was increased. Further, Fas/FasL (Fas ligand) antagonist caused a slight reduction in toxin-induced cell death, supporting the involvement of ApLAO and CgLAO in death-receptor-mediated apoptosis. These results thus provide new evidence that ApLAO and CgLAO induce apoptosis in Jurkat cells via both the intrinsic and extrinsic pathways, although the significantly higher increase of caspase-9 over caspase-8 activity suggests that it is the intrinsic pathway that is the predominant mode of ApLAO- and CgLAO-induced apoptosis.
Collapse
|
18
|
Jurisic V, Radenkovic S, Konjevic G. The Actual Role of LDH as Tumor Marker, Biochemical and Clinical Aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 867:115-24. [PMID: 26530363 DOI: 10.1007/978-94-017-7215-0_8] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lactate dehydrogenase (LDH) among many biochemical parameters represents a very valuable enzyme in patients with cancer with possibility for easy routine measurement in many clinical laboratories. Previous studies where mostly based on investigated LDH in serum of patients with cancer with aims to estimate their clinical significance. The new directions in investigation of LDH where based on the principle that tumor cells release intracellular enzymes trough damaged cell membrane, that is mostly consequence in intracellular mitochondrial machinery alteration, and apoptosis deregulation. This consideration can be used not only in-vitro assays, but also in respect to clinical characteristics of tumor patients. Based on new techniques of molecular biology it is shown that intracellular characteristics of LDH enzyme are very sensitive indicators of the cellular metabolic state, aerobic or anaerobic direction of glycolysis, activation status and malignant transformation. Using different molecular analyses it is very useful to analyzed intracellular LDH activity in different cell line and tumor tissues obtained from patients, not only to understanding complexity in cancer biochemistry but also in early clinical diagnosis. Based on understandings of the LDH altered metabolism, new therapy option is created with aims to blocking certain metabolic pathways and stop tumors growth.
Collapse
Affiliation(s)
- Vladimir Jurisic
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| | | | - Gordana Konjevic
- Institute of Oncology and Radiology of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Guntuku L, Naidu VGM, Yerra VG. Mitochondrial Dysfunction in Gliomas: Pharmacotherapeutic Potential of Natural Compounds. Curr Neuropharmacol 2016; 14:567-83. [PMID: 26791479 PMCID: PMC4981742 DOI: 10.2174/1570159x14666160121115641] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/08/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
Gliomas are the most common primary brain tumors either benign or malignant originating from the glial tissue. Glioblastoma multiforme (GBM) is the most prevalent and aggressive form among all gliomas, associated with decimal prognosis due to it`s high invasive nature. GBM is also characterized by high recurrence rate and apoptosis resistance features which make the therapeutic targeting very challenging. Mitochondria are key cellular organelles that are acting as focal points in diverse array of cellular functions such as cellular energy metabolism, regulation of ion homeostasis, redox signaling and cell death. Eventual findings of mitochondrial dysfunction include preference of glycolysis over oxidative phosphorylation, enhanced reactive oxygen species generation and abnormal mitochondria mediated apoptotic machinery are frequently observed in various malignancies including gliomas. In particular, gliomas harbor mitochondrial structure abnormalities, genomic mutations in mtDNA, altered energy metabolism (Warburg effect) along with mutations in isocitrate dehydrogenase (IDH) enzyme. Numerous natural compounds have shown efficacy in the treatment of gliomas by targeting mitochondrial aberrant signaling cascades. Some of the natural compounds directly target the components of mitochondria whereas others act indirectly through modulating metabolic abnormalities that are consequence of the mitochondrial dysfunction. The present review offers a molecular insight into mitochondrial pathology in gliomas and therapeutic mechanisms of some of the promising natural compounds that target mitochondrial dysfunction. This review also sheds light on the challenges and possible ways to overcome the hurdles associated with these natural compounds to enter into the clinical market.
