1
|
Subbarayan R, Srinivasan D, Balakrishnan R, Kumar A, Usmani SS, Srivastava N. DNA damage response and neoantigens: A favorable target for triple-negative breast cancer immunotherapy and vaccine development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:104-152. [PMID: 39396845 DOI: 10.1016/bs.ircmb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. The interplay between DNA damage response (DDR) mechanisms and the emergence of neoantigens represents a promising avenue for developing targeted immunotherapeutic strategies and vaccines for TNBC. The DDR is a complex network of cellular mechanisms designed to maintain genomic integrity. In TNBC, where genetic instability is a hallmark, dysregulation of DDR components plays a pivotal role in tumorigenesis and progression. This review explores the intricate relationship between DDR and neoantigens, shedding light on the potential vulnerabilities of TNBC cells. Neoantigens, arising from somatic mutations in cancer cells, represent unique antigens that can be recognized by the immune system. TNBC's propensity for genomic instability leads to an increased mutational burden, consequently yielding a rich repertoire of neoantigens. The convergence of DDR and neoantigens in TNBC offers a distinctive opportunity for immunotherapeutic targeting. Immunotherapy has revolutionized cancer treatment by harnessing the immune system to selectively target cancer cells. The unique immunogenicity conferred by DDR-related neoantigens in TNBC positions them as ideal targets for immunotherapeutic interventions. This review also explores various immunotherapeutic modalities, including immune checkpoint inhibitors (ICIs), adoptive cell therapies, and cancer vaccines, that leverage the DDR and neoantigen interplay to enhance anti-tumor immune responses. Moreover, the potential for developing vaccines targeting DDR-related neoantigens opens new frontiers in preventive and therapeutic strategies for TNBC. The rational design of vaccines tailored to the individual mutational landscape of TNBC holds promise for precision medicine approaches. In conclusion, the convergence of DDR and neoantigens in TNBC presents a compelling rationale for the development of innovative immunotherapies and vaccines. Understanding and targeting these interconnected processes may pave the way for personalized and effective interventions, offering new hope for patients grappling with the challenges posed by TNBCs.
Collapse
Affiliation(s)
- Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ranjith Balakrishnan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ajeet Kumar
- Department of Psychiatry, Washington university School of Medicine, St louis, MO, United States
| | - Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
2
|
Ahmad H, Ali A, Khalil AT, Ali R, Khan I, Khan MM, Ahmed I, Basharat Z, Alorini M, Mehmood A. Clinico-genomic findings, molecular docking, and mutational spectrum in an understudied population with breast cancer patients from KP, Pakistan. Front Genet 2024; 15:1383284. [PMID: 38784039 PMCID: PMC11111998 DOI: 10.3389/fgene.2024.1383284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024] Open
Abstract
In this study, we report the mutational profiles, pathogenicity, and their association with different clinicopathologic and sociogenetic factors in patients with Pashtun ethnicity for the first time. A total of 19 FFPE blocks of invasive ductal carcinoma (IDC) from the Breast Cancer (BC) tissue and 6 normal FFPE blocks were analyzed by whole-exome sequencing (WES). Various somatic and germline mutations were identified in cancer-related genes, i.e., ATM, CHEK2, PALB2, and XRCC2. Among a total of 18 mutations, 14 mutations were somatic and 4 were germline. The ATM gene exhibited the maximum number of mutations (11/18), followed by CHEK2 (3/18), PALB2 (3/18), and XRCC2 (1/18). Except one frameshift deletion, all other 17 mutations were nonsynonymous single-nucleotide variants (SNVs). SIFT prediction revealed 7/18 (38.8%) mutations as deleterious. PolyPhen-2 and MutationTaster identified 5/18 (27.7%) mutations as probably damaging and 10/18 (55.5%) mutations as disease-causing, respectively. Mutations like PALB2 p.Q559R (6/19; 31.5%), XRCC2 p.R188H (5/19; 26.31%), and ATM p.D1853N (4/19; 21.05%) were recurrent mutations and proposed to have a biomarker potential. The protein network prediction was performed using GeneMANIA and STRING. ISPRED-SEQ indicated three interaction site mutations which were further used for molecular dynamic simulation. An average increase in the radius of gyration was observed in all three mutated proteins revealing their perturbed folding behavior. Obtained SNVs were further correlated with various parameters related to the clinicopathological status of the tumors. Three mutation positions (ATM p. D1853N, CHEK2 p.M314I, and PALB2 p.T1029S) were found to be highly conserved. Finally, the wild- and mutant-type proteins were screened for two drugs: elagolix (DrugBank ID: DB11979) and LTS0102038 (a triterpenoid, isolated from the anticancer medicinal plant Fagonia indica). Comparatively, a higher number of interactions were noted for normal ATM with both compounds, as compared to mutants.
Collapse
Affiliation(s)
- Hilal Ahmad
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Asif Ali
- Institute of Pathology and Diagnostic Medicine (IPDM), Khyber Medical University, Peshawar, Pakistan
- College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, Pakistan
| | - Roshan Ali
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Ishaq Khan
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Mah Muneer Khan
- Department of Surgery, Khyber Teaching Hospital, Medical Teaching Institution, Peshawar, Pakistan
| | - Ibrar Ahmed
- Alpha Genomics (Private) Limited, Islamabad, Pakistan
- Microbiological Analysis Team, Group for Biometrology, The Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | | | - Mohammed Alorini
- Department of Pathology, College of Medicine, Qassim University, Unaizah, Saudi Arabia
| | - Amna Mehmood
- Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
3
|
Çıldır ÖŞ, Özmen Ö, Kul S, Rişvanlı A, Özalp G, Sabuncu A, Kul O. Genetic analysis of PALB2 gene WD40 domain in canine mammary tumour patients. Vet Med Sci 2024; 10:e1366. [PMID: 38527110 PMCID: PMC10962921 DOI: 10.1002/vms3.1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/30/2023] [Accepted: 01/07/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND DNA repair mechanisms are essential for tumorigenesis and disruption of HR mechanism is an important predisposing factor of human breast cancers (BC). PALB2 is an important part of the HR. There are similarities between canine mammary tumours (CMT) and BCs. As its human counterpart, PALB2 mutations could be a predisposing factor of CMT. OBJECTIVES In this study, we aimed to investigate the impacts of PALB2 variants on tumorigenesis and canine mammary tumor (CMT) malignancy. METHODS We performed Sanger sequencing to detect germline mutations in the WD40 domain of the canine PALB2 gene in CMT patients. We conducted in silico analysis to investigate the variants, and compared the germline PALB2 mutations in humans that cause breast cancer (BC) with the variants detected in dogs with CMT. RESULTS We identified an intronic (c.3096+8C>G) variant, two exonic (p.A1050V and p.R1354R) variants, and a 3' UTR variant (c.4071T>C). Of these, p.R1354R and c.4071T>C novel variants were identified for the first time in this study. We found that the p.A1050V mutation had a significant effect. However, we could not determine sufficient similarity due to the differences in nucleotide/amino acid sequences between two species. Nonetheless, possible variants of human sequences in the exact location as their dog counterparts are associated with several cancer types, implying that the variants could be crucial for tumorigenesis in dogs. Our results did not show any effect of the variants on tumor malignancy. CONCLUSIONS The current project is the first study investigating the relationship between the PALB2 gene WD40 domain and CMTs. Our findings will contribute to a better understanding of the pathogenic mechanism of the PALB2 gene in CMTs. In humans, variant positions in canines have been linked to cancer-related phenotypes such as familial BC, endometrial tumor, and hereditary cancer predisposition syndrome. The results of bioinformatics analyses should be investigated through functional tests or case-control studies.
Collapse
Affiliation(s)
- Özge Şebnem Çıldır
- Department of GeneticsFaculty of Veterinary MedicineKafkas UniversityKarsTürkiye
- Department of GeneticsFaculty of Veterinary MedicineAnkara UniversityAnkaraTürkiye
| | - Özge Özmen
- Department of GeneticsFaculty of Veterinary MedicineAnkara UniversityAnkaraTürkiye
| | - Selim Kul
- Department of Animal BreedingFaculty of Veterinary MedicineYozgat Bozok UniversityYozgatTürkiye
| | - Ali Rişvanlı
- Department of Obstetrics and GynecologyFaculty of Veterinary MedicineFırat UniversityElazığTürkiye
- Department of Obstetrics and GynecologyFaculty of Veterinary MedicineKyrgyz‐Turkish Manas UniversityBishkekKyrgyzstan
| | - Gözde Özalp
- Department of Obstetrics and GynecologyFaculty of Veterinary MedicineBursa Uludağ UniversityBursaTürkiye
| | - Ahmet Sabuncu
- Department of Obstetrics and GynecologyFaculty of Veterinary Medicineİstanbul UniversityİstanbulTürkiye
| | - Oğuz Kul
- Department of PathologyFaculty of Veterinary MedicineKırıkkale UniversityKırıkkaleTürkiye
| |
Collapse
|
4
|
Abdulkareem AA, Shirah BH, Bagabir HA, Haque A, Naseer MI. Whole exome sequencing of a novel homozygous missense variant in PALB2 gene leading to Fanconi anaemia complementation group. Biomed Rep 2024; 20:67. [PMID: 38476606 PMCID: PMC10928473 DOI: 10.3892/br.2024.1756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024] Open
Abstract
Partner and localiser of BRCA2 (PALB2), also known as FANCN, is a key tumour suppressor gene in maintaining genome integrity. Monoallelic mutations of PALB2 are associated with breast and overian cancers, while bi-allelic mutations cause Fanconi anaemia (FA). In the present study, whole exome sequencing (WES) identified a novel homozygous missense variant, NM_024675.3: c.3296C>G (p.Thr1099Arg) in PALB2 gene (OMIM: 610355) that caused FA with mild pulmonary valve stenosis and dysmorphic and atypical features, including lymphangiectasia, non-immune hydrops fetalis and right-sided pleural effusion in a preterm female baby. WES results were further validated by Sanger sequencing. WES improves the screening and detection of novel and causative genetic variants to improve management of disease. To the best of our knowledge, the present study is the first reported FA case in a Saudi family with phenotypic atypical FA features. The results support the role of PALB2 gene and pathogenic variants that may cause clinical presentation of FA. Furthermore, the present results may establish a disease database, providing a groundwork for understanding the key genomic regions to control diseases resulting from consanguinity.
Collapse
Affiliation(s)
- Angham Abdulrhman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bader H. Shirah
- Department of Neuroscience, King Faisal Specialist Hospital and Research Centre, Jeddah 11211, Saudi Arabia
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh 25732, Saudi Arabia
| | - Absarul Haque
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Wu X, Zhou X, Wang S, Mao G. DNA damage response(DDR): a link between cellular senescence and human cytomegalovirus. Virol J 2023; 20:250. [PMID: 37915066 PMCID: PMC10621139 DOI: 10.1186/s12985-023-02203-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The DNA damage response (DDR) is a signaling cascade that is triggered by DNA damage, involving the halting of cell cycle progression and repair. It is a key event leading to senescence, which is characterized by irreversible cell cycle arrest and the senescence-associated secretory phenotype (SASP) that includes the expression of inflammatory cytokines. Human cytomegalovirus (HCMV) is a ubiquitous pathogen that plays an important role in the senescence process. It has been established that DDR is necessary for HCMV to replicate effectively. This paper reviews the relationship between DDR, cellular senescence, and HCMV, providing new sights for virus-induced senescence (VIS).
Collapse
Affiliation(s)
- Xinna Wu
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Xuqiang Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, China.
| | - Genxiang Mao
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China.
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, China.
| |
Collapse
|
6
|
Yoon JY, Roth JJ, Rushton CA, Morrissette JJD, Nathanson KL, Cohen RB, Rosenbaum JN. Homologous recombination pathway gene variants identified by tumor-only sequencing assays in lung carcinoma patients. Transl Lung Cancer Res 2023; 12:1236-1244. [PMID: 37425424 PMCID: PMC10326790 DOI: 10.21037/tlcr-22-749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/25/2023] [Indexed: 07/11/2023]
Abstract
Background The homologous recombination (HR) repair pathway plays a key role in double-stranded DNA break repair, and germline HR pathway gene variants are associated with increased risk of several cancers, including breast and ovarian cancer. HR deficiency is also a therapeutically targetable phenotype. Methods Somatic (tumour-only) sequencing was performed on 1,109 cases of lung tumors, and the pathological data were reviewed to filter for lung primary carcinomas. Cases were filtered for variants (disease-associated or of uncertain significance) in 14 HR pathway genes, including BRCA1, BRCA2, and ATM. The clinical, pathological and molecular data were reviewed. Results Sixty-one HR pathway gene variants in 56 patients with primary lung cancer were identified. Further filtering by variant allele fraction (VAF) of ≥30% identified 17 HR pathway gene variants in 17 patients. ATM gene variants were most the commonly identified (9/17), including two patients with c.7271T>G (p.V2424G), a variant in the germline that is associated with increased familial cancer risk. Four (4/17) patients had a family history of lung cancer, among which three patients had ATM gene variants suspected to be germline in origin. In three other patients with BRCA1/2 or PALB2 gene variants who had undergone germline testing, the variants were confirmed to be germline; lung cancer was the sentinel cancer in two of these patients with a BRCA1 or PALB2 variant. Conclusions Genomic variants in the HR repair pathway identified in tumor-only sequencing and occurring at higher VAFs (i.e., ≥30%) may suggest a germline origin. Correlating with personal and family history, a subset of these variants is also suggested to be associated with familial cancer risks. Patient age, smoking history and driver mutation status are expected to be a poor screening tool in identifying these patients. Finally, the relative enrichment for ATM variants in our cohort suggests a possible association between ATM mutation and lung cancer risk.
Collapse
Affiliation(s)
- Ju-Yoon Yoon
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Laboratory Medicine, St. Michael’s Hospital, Toronto, ON, Canada
| | - Jacquelyn J. Roth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
| | - Chase A. Rushton
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J. D. Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine L. Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roger B. Cohen
- Division of Hematology Oncology, Department of Medicine, Perelman Center for Advanced Medicine, Philadelphia, PA, USA
| | - Jason N. Rosenbaum
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Pathogenesis and Potential Therapeutic Targets for Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13122978. [PMID: 34198652 PMCID: PMC8232221 DOI: 10.3390/cancers13122978] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/29/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous tumor characterized by early recurrence, high invasion, and poor prognosis. Currently, its treatment includes chemotherapy, which shows a suboptimal efficacy. However, with the increasing studies on TNBC subtypes and tumor molecular biology, great progress has been made in targeted therapy for TNBC. The new developments in the treatment of breast cancer include targeted therapy, which has the advantages of accurate positioning, high efficiency, and low toxicity, as compared to surgery, radiotherapy, and chemotherapy. Given its importance as cancer treatment, we review the latest research on the subtypes of TNBC and relevant targeted therapies.