Collapse
Affiliation(s)
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, India.
| | | |
Collapse
|
20
|
Salimi A, Roudkenar MH, Sadeghi L, Mohseni A, Seydi E, Pirahmadi N, Pourahmad J. Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria. Redox Biol 2015; 6:461-471. [PMID: 26418626 PMCID: PMC4588415 DOI: 10.1016/j.redox.2015.08.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022] Open
Abstract
To investigate the effects ofellagic acid (EA) on the cytotoxicity, B-lymphocytes isolated from CLL patients and healthy individuals. Flow cytometric assay was used to measure the percentage of apoptosis versus necrosis, intracellular active oxygen radicals (ROS), mitochondrial membrane potential (MMP) and the caspase-3 activity and then mitochondria were isolated from both groups B-lymphocytes and parameters of mitochondrial toxicity was investigated. Based on our results EA decreased the percentage of viable cells and induced apoptosis. EA increased ROS formation, mitochondria swelling, MMP decrease and cytochrome c release in mitochondria isolated from CLL BUT NOT healthy B-lymphocytes while pre-treatment with cyclosporine A and Butylated hydroxyl toluene (BHT) prevented these effects. Our results suggest that EA can act as an anti cancer candidate by directly and selectively targeting mitochondria could induce apoptosis through mitochondria pathway with increasing ROS production which finally ends in cytochrome c release, caspase 3 activation and apoptosis in cancerous B-lymphocytes isolated from CLL patients.
Collapse
Affiliation(s)
- Ahmad Salimi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Leila Sadeghi
- Shohadaye Tajrish Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Enayatollah Seydi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahal Pirahmadi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, Shiraz University, Shiraz, Iran
| | - Jalal Pourahmad
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Breast Cancer Metabolism and Mitochondrial Activity: The Possibility of Chemoprevention with Metformin. BIOMED RESEARCH INTERNATIONAL 2015; 2015:972193. [PMID: 26605341 PMCID: PMC4641168 DOI: 10.1155/2015/972193] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/11/2015] [Accepted: 10/07/2015] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming refers to the ability of cancer cells to alter their metabolism in order to support the increased energy request due to continuous growth, rapid proliferation, and other characteristics typical of neoplastic cells. It has long been believed that the increase of metabolic request was independent of the mitochondrial action but recently we know that mitochondrial activity together with metabolism plays a pivotal role in the regulation of the energy needed for tumor cell growth and proliferation. For these reasons the mitochondria pathways could be a new target for therapeutic and chemopreventive intervention. Metformin in particular is actually considered a promising agent against mitochondrial activity thanks to its ability to inhibit the mitochondrial complex I.
Collapse
|
22
|
Görlach A, Dimova EY, Petry A, Martínez-Ruiz A, Hernansanz-Agustín P, Rolo AP, Palmeira CM, Kietzmann T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol 2015; 6:372-385. [PMID: 26339717 PMCID: PMC4565025 DOI: 10.1016/j.redox.2015.08.016] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/21/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
Within the last twenty years the view on reactive oxygen species (ROS) has changed; they are no longer only considered to be harmful but also necessary for cellular communication and homeostasis in different organisms ranging from bacteria to mammals. In the latter, ROS were shown to modulate diverse physiological processes including the regulation of growth factor signaling, the hypoxic response, inflammation and the immune response. During the last 60–100 years the life style, at least in the Western world, has changed enormously. This became obvious with an increase in caloric intake, decreased energy expenditure as well as the appearance of alcoholism and smoking; These changes were shown to contribute to generation of ROS which are, at least in part, associated with the occurrence of several chronic diseases like adiposity, atherosclerosis, type II diabetes, and cancer. In this review we discuss aspects and problems on the role of intracellular ROS formation and nutrition with the link to diseases and their problematic therapeutical issues. Oxidative stress is linked to overnutrition, obesity and associated diseases or cancer. Reactive oxygen species (ROS) are crucially involved in modulation of signaling cascades. NOX proteins and hypoxia contribute to formation of ROS under different nutrient regimes. ROS are powerful post-transcriptional and epigenetic regulators. Treatment of obesity with antioxidants requires more, larger, and better monitored clinical trials.