Collapse
|
8
|
Tye S, Ronson GE, Morris JR. A fork in the road: Where homologous recombination and stalled replication fork protection part ways. Semin Cell Dev Biol 2021; 113:14-26. [PMID: 32653304 PMCID: PMC8082280 DOI: 10.1016/j.semcdb.2020.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
In response to replication hindrances, DNA replication forks frequently stall and are remodelled into a four-way junction. In such a structure the annealed nascent strand is thought to resemble a DNA double-strand break and remodelled forks are vulnerable to nuclease attack by MRE11 and DNA2. Proteins that promote the recruitment, loading and stabilisation of RAD51 onto single-stranded DNA for homology search and strand exchange in homologous recombination (HR) repair and inter-strand cross-link repair also act to set up RAD51-mediated protection of nascent DNA at stalled replication forks. However, despite the similarities of these pathways, several lines of evidence indicate that fork protection is not simply analogous to the RAD51 loading step of HR. Protection of stalled forks not only requires separate functions of a number of recombination proteins, but also utilises nucleases important for the resection steps of HR in alternative ways. Here we discuss how fork protection arises and how its differences with HR give insights into the differing contexts of these two pathways.
Collapse
Affiliation(s)
- Stephanie Tye
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - George E Ronson
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
9
|
Nawar N, Paul A, Mahmood HN, Faisal MI, Hosen MI, Shekhar HU. Structure analysis of deleterious nsSNPs in human PALB2 protein for functional inference. Bioinformation 2021; 17:424-438. [PMID: 34092963 PMCID: PMC8131579 DOI: 10.6026/97320630017424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Partner and Localizer of BRCA2 or PALB2 is a typical tumor suppressor protein, that responds to DNA double stranded breaks through homologous recombination repair. Heterozygous mutations in PALB2 are known to contribute to the susceptibility of breast and ovarian cancer. However, there is no comprehensive study characterizing the structural and functional impacts of SNPs located in the PALB2 gene. Therefore, it is of interest to document a comprehensive analysis of coding and non-coding SNPs located at the PALB2 loci using in silico tools. The data for 1455 non-synonymous SNPs (nsSNPs) located in the PALB2 loci were retrieved from the dbSNP database. Comprehensive characterization of the SNPs using a combination of in silico tools such as SIFT, PROVEAN, PolyPhen, PANTHER, PhD-SNP, Pmut, MutPred 2.0 and SNAP-2, identified 28 functionally important SNPs. Among these, 16 nsSNPs were further selected for structural analysis using conservation profile and protein stability. The most deleterious nsSNPs were documented within the WD40 domain of PALB2. A general outline of the structural consequences of each variant was developed using the HOPE project data. These 16 mutant structures were further modelled using SWISS Model and three most damaging mutant models (rs78179744, rs180177123 and rs45525135) were identified. The non-coding SNPs in the 3' UTR region of the PALB2 gene were analyzed for altered miRNA target sites. The comprehensive characterization of the coding and non-coding SNPs in the PALB2 locus has provided a list of damaging SNPs with potential disease association. Further validation through genetic association study will reveal their clinical significance.
Collapse
Affiliation(s)
- Noshin Nawar
- Clinical Biochemistry and Translational Medicine Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Anik Paul
- Clinical Biochemistry and Translational Medicine Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Hamida Nooreen Mahmood
- Clinical Biochemistry and Translational Medicine Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Md Ismail Faisal
- Clinical Biochemistry and Translational Medicine Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Md Ismail Hosen
- Clinical Biochemistry and Translational Medicine Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Hossain Uddin Shekhar
- Clinical Biochemistry and Translational Medicine Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| |
Collapse
|
10
|
Zhang Y, Park JY, Zhang F, Olson SH, Orlow I, Li Y, Kurtz RC, Ladanyi M, Chen J, Toland AE, Zhang L, Andreassen PR. The p.Ser64Leu and p.Pro104Leu missense variants of PALB2 identified in familial pancreatic cancer patients compromise the DNA damage response. Hum Mutat 2020; 42:150-163. [PMID: 33169439 DOI: 10.1002/humu.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/17/2020] [Accepted: 11/01/2020] [Indexed: 11/12/2022]
Abstract
PALB2 has been identified as a breast and pancreatic cancer susceptibility gene. Utilizing a targeted sequencing approach, we discovered two novel germline missense PALB2 variants c.191C>T and c.311C>T, encoding p.Ser64Leu and p.Pro104Leu, respectively, in individuals in a pancreatic cancer registry. No missense PALB2 variants from familial pancreatic cancer patients, and few PALB2 variants overall, have been functionally characterized. Given the known role of PALB2, we tested the impact of p.Ser64Leu and p.Pro104Leu variants on DNA damage responses. Neither p.Ser64Leu nor p.Pro104Leu have clear effects on interactions with BRCA1 and KEAP1, which are mediated by adjacent motifs in PALB2. However, both variants are associated with defective recruitment of PALB2, and the RAD51 recombinase downstream, to DNA damage foci. Furthermore, p.Ser64Leu and p.Pro104Leu both largely compromise DNA double-strand break-initiated homologous recombination, and confer increased cellular sensitivity to ionizing radiation (IR) and the poly (ADP-ribose) polymerase (PARP) inhibitor Olaparib. Taken together, our results represent the first demonstration of functionally deleterious PALB2 missense variants associated with familial pancreatic cancer and of deleterious variants in the N-terminus outside of the coiled-coil domain. Furthermore, our results suggest the possibility of personalized treatments, using IR or PARP inhibitor, of pancreatic and other cancers that carry a deleterious PALB2 variant.
Collapse
Affiliation(s)
- Yue Zhang
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Peking Union Medical College Hospital, Chinese Academy of Medical Sciences - Peking Union Medical College, Beijing, China
| | - Jung-Young Park
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Fan Zhang
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yirong Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert C Kurtz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jie Chen
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences - Peking Union Medical College, Beijing, China
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Division of Human Genetics, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Liying Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
11
|
Sanoguera-Miralles L, Valenzuela-Palomo A, Bueno-Martínez E, Llovet P, Díez-Gómez B, Caloca MJ, Pérez-Segura P, Fraile-Bethencourt E, Colmena M, Carvalho S, Allen J, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. Comprehensive Functional Characterization and Clinical Interpretation of 20 Splice-Site Variants of the RAD51C Gene. Cancers (Basel) 2020; 12:E3771. [PMID: 33333735 PMCID: PMC7765170 DOI: 10.3390/cancers12123771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary breast and/or ovarian cancer is a highly heterogeneous disease with more than 10 known disease-associated genes. In the framework of the BRIDGES project (Breast Cancer Risk after Diagnostic Gene Sequencing), the RAD51C gene has been sequenced in 60,466 breast cancer patients and 53,461 controls. We aimed at functionally characterizing all the identified genetic variants that are predicted to disrupt the splicing process. Forty RAD51C variants of the intron-exon boundaries were bioinformatically analyzed, 20 of which were selected for splicing functional assays. To test them, a splicing reporter minigene with exons 2 to 8 was designed and constructed. This minigene generated a full-length transcript of the expected size (1062 nucleotides), sequence, and structure (Vector exon V1- RAD51C exons_2-8- Vector exon V2). The 20 candidate variants were genetically engineered into the wild type minigene and functionally assayed in MCF-7 cells. Nineteen variants (95%) impaired splicing, while 18 of them produced severe splicing anomalies. At least 35 transcripts were generated by the mutant minigenes: 16 protein-truncating, 6 in-frame, and 13 minor uncharacterized isoforms. According to ACMG/AMP-based standards, 15 variants could be classified as pathogenic or likely pathogenic variants: c.404G > A, c.405-6T > A, c.571 + 4A > G, c.571 + 5G > A, c.572-1G > T, c.705G > T, c.706-2A > C, c.706-2A > G, c.837 + 2T > C, c.905-3C > G, c.905-2A > C, c.905-2_905-1del, c.965 + 5G > A, c.1026 + 5_1026 + 7del, and c.1026 + 5G > T.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Patricia Llovet
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Beatriz Díez-Gómez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - María José Caloca
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain;
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Eugenia Fraile-Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
- Knight Cancer Research Building, 2720 S Moody Ave, Portland, OR 97201, USA
| | - Marta Colmena
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Peter Devilee
- Leiden University Medical Center, Department of Human Genetics, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Maaike P. G. Vreeswijk
- Leiden University Medical Center, Department of Human Genetics, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| |
Collapse
|
12
|
Fang CB, Wu HT, Zhang ML, Liu J, Zhang GJ. Fanconi Anemia Pathway: Mechanisms of Breast Cancer Predisposition Development and Potential Therapeutic Targets. Front Cell Dev Biol 2020; 8:160. [PMID: 32300589 PMCID: PMC7142266 DOI: 10.3389/fcell.2020.00160] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
The maintenance of genomic stability is crucial for species survival, and its failure is closely associated with tumorigenesis. The Fanconi anemia (FA) pathway, involving 22 identified genes, plays a central role in repairing DNA interstrand cross-links. Importantly, a germline defect in any of these genes can cause Fanconi's anemia, a heterogeneous genetic disorder, characterized by congenital growth abnormalities, bone marrow failure, and predisposition to cancer. On the other hand, the breast cancer susceptibility genes, BRCA1 and BRCA2, also known as FANCS and FANCD1, respectively, are involved in the FA pathway; hence, researchers have studied the association between the FA pathway and cancer predisposition. Here, we mainly focused on and systematically reviewed the clinical and mechanistic implications of the predisposition of individuals with abnormalities in the FA pathway to cancer, especially breast cancer.
Collapse
Affiliation(s)
- Can-Bin Fang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Man-Li Zhang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Jing Liu
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
- Department of Physiology, Shantou University Medical College, Shantou, China
| | - Guo-Jun Zhang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
- The Cancer Center and the Department of Breast-Thyroid Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiang’an, China
| |
Collapse
|
13
|
Rush SK, Swisher EM, Garcia RL, Pennington KP, Agnew KJ, Kilgore MR, Norquist BM. Pathologic findings and clinical outcomes in women undergoing risk-reducing surgery to prevent ovarian and fallopian tube carcinoma: A large prospective single institution experience. Gynecol Oncol 2020; 157:514-520. [PMID: 32199636 DOI: 10.1016/j.ygyno.2020.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Risk-reducing salpingo-oophorectomy (RRSO) is recommended for women at increased risk of ovarian, fallopian tube (FT), and peritoneal carcinoma (collectively OC). We describe rates of occult neoplasia in the largest single-institution prospective cohort of women undergoing RRSO, including those with mutations in non-BRCA homologous repair (HRR) genes. METHODS Participants undergoing RRSO enrolled in a prospective tissue bank between 1999 and 2017. Ovaries and FTs were serially sectioned in all cases. Participants had OC susceptibility gene mutations or a family history suggesting OC risk. Analyses were completed in Stata IC 15.1. RESULTS Of 644 women, 194 (30.1%) had mutations in BRCA1, 177 (27.5%) BRCA2, 27 (4.2%) other HRR genes, and 15 (2.3%) Lynch Syndrome-associated genes. Seventeen (2.6%) had occult neoplasms at RRSO, 15/17 (88.2%) in the FT. Of BRCA1 carriers, 14/194 (7.2%) had occult neoplasia, 8/194 (4.1%) invasive. One PALB2 and two BRCA2 carriers had intraepithelial FT neoplasms. Occult neoplasm occurred more frequently in BRCA1/2 carriers ≥45 years of age (6.5% vs 2.2%, chi square, p = .04), and 211/371 (56.9%) BRCA1/2 carriers had surgery after guideline-recommended ages. Four in 8 (50%) invasive and 2/9 (22%) intraepithelial neoplasms had positive pelvic washings. None with intraepithelial neoplasms developed recurrence or peritoneal carcinoma. CONCLUSIONS BRCA1 carriers have the highest risk of occult neoplasia at RRSO, and the frequency increased with age. Women with BRCA1/2 mutations often have RRSO beyond recommended ages. One PALB2 carrier had FT intraepithelial neoplasia, a novel finding. Serial sectioning is critical to identifying occult neoplasia and should be performed for all risk-reducing surgeries.
Collapse
Affiliation(s)
- Shannon K Rush
- Department of Obstetrics & Gynecology, University of Washington Medical Center, United States of America
| | - Elizabeth M Swisher
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Washington Medical Center, United States of America
| | - Rochelle L Garcia
- Department of Pathology, University of Washington Medical Center, United States of America
| | - Kathryn P Pennington
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Washington Medical Center, United States of America
| | - Kathy J Agnew
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Washington Medical Center, United States of America
| | - Mark R Kilgore
- Department of Pathology, University of Washington Medical Center, United States of America
| | - Barbara M Norquist
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Washington Medical Center, United States of America.
| |
Collapse
|
14
|
Belotserkovskaya R, Raga Gil E, Lawrence N, Butler R, Clifford G, Wilson MD, Jackson SP. PALB2 chromatin recruitment restores homologous recombination in BRCA1-deficient cells depleted of 53BP1. Nat Commun 2020; 11:819. [PMID: 32041954 PMCID: PMC7010753 DOI: 10.1038/s41467-020-14563-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Loss of functional BRCA1 protein leads to defects in DNA double-strand break (DSB) repair by homologous recombination (HR) and renders cells hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibitors used to treat BRCA1/2-deficient cancers. However, upon chronic treatment of BRCA1-mutant cells with PARP inhibitors, resistant clones can arise via several mechanisms, including loss of 53BP1 or its downstream co-factors. Defects in the 53BP1 axis partially restore the ability of a BRCA1-deficient cell to form RAD51 filaments at resected DSBs in a PALB2- and BRCA2-dependent manner, and thereby repair DSBs by HR. Here we show that depleting 53BP1 in BRCA1-null cells restores PALB2 accrual at resected DSBs. Moreover, we demonstrate that PALB2 DSB recruitment in BRCA1/53BP1-deficient cells is mediated by an interaction between PALB2's chromatin associated motif (ChAM) and the nucleosome acidic patch region, which in 53BP1-expressing cells is bound by 53BP1's ubiquitin-directed recruitment (UDR) domain.
Collapse
Affiliation(s)
- Rimma Belotserkovskaya
- Wellcome Trust CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Elisenda Raga Gil
- Wellcome Trust CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Nicola Lawrence
- Wellcome Trust CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Richard Butler
- Wellcome Trust CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Gillian Clifford
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
| | - Stephen P Jackson
- Wellcome Trust CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
15
|
CTCs Expression Profiling for Advanced Breast Cancer Monitoring. Cancers (Basel) 2019; 11:cancers11121941. [PMID: 31817194 PMCID: PMC6966538 DOI: 10.3390/cancers11121941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/18/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022] Open
Abstract
The study of circulating tumor cells (CTCs) has a huge clinical interest in advance and metastatic breast cancer patients. However, many approaches are biased by the use of epithelial markers, which underestimate non-epithelial CTCs phenotypes. CTCs enumeration provides valuable prognostic information; however, molecular characterization could be the best option to monitor patients throughout the disease since it may provide more relevant clinical information to the physicians. In this work, we aimed at enumerating and performing a molecular characterization of CTCs from a cohort of 20 patients with metastatic breast cancer (MBC), monitoring the disease at different time points of the therapy, and at progression when it occurred. To this end, we used a CTC negative enrichment protocol that allowed us to recover a higher variety of CTCs phenotypes. With this strategy, we were able to obtain gene expression data from CTCs from all the patients. In addition, we found that high expression levels of PALB2 and MYC were associated with a worse outcome. Interestingly, we identified that CTCs with an EpCAMhighVIMlowALDH1A1high signature showed both shorter overall survival (OS) and progression-free survival (PFS), suggesting that CTCs with epithelial-stem features had the most aggressive phenotype.