Collapse
Affiliation(s)
- Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Anabela P Rolo
- Department of Life Sciences, University of Coimbra and Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - Carlos M Palmeira
- Department of Life Sciences, University of Coimbra and Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
23
|
Poli V, Camporeale A. STAT3-Mediated Metabolic Reprograming in Cellular Transformation and Implications for Drug Resistance. Front Oncol 2015; 5:121. [PMID: 26106584 PMCID: PMC4459099 DOI: 10.3389/fonc.2015.00121] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)3 mediates the signaling downstream of cytokine and growth factor receptors, regulating the expression of target genes. It is constitutively phosphorylated on tyrosine (Y-P) in many tumors, where its transcriptional activity can induce a metabolic switch toward aerobic glycolysis and down-regulate mitochondrial activity, a prominent metabolic feature of most cancer cells, correlating with reduced production of ROS, delayed senescence, and protection from apoptosis. STAT3 can, however, also localize to mitochondria, where its serine-phosphorylated (S-P) form preserves mitochondrial oxidative phosphorylation and controls the opening of the mitochondrial permeability transition pore, also promoting survival and resistance to apoptosis in response to specific signals/oncogenes such as RAS. Thus, downstream of different signals, both nuclear, Y-P STAT3, and mitochondrial, S-P STAT3, can act by promoting cell survival and reducing ROS production. Here, we discuss these properties in the light of potential connections between STAT3-driven alterations of mitochondrial metabolism and the development of drug resistance in cancer patients.
Collapse
Affiliation(s)
- Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino , Italy
| | - Annalisa Camporeale
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino , Italy
| |
Collapse
|
24
|
MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep 2015; 5:9073. [PMID: 25766410 PMCID: PMC4358056 DOI: 10.1038/srep09073] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/28/2015] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial activity is central to tissue homeostasis. Mitochondria dysfunction constitutes a hallmark of many genetic diseases and plays a key role in tumor progression. The essential role of mitochondria, added to their recently documented capacity to transfer from cell to cell, obviously contributes to their current interest. However, determining the proper role of mitochondria in defined biological contexts was hampered by the lack of suitable experimental tools. We designed a protocol (MitoCeption) to directly and quantitatively transfer mitochondria, isolated from cell type A, to recipient cell type B. We validated and quantified the effective mitochondria transfer by imaging, fluorescence-activated cell sorting (FACS) and mitochondrial DNA analysis. We show that the transfer of minute amounts of mesenchymal stem/stromal cell (MSC) mitochondria to cancer cells, a process otherwise occurring naturally in coculture, results in cancer cell enhanced oxidative phosphorylation (OXPHOS) activity and favors cancer cell proliferation and invasion. The MitoCeption technique, which can be applied to different cell systems, will therefore be a method of choice to analyze the metabolic modifications induced by exogenous mitochondria in host cells.
Collapse
|
25
|
Dracocephalum: novel anticancer plant acting on liver cancer cell mitochondria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:892170. [PMID: 25136637 PMCID: PMC4124804 DOI: 10.1155/2014/892170] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/14/2014] [Accepted: 06/30/2014] [Indexed: 12/22/2022]
Abstract
Dracocephalum kotschyi Boiss. (Labiatae) is a native Iranian medicinal plant which has been used in combination with Peganum harmala L. as a remedy for many forms of human cancer especially leukemia and gastrointestinal malignancies. Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. In this investigation HCC was induced by a single intraperitoneal injection of diethylnitrosamine (DEN) in corn oil at 200 mg/kg body weight to rats. Two weeks after DEN administration, cancer development was promoted with dietary 2-acetylaminofluorene (2-AAF) (0.02%, w/w) for 2 weeks. Serum alpha-fetoprotein (AFP) concentration, serum alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) activities were also determined for confirmation of hepatocellular carcinoma induction. Then rat hepatocytes were isolated with collagen perfusion technique and tumoral hepatocytes were sorted by flow cytometry. Finally isolated mitochondria obtained from both tumoral and nontumoral hepatocytes were used for any probable toxic effect of Dracocephalum kotschyi ethanolic extract. Our results showed that D. kotschyi extract (250 µg/mL) induced reactive oxygen species (ROS) formation, mitochondrial membrane permeabilization (MMP), and mitochondrial swelling and cytochrome c release only in tumoral but not nontumoral hepatocyte. These findings propose Dracocephalum kotschyi as a promising candidate for future anticancer research.
Collapse
|
26
|
Mitochondrial metabolism directs stemness and differentiation in P19 embryonal carcinoma stem cells. Cell Death Differ 2014; 21:1560-74. [PMID: 24832466 DOI: 10.1038/cdd.2014.66] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/28/2014] [Accepted: 04/07/2014] [Indexed: 12/29/2022] Open
Abstract
The relationship between mitochondrial metabolism and cell viability and differentiation in stem cells (SCs) remains poorly understood. In the present study, we compared mitochondrial physiology and metabolism between P19SCs before/after differentiation and present a unique fingerprint of the association between mitochondrial activity, cell differentiation and stemness. In comparison with their differentiated counterparts, pluripotency of P19SCs was correlated with a strong glycolytic profile and decreased mitochondrial biogenesis and complexity: round, low-polarized and inactive mitochondria with a closed permeability transition pore. This decreased mitochondrial capacity increased their resistance against dichloroacetate. Thus, stimulation of mitochondrial function by growing P19SCs in glutamine/pyruvate-containing medium reduced their glycolytic phenotype, induced loss of pluripotent potential, compromised differentiation and became P19SCs sensitive to dichloroacetate. Because of the central role of this type of SCs in teratocarcinoma development, our findings highlight the importance of mitochondrial metabolism in stemness, proliferation, differentiation and chemoresistance. In addition, the present work suggests the regulation of mitochondrial metabolism as a tool for inducing cell differentiation in stem line therapies.
Collapse
|
27
|
Rasola A, Neckers L, Picard D. Mitochondrial oxidative phosphorylation TRAP(1)ped in tumor cells. Trends Cell Biol 2014; 24:455-63. [PMID: 24731398 DOI: 10.1016/j.tcb.2014.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
Many tumors undergo a dramatic metabolic shift known as the Warburg effect in which glucose utilization is favored and oxidative phosphorylation is downregulated, even when oxygen availability is plentiful. However, the mechanistic basis for this switch has remained unclear. Recently several independent groups identified tumor necrosis factor receptor-associated protein 1 (TRAP1), a mitochondrial molecular chaperone of the heat shock protein 90 (Hsp90) family, as a key modulator of mitochondrial respiration. Although all reports agree that this activity of TRAP1 has important implications for neoplastic progression, data from the different groups only partially overlap, suggesting that TRAP1 may have complex and possibly contextual effects on tumorigenesis. In this review we analyze these recent findings and attempt to reconcile these observations.
Collapse
Affiliation(s)
- Andrea Rasola
- CNR Institute of Neuroscience, University of Padova, 35121 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy.