Collapse
|
16
|
Zhang Q, Mady ASA, Ma Y, Ryan C, Lawrence TS, Nikolovska-Coleska Z, Sun Y, Morgan MA. The WD40 domain of FBXW7 is a poly(ADP-ribose)-binding domain that mediates the early DNA damage response. Nucleic Acids Res 2019; 47:4039-4053. [PMID: 30722038 PMCID: PMC6486556 DOI: 10.1093/nar/gkz058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 01/03/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
FBXW7, a classic tumor suppressor, is a substrate recognition subunit of the Skp1-cullin-F-box (SCF) ubiquitin ligase that targets oncoproteins for ubiquitination and degradation. We recently found that FBXW7 is recruited to DNA damage sites to facilitate nonhomologous end-joining (NHEJ). The detailed underlying molecular mechanism, however, remains elusive. Here we report that the WD40 domain of FBXW7, which is responsible for substrate binding and frequently mutated in human cancers, binds to poly(ADP-ribose) (PAR) immediately following DNA damage and mediates rapid recruitment of FBXW7 to DNA damage sites, whereas ATM-mediated FBXW7 phosphorylation promotes its retention at DNA damage sites. Cancer-associated arginine mutations in the WD40 domain (R465H, R479Q and R505C) abolish both FBXW7 interaction with PAR and recruitment to DNA damage sites, causing inhibition of XRCC4 polyubiquitination and NHEJ. Furthermore, inhibition or silencing of poly(ADP-ribose) polymerase 1 (PARP1) inhibits PAR-mediated recruitment of FBXW7 to the DNA damage sites. Taken together, our study demonstrates that the WD40 domain of FBXW7 is a novel PAR-binding motif that facilitates early recruitment of FBXW7 to DNA damage sites for subsequent NHEJ repair. Abrogation of this ability seen in cancer-derived FBXW7 mutations provides a molecular mechanism for defective DNA repair, eventually leading to genome instability.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ahmed S A Mady
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yuanyuan Ma
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caila Ryan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Yi Sun
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
A systematic review of predicted pathogenic PALB2 variants: an analysis of mutational overlap between epithelial cancers. J Hum Genet 2019; 65:199-205. [PMID: 31619740 DOI: 10.1038/s10038-019-0680-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/21/2019] [Accepted: 09/30/2019] [Indexed: 01/24/2023]
Abstract
Partner and localiser of BRCA2 forms part of a macromolecular complex with BRCA1 and BRCA2, which is critical for the repair of double-strand DNA breaks by homologous DNA recombination. Germline loss-of-function variants in the PALB2 gene may confer an increased lifetime risk of breast, pancreatic, ovarian and other cancers. However, the complete spectrum of predicted pathogenic PALB2 variants associated with each tissue type of cancer remains unknown. A systematic review is performed with the aim of cataloguing predicted pathogenic PALB2 variants in breast, ovary and pancreas cancers. All catalogued predicted pathogenic variants are analysed to assess for overlap and mutational "hotspots" within gene exons. Our results showed that 911 (92.5%) cases were described in breast cancer patients, 49 (5.0%) cases were described in ovarian cancer patients, and 24 (2.4%) cases were described in pancreatic cancer patients. The top five most frequently reported predicted pathogenic PALB2 variants were c.509_510delGA, c.3113G > A, c.1592delT, c.172_175delTTGT, and c.1240C > T, accounting for 57.3% of all cases. Breast and pancreatic cancers share five variants while breast and ovarian cancers share 12 variants. Breast, ovarian and pancreatic cancers share eight common variants. Exons with the highest mutation rates were exons 2 (6.7%), 1 (6.3%) and 3 (5.8%). This systematic review provides a quantitative catalogue of predicted pathogenic PALB2 variants described in cancers. This comprehensive analysis of the PALB2 mutational spectrum represents a useful resource for clinicians overseeing PALB2-related cancer surveillance and provides a valuable resource for future PALB2-specific research.
Collapse
|
18
|
Staaf J, Glodzik D, Bosch A, Vallon-Christersson J, Reuterswärd C, Häkkinen J, Degasperi A, Amarante TD, Saal LH, Hegardt C, Stobart H, Ehinger A, Larsson C, Rydén L, Loman N, Malmberg M, Kvist A, Ehrencrona H, Davies HR, Borg Å, Nik-Zainal S. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat Med 2019; 25:1526-1533. [PMID: 31570822 PMCID: PMC6859071 DOI: 10.1038/s41591-019-0582-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/15/2019] [Indexed: 01/12/2023]
Abstract
Whole-genome sequencing (WGS) brings comprehensive insights to cancer genome interpretation. To explore the clinical value of WGS, we sequenced 254 triple-negative breast cancers (TNBCs) for which associated treatment and outcome data were collected between 2010 and 2015 via the population-based Sweden Cancerome Analysis Network-Breast (SCAN-B) project (ClinicalTrials.gov ID:NCT02306096). Applying the HRDetect mutational-signature-based algorithm to classify tumors, 59% were predicted to have homologous-recombination-repair deficiency (HRDetect-high): 67% explained by germline/somatic mutations of BRCA1/BRCA2, BRCA1 promoter hypermethylation, RAD51C hypermethylation or biallelic loss of PALB2. A novel mechanism of BRCA1 abrogation was discovered via germline SINE-VNTR-Alu retrotransposition. HRDetect provided independent prognostic information, with HRDetect-high patients having better outcome on adjuvant chemotherapy for invasive disease-free survival (hazard ratio (HR) = 0.42; 95% confidence interval (CI) = 0.2-0.87) and distant relapse-free interval (HR = 0.31, CI = 0.13-0.76) compared to HRDetect-low, regardless of whether a genetic/epigenetic cause was identified. HRDetect-intermediate, some possessing potentially targetable biological abnormalities, had the poorest outcomes. HRDetect-low cancers also had inadequate outcomes: ~4.7% were mismatch-repair-deficient (another targetable defect, not typically sought) and they were enriched for (but not restricted to) PIK3CA/AKT1 pathway abnormalities. New treatment options need to be considered for now-discernible HRDetect-intermediate and HRDetect-low categories. This population-based study advocates for WGS of TNBC to better inform trial stratification and improve clinical decision-making.
Collapse
Affiliation(s)
- Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden.
| | - Dominik Glodzik
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ana Bosch
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Johan Vallon-Christersson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Christel Reuterswärd
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Jari Häkkinen
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Andrea Degasperi
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Academic Department of Medical Genetics, The Clinical School University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Tauanne Dias Amarante
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Academic Department of Medical Genetics, The Clinical School University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Lao H Saal
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Cecilia Hegardt
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | | | - Anna Ehinger
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
- Department of Clinical Genetics and Pathology, Department of Laboratory Medicine, Office for Medical Services, Lund, Sweden
| | - Christer Larsson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lisa Rydén
- Division of Surgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Lund, Sweden
| | - Niklas Loman
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Martin Malmberg
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Hans Ehrencrona
- Department of Clinical Genetics and Pathology, Department of Laboratory Medicine, Office for Medical Services, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Helen R Davies
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Academic Department of Medical Genetics, The Clinical School University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
- MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Åke Borg
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, The Clinical School University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK.
- MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK.
| |
Collapse
|
19
|
Adaniel C, Salinas F, Donaire JM, Bravo ME, Peralta O, Paredes H, Aliaga N, Sola A, Neira P, Behnke C, Rodriguez T, Torres S, Lopez F, Hurtado C. Non- BRCA1/2 Variants Detected in a High-Risk Chilean Cohort With a History of Breast and/or Ovarian Cancer. J Glob Oncol 2019; 5:1-14. [PMID: 31125277 PMCID: PMC6550094 DOI: 10.1200/jgo.18.00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
METHODS Data were retrospectively collected from the registry of the High-Risk Breast and Ovarian Cancer Program at Clínica Las Condes, Santiago, Chile. Data captured included index case diagnosis, ancestry, family history, and genetic test results. RESULTS Three hundred fifteen individuals underwent genetic testing during the study period. The frequency of germline pathogenic and likely pathogenic variants in a breast or ovarian cancer predisposition gene was 20.3%. Of those patients who underwent testing with a panel of both high- and moderate-penetrance genes, 10.5% were found to have pathogenic or likely pathogenic variants in non-BRCA1/2 genes. CONCLUSION Testing for non-BRCA1 and -2 mutations may be clinically relevant for individuals who are suspected to have a hereditary breast or ovarian cancer syndrome in Chile. Comprehensive genetic testing of individuals who are at high risk is necessary to further characterize the genetic susceptibility to cancer in Chile.
Collapse
Affiliation(s)
- Christina Adaniel
- Programa de Alto Riesgo de Cáncer de Mama y Ovario, Clínica Las Condes, Santiago, Chile
| | - Francisca Salinas
- Programa de Alto Riesgo de Cáncer de Mama y Ovario, Clínica Las Condes, Santiago, Chile
| | - Juan Manuel Donaire
- Programa de Alto Riesgo de Cáncer de Mama y Ovario, Clínica Las Condes, Santiago, Chile
| | - Maria Eugenia Bravo
- Programa de Alto Riesgo de Cáncer de Mama y Ovario, Clínica Las Condes, Santiago, Chile
| | - Octavio Peralta
- Programa de Alto Riesgo de Cáncer de Mama y Ovario, Clínica Las Condes, Santiago, Chile
| | - Hernando Paredes
- Programa de Alto Riesgo de Cáncer de Mama y Ovario, Clínica Las Condes, Santiago, Chile
| | - Nuvia Aliaga
- Programa de Alto Riesgo de Cáncer de Mama y Ovario, Clínica Las Condes, Santiago, Chile
| | - Antonio Sola
- Programa de Alto Riesgo de Cáncer de Mama y Ovario, Clínica Las Condes, Santiago, Chile
| | - Paulina Neira
- Programa de Alto Riesgo de Cáncer de Mama y Ovario, Clínica Las Condes, Santiago, Chile
| | - Carolina Behnke
- Programa de Alto Riesgo de Cáncer de Mama y Ovario, Clínica Las Condes, Santiago, Chile
| | - Tulio Rodriguez
- Programa de Alto Riesgo de Cáncer de Mama y Ovario, Clínica Las Condes, Santiago, Chile
| | - Soledad Torres
- Programa de Alto Riesgo de Cáncer de Mama y Ovario, Clínica Las Condes, Santiago, Chile
| | - Francisco Lopez
- Programa de Alto Riesgo de Cáncer de Mama y Ovario, Clínica Las Condes, Santiago, Chile
| | - Claudia Hurtado
- Programa de Alto Riesgo de Cáncer de Mama y Ovario, Clínica Las Condes, Santiago, Chile
| |
Collapse
|
20
|
Deveryshetty J, Peterlini T, Ryzhikov M, Brahiti N, Dellaire G, Masson JY, Korolev S. Novel RNA and DNA strand exchange activity of the PALB2 DNA binding domain and its critical role for DNA repair in cells. eLife 2019; 8:e44063. [PMID: 31017574 PMCID: PMC6533086 DOI: 10.7554/elife.44063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
BReast Cancer Associated proteins 1 and 2 (BRCA1, -2) and Partner and Localizer of BRCA2 (PALB2) protein are tumour suppressors linked to a spectrum of malignancies, including breast cancer and Fanconi anemia. PALB2 coordinates functions of BRCA1 and BRCA2 during homology-directed repair (HDR) and interacts with several chromatin proteins. In addition to protein scaffold function, PALB2 binds DNA. The functional role of this interaction is poorly understood. We identified a major DNA-binding site of PALB2, mutations in which reduce RAD51 foci formation and the overall HDR efficiency in cells by 50%. PALB2 N-terminal DNA-binding domain (N-DBD) stimulates the function of RAD51 recombinase. Surprisingly, it possesses the strand exchange activity without RAD51. Moreover, N-DBD stimulates the inverse strand exchange and can use DNA and RNA substrates. Our data reveal a versatile DNA interaction property of PALB2 and demonstrate a critical role of PALB2 DNA binding for chromosome repair in cells.
Collapse
Affiliation(s)
- Jaigeeth Deveryshetty
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| | - Thibaut Peterlini
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | - Mikhail Ryzhikov
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| | - Nadine Brahiti
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | | | - Jean-Yves Masson
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | - Sergey Korolev
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| |
Collapse
|
21
|
Lopez-Perolio I, Leman R, Behar R, Lattimore V, Pearson JF, Castéra L, Martins A, Vaur D, Goardon N, Davy G, Garre P, García-Barberán V, Llovet P, Pérez-Segura P, Díaz-Rubio E, Caldés T, Hruska KS, Hsuan V, Wu S, Pesaran T, Karam R, Vallon-Christersson J, Borg A, Valenzuela-Palomo A, Velasco EA, Southey M, Vreeswijk MPG, Devilee P, Kvist A, Spurdle AB, Walker LC, Krieger S, de la Hoya M. Alternative splicing and ACMG-AMP-2015-based classification of PALB2 genetic variants: an ENIGMA report. J Med Genet 2019; 56:453-460. [PMID: 30890586 PMCID: PMC6591742 DOI: 10.1136/jmedgenet-2018-105834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/10/2019] [Accepted: 02/06/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND PALB2 monoallelic loss-of-function germ-line variants confer a breast cancer risk comparable to the average BRCA2 pathogenic variant. Recommendations for risk reduction strategies in carriers are similar. Elaborating robust criteria to identify loss-of-function variants in PALB2-without incurring overprediction-is thus of paramount clinical relevance. Towards this aim, we have performed a comprehensive characterisation of alternative splicing in PALB2, analysing its relevance for the classification of truncating and splice site variants according to the 2015 American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. METHODS Alternative splicing was characterised in RNAs extracted from blood, breast and fimbriae/ovary-related human specimens (n=112). RNAseq, RT-PCR/CE and CloneSeq experiments were performed by five contributing laboratories. Centralised revision/curation was performed to assure high-quality annotations. Additional splicing analyses were performed in PALB2 c.212-1G>A, c.1684+1G>A, c.2748+2T>G, c.3113+5G>A, c.3350+1G>A, c.3350+4A>C and c.3350+5G>A carriers. The impact of the findings on PVS1 status was evaluated for truncating and splice site variant. RESULTS We identified 88 naturally occurring alternative splicing events (81 newly described), including 4 in-frame events predicted relevant to evaluate PVS1 status of splice site variants. We did not identify tissue-specific alternate gene transcripts in breast or ovarian-related samples, supporting the clinical relevance of blood-based splicing studies. CONCLUSIONS PVS1 is not necessarily warranted for splice site variants targeting four PALB2 acceptor sites (exons 2, 5, 7 and 10). As a result, rare variants at these splice sites cannot be assumed pathogenic/likely pathogenic without further evidences. Our study puts a warning in up to five PALB2 genetic variants that are currently reported as pathogenic/likely pathogenic in ClinVar.