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Didier Picard
- Department of Cell Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
28
|
Lennon FE, Salgia R. Mitochondrial dynamics: biology and therapy in lung cancer. Expert Opin Investig Drugs 2014; 23:675-92. [PMID: 24654596 DOI: 10.1517/13543784.2014.899350] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Lung cancer mortality rates remain at unacceptably high levels. Although mitochondrial dysfunction is a characteristic of most tumor types, mitochondrial dynamics are often overlooked. Altered rates of mitochondrial fission and fusion are observed in lung cancer and can influence metabolic function, proliferation and cell survival. AREAS COVERED In this review, the authors outline the mechanisms of mitochondrial fission and fusion. They also identify key regulatory proteins and highlight the roles of fission and fusion in metabolism and other cellular functions (e.g., proliferation, apoptosis) with an emphasis on lung cancer and the interaction with known cancer biomarkers. They also examine the current therapeutic strategies reported as altering mitochondrial dynamics and review emerging mitochondria-targeted therapies. EXPERT OPINION Mitochondrial dynamics are an attractive target for therapeutic intervention in lung cancer. Mitochondrial dysfunction, despite its molecular heterogeneity, is a common abnormality of lung cancer. Targeting mitochondrial dynamics can alter mitochondrial metabolism, and many current therapies already non-specifically affect mitochondrial dynamics. A better understanding of mitochondrial dynamics and their interaction with currently identified cancer 'drivers' such as Kirsten-Rat Sarcoma Viral Oncogene homolog will lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Frances E Lennon
- University of Chicago, Department of Medicine, Section of Hematology/Oncology , 5841 S. Maryland Avenue, MC 2115 Chicago, IL 60637 , USA +1 773 702 4399 ; +1 773 834 1798 ;
| | | |
Collapse
|
29
|
Suh DH, Kim MK, Kim HS, Chung HH, Song YS. Mitochondrial permeability transition pore as a selective target for anti-cancer therapy. Front Oncol 2013; 3:41. [PMID: 23483560 PMCID: PMC3592197 DOI: 10.3389/fonc.2013.00041] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/12/2013] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial outer membrane permeabilization (MOMP) is the ultimate step in dozens of lethal apoptotic signal transduction pathways which converge on mitochondria. One of the representative systems proposed to be responsible for the MOMP is the mitochondrial permeability transition pore (MPTP). Although the molecular composition of the MPTP is not clearly understood, the MPTP attracts much interest as a promising target for resolving two conundrums regarding cancer treatment: tumor selectivity and resistance to treatment. The regulation of the MPTP is closely related to metabolic reprogramming in cancer cells including mitochondrial alterations. Restoration of deregulated apoptotic machinery in cancer cells by tumor-specific modulation of the MPTP could therefore be a promising anti-cancer strategy. Currently, a number of MPTP-targeting agents are under pre-clinical and clinical studies. Here, we reviewed the structure and regulation of the MPTP as well as the current status of the development of promising MPTP-targeting drugs.
Collapse
Affiliation(s)
- Dong H. Suh
- Department of Obstetrics and Gynecology, Seoul National University College of MedicineSeoul, South Korea
| | - Mi-Kyung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of MedicineSeoul, South Korea
| | - Hee S. Kim
- Department of Obstetrics and Gynecology, Seoul National University College of MedicineSeoul, South Korea
| | - Hyun H. Chung
- Department of Obstetrics and Gynecology, Seoul National University College of MedicineSeoul, South Korea
| | - Yong S. Song
- Department of Obstetrics and Gynecology, Seoul National University College of MedicineSeoul, South Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoul, South Korea
- Major in Biomodulation, World Class University, Seoul National UniversitySeoul, South Korea
| |
Collapse
|
30
|
Centelles JJ. General aspects of colorectal cancer. ISRN ONCOLOGY 2012; 2012:139268. [PMID: 23209942 PMCID: PMC3504424 DOI: 10.5402/2012/139268] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 10/11/2012] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is one of the main causes of death. Cancer is initiated by several DNA damages, affecting proto-oncogenes, tumour suppressor genes, and DNA repairing genes. The molecular origins of CRC are chromosome instability (CIN), microsatellite instability (MSI), and CpG island methylator phenotype (CIMP). A brief description of types of CRC cancer is presented, including sporadic CRC, hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndromes, familiar adenomatous polyposis (FAP), MYH-associated polyposis (MAP), Peutz-Jeghers syndrome (PJS), and juvenile polyposis syndrome (JPS). Some signalling systems for CRC are also described, including Wnt-β-catenin pathway, tyrosine kinase receptors pathway, TGF-β pathway, and Hedgehog pathway. Finally, this paper describes also some CRC treatments.
Collapse
Affiliation(s)
- Josep J. Centelles
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avenida Diagonal 643, Catalunya, 08028 Barcelona, Spain
| |
Collapse
|