Collapse
Affiliation(s)
- Irene Lopez-Perolio
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Raphaël Leman
- Laboratory of Clinical Biology and Oncology, Centre François Baclesse, Inserm U1245 Genomics and Personalized Medicine in Cancer and Neurological Disorders, Normandy University, Caen, France
| | - Raquel Behar
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Vanessa Lattimore
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - John F Pearson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Laurent Castéra
- Laboratory of Clinical Biology and Oncology, Centre François Baclesse, Inserm U1245 Genomics and Personalized Medicine in Cancer and Neurological Disorders, Normandy University, Caen, France
| | - Alexandra Martins
- Inserm U1245 Genomics and Personalized Medecine in Cancer and Neurological Disorders, UNIROUEN, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Dominique Vaur
- Laboratory of Clinical Biology and Oncology, Centre François Baclesse, Inserm U1245 Genomics and Personalized Medicine in Cancer and Neurological Disorders, Normandy University, Caen, France
| | - Nicolas Goardon
- Laboratory of Clinical Biology and Oncology, Centre François Baclesse, Inserm U1245 Genomics and Personalized Medicine in Cancer and Neurological Disorders, Normandy University, Caen, France
| | - Grégoire Davy
- Laboratory of Clinical Biology and Oncology, Centre François Baclesse, Inserm U1245 Genomics and Personalized Medicine in Cancer and Neurological Disorders, Normandy University, Caen, France
| | - Pilar Garre
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Vanesa García-Barberán
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Patricia Llovet
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Eduardo Díaz-Rubio
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Trinidad Caldés
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | | | | | - Sitao Wu
- Ambry Genetics, Aliso Viejo, CA, USA
| | | | | | - Johan Vallon-Christersson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ake Borg
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | -
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Alberto Valenzuela-Palomo
- Splicing and genetic susceptibility to cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Eladio A Velasco
- Splicing and genetic susceptibility to cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Melissa Southey
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Amanda B Spurdle
- Molecular Cancer Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Sophie Krieger
- Laboratory of Clinical Biology and Oncology, Centre François Baclesse, Inserm U1245 Genomics and Personalized Medicine in Cancer and Neurological Disorders, Normandy University, Caen, France
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| |
Collapse
|
22
|
Forestier-Román IS, López-Rivas A, Sánchez-Vázquez MM, Rohena-Rivera K, Nieves-Burgos G, Ortiz-Zuazaga H, Torres-Ramos CA, Martínez-Ferrer M. Andrographolide induces DNA damage in prostate cancer cells. Oncotarget 2019; 10:1085-1101. [PMID: 30800220 PMCID: PMC6383681 DOI: 10.18632/oncotarget.26628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 01/09/2019] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer (PCa) is the most common diagnosed cancer and is the third cause of cancer mortality in men in the USA. Andrographolide, a diterpenoid lactone isolated from Andrographis paniculata, has shown to possess anticarcinogenic activity in a variety of cancer cells. In this study, we examined the efficacy of Andrographolide in PCa using in vitro and in vivo models. Androgen-independent (PC3) and androgen-dependent (22RV1) cell lines were treated with Andrographolide to determine the effect in cell motility, cell proliferation and apoptosis. Andrographolide decreased PCa cell migration, decreased invasion, and increased cell apoptosis in vitro. Tumor growth was evaluated using an orthotopic xenograft model in which the prostates of SCID mice were injected with 22RV1, and mice were treated three times per week with Andrographolide 10 mg/kg. Andrographolide decreased tumor volume, MMP11 expression and blood vessels formation in vivo. Gene expression analysis identified cellular compromise, cell cycle, and “DNA recombination, replication and repair” as the major molecular and cellular functions altered in tumors treated with Andrographolide. Within DNA repair genes we confirmed increased expression of genes involved in DNA double strand break repair. Consistent with this observation we detected increased γH2AX in Andrographolide treated tumors and in cells in culture. Taken together, these data suggest that Andrographolide inhibits PCa by promoting DNA damage.
Collapse
Affiliation(s)
- Ingrid S Forestier-Román
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA.,University of Puerto Rico Comprehensive Cancer Center, Division of Cancer Biology, San Juan, Puerto Rico, USA
| | - Andrés López-Rivas
- University of Puerto Rico Comprehensive Cancer Center, Division of Cancer Biology, San Juan, Puerto Rico, USA.,Department of Biology, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico, USA
| | - María M Sánchez-Vázquez
- University of Puerto Rico Comprehensive Cancer Center, Division of Cancer Biology, San Juan, Puerto Rico, USA
| | - Krizia Rohena-Rivera
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA.,University of Puerto Rico Comprehensive Cancer Center, Division of Cancer Biology, San Juan, Puerto Rico, USA
| | - Gretchen Nieves-Burgos
- University of Puerto Rico Comprehensive Cancer Center, Division of Cancer Biology, San Juan, Puerto Rico, USA.,Department of Biology, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico, USA
| | - Humberto Ortiz-Zuazaga
- Department of Computer Sciences, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico, USA
| | - Carlos A Torres-Ramos
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Magaly Martínez-Ferrer
- University of Puerto Rico Comprehensive Cancer Center, Division of Cancer Biology, San Juan, Puerto Rico, USA.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, Puerto Rico, USA
| |
Collapse
|
23
|
Duran-Lozano L, Montalban G, Bonache S, Moles-Fernández A, Tenés A, Castroviejo-Bermejo M, Carrasco E, López-Fernández A, Torres-Esquius S, Gadea N, Stjepanovic N, Balmaña J, Gutiérrez-Enríquez S, Diez O. Alternative transcript imbalance underlying breast cancer susceptibility in a family carrying PALB2 c.3201+5G>T. Breast Cancer Res Treat 2018; 174:543-550. [DOI: 10.1007/s10549-018-05094-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
|
24
|
Abstract
PALB2 (Partner and Localizer of BRCA2) was first identified as a BRCA2-interacting protein. Subsequently, PALB2 has been recognized as a cog in the cellular machinery for DNA repair by homologous recombination (HR). PALB2 also mediates S and G2 DNA damage checkpoints, and has an apparent function in protecting transcriptionally active genes from genotoxic stress. PALB2 also interacts with, is localized by, and functions downstream of BRCA1. Further, PALB2 interacts with other essential effectors of HR, including RAD51 and RAD51C, as well as BRCA2. Consistent with its function in HR and its interaction with key HR proteins, PALB2-deficient cells are hypersensitive to ionizing radiation and DNA interstrand crosslinking agents such as mitomycin C and cisplatin. Mechanistically, PALB2 is required for HR by mediating the recruitment of BRCA2 and the RAD51 recombinase to sites of DNA damage. Similar to bi-allelic loss-of-function mutations of BRCA1, BRCA2, RAD51 and RAD51C, bi-allelic mutations in PALB2 cause Fanconi anemia (FA), a rare childhood disorder which is associated with progressive bone marrow failure, congenital anomalies, and a predisposition to leukemia and solid tumors. Due to their close functional relationship, bi-allelic mutations of PALB2 and BRCA2 cause particularly severe forms of FA, called FANCN and FANCD1, both characterized by severe congenital abnormalities and very early onset of various cancers. This includes acute leukemias, Wilms tumor, medulloblastoma and neuroblastomas. Also, heterozygous germ-line mutations of PALB2, like mutations in several other essential HR genes listed above, yield an increased susceptibility to breast and pancreatic cancer.
Collapse
Affiliation(s)
- Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen Germany
| | - Paul R Andreassen
- Division of Experimental Hematology & Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA
| |
Collapse
|
25
|
Zhan W, Shelton CA, Greer PJ, Brand RE, Whitcomb DC. Germline Variants and Risk for Pancreatic Cancer: A Systematic Review and Emerging Concepts. Pancreas 2018; 47:924-936. [PMID: 30113427 PMCID: PMC6097243 DOI: 10.1097/mpa.0000000000001136] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer requires many genetic mutations. Combinations of underlying germline variants and environmental factors may increase the risk of cancer and accelerate the oncogenic process. We systematically reviewed, annotated, and classified previously reported pancreatic cancer-associated germline variants in established risk genes. Variants were scored using multiple criteria and binned by evidence for pathogenicity, then annotated with published functional studies and associated biological systems/pathways. Twenty-two previously identified pancreatic cancer risk genes and 337 germline variants were identified from 97 informative studies that met our inclusion criteria. Fifteen of these genes contained 66 variants predicted to be pathogenic (APC, ATM, BRCA1, BRCA2, CDKN2A, CFTR, CHEK2, MLH1, MSH2, NBN, PALB2, PALLD, PRSS1, SPINK1, TP53). Pancreatic cancer risk genes were organized into key biological mechanisms that promote pancreatic oncogenesis within an oncogenic model. Development of precision medicine approaches requires updated variant information within the framework of an oncogenic progression model. Complex risk modeling may improve interpretation of early biomarkers and guide pathway-specific treatment for pancreatic cancer in the future. Precision medicine is within reach.
Collapse
Affiliation(s)
- Wei Zhan
- School of Medicine, Tsinghua University, Beijing, China
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Celeste A. Shelton
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Phil J. Greer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Randall E. Brand
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - David C. Whitcomb
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
26
|
Caputo SM, Léone M, Damiola F, Ehlen A, Carreira A, Gaidrat P, Martins A, Brandão RD, Peixoto A, Vega A, Houdayer C, Delnatte C, Bronner M, Muller D, Castera L, Guillaud-Bataille M, Søkilde I, Uhrhammer N, Demontety S, Tubeuf H, Castelain G, Jensen UB, Petitalot A, Krieger S, Lefol C, Moncoutier V, Boutry-Kryza N, Nielsen HR, Sinilnikova O, Stoppa-Lyonnet D, Spurdle AB, Teixeira MR, Coulet F, Thomassen M, Rouleau E. Full in-frame exon 3 skipping of BRCA2 confers high risk of breast and/or ovarian cancer. Oncotarget 2018; 9:17334-17348. [PMID: 29707112 PMCID: PMC5915120 DOI: 10.18632/oncotarget.24671] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/24/2018] [Indexed: 12/18/2022] Open
Abstract
Germline pathogenic variants in the BRCA2 gene are associated with a cumulative high risk of breast/ovarian cancer. Several BRCA2 variants result in complete loss of the exon-3 at the transcript level. The pathogenicity of these variants and the functional impact of loss of exon 3 have yet to be established. As a collaboration of the COVAR clinical trial group (France), and the ENIGMA consortium for investigating breast cancer gene variants, this study evaluated 8 BRCA2 variants resulting in complete deletion of exon 3. Clinical information for 39 families was gathered from Portugal, France, Denmark and Sweden. Multifactorial likelihood analyses were conducted using information from 293 patients, for 7 out of the 8 variants (including 6 intronic). For all variants combined the likelihood ratio in favor of causality was 4.39*1025. These results provide convincing evidence for the pathogenicity of all examined variants that lead to a total exon 3 skipping, and suggest that other variants that result in complete loss of exon 3 at the molecular level could be associated with a high risk of cancer comparable to that associated with classical pathogenic variants in BRCA1 or BRCA2 gene. In addition, our functional study shows, for the first time, that deletion of exon 3 impairs the ability of cells to survive upon Mitomycin-C treatment, supporting lack of function for the altered BRCA2 protein in these cells. Finally, this study demonstrates that any variant leading to expression of only BRCA2 delta-exon 3 will be associated with an increased risk of breast and ovarian cancer.
Collapse
Affiliation(s)
| | - Mélanie Léone
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Asa Ehlen
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Pascaline Gaidrat
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Alexandra Martins
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Ana Vega
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Claude Houdayer
- Institut Curie, Service de Génétique, Paris, France.,Université Paris Descartes, Paris, France
| | | | | | - Danièle Muller
- Laboratoire d'Oncogénétique, Centre Paul Strauss, Strasbourg, France
| | - Laurent Castera
- Laboratoire de biologie et de génétique du cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de Médecine Personnalisée, Caen, France
| | | | - Inge Søkilde
- Section of Molecular Diagnostics, Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Nancy Uhrhammer
- Laboratoire de Biologie Médicale, CLCC Jean Perrin, Clermont-Ferrand, France
| | | | - Hélène Tubeuf
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Gaïa Castelain
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sophie Krieger
- Laboratoire de biologie et de génétique du cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de Médecine Personnalisée, Caen, France
| | | | | | - Nadia Boutry-Kryza
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Olga Sinilnikova
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Amanda B Spurdle
- Genetics and Comp utational Biology Division, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal.,Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Florence Coulet
- Laboratoire d'Oncogénétique et d'Angiogénétique Moléculaire, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
27
|
Ding YC, Adamson AW, Steele L, Bailis AM, John EM, Tomlinson G, Neuhausen SL. Discovery of mutations in homologous recombination genes in African-American women with breast cancer. Fam Cancer 2018; 17:187-195. [PMID: 28864920 PMCID: PMC5834346 DOI: 10.1007/s10689-017-0036-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
African-American women are more likely to develop aggressive breast cancer at younger ages and experience poorer cancer prognoses than non-Hispanic Caucasians. Deficiency in repair of DNA by homologous recombination (HR) is associated with cancer development, suggesting that mutations in genes that affect this process may cause breast cancer. Inherited pathogenic mutations have been identified in genes involved in repairing DNA damage, but few studies have focused on African-Americans. We screened for germline mutations in seven HR repair pathway genes in DNA of 181 African-American women with breast cancer, evaluated the potential effects of identified missense variants using in silico prediction software, and functionally characterized a set of missense variants by yeast two-hybrid assays. We identified five likely-damaging variants, including two PALB2 truncating variants (Q151X and W1038X) and three novel missense variants (RAD51C C135R, and XRCC3 L297P and V337E) that abolish protein-protein interactions in yeast two-hybrid assays. Our results add to evidence that HR gene mutations account for a proportion of the genetic risk for developing breast cancer in African-Americans. Identifying additional mutations that diminish HR may provide a tool for better assessing breast cancer risk and improving approaches for targeted treatment.
Collapse
Affiliation(s)
- Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Aaron W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Linda Steele
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Adam M Bailis
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Esther M John
- Cancer Prevention Institute of California, Fremont, CA, USA
- Department of Health Research & Policy (Epidemiology), and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Gail Tomlinson
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
28
|
Baranes-Bachar K, Levy-Barda A, Oehler J, Reid DA, Soria-Bretones I, Voss TC, Chung D, Park Y, Liu C, Yoon JB, Li W, Dellaire G, Misteli T, Huertas P, Rothenberg E, Ramadan K, Ziv Y, Shiloh Y. The Ubiquitin E3/E4 Ligase UBE4A Adjusts Protein Ubiquitylation and Accumulation at Sites of DNA Damage, Facilitating Double-Strand Break Repair. Mol Cell 2018; 69:866-878.e7. [PMID: 29499138 PMCID: PMC6265044 DOI: 10.1016/j.molcel.2018.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 12/12/2017] [Accepted: 01/31/2018] [Indexed: 11/18/2022]
Abstract
Double-strand breaks (DSBs) are critical DNA lesions that robustly activate the elaborate DNA damage response (DDR) network. We identified a critical player in DDR fine-tuning: the E3/E4 ubiquitin ligase UBE4A. UBE4A's recruitment to sites of DNA damage is dependent on primary E3 ligases in the DDR and promotes enhancement and sustainment of K48- and K63-linked ubiquitin chains at these sites. This step is required for timely recruitment of the RAP80 and BRCA1 proteins and proper organization of RAP80- and BRCA1-associated protein complexes at DSB sites. This pathway is essential for optimal end resection at DSBs, and its abrogation leads to upregulation of the highly mutagenic alternative end-joining repair at the expense of error-free homologous recombination repair. Our data uncover a critical regulatory level in the DSB response and underscore the importance of fine-tuning the complex DDR network for accurate and balanced execution of DSB repair.
Collapse
Affiliation(s)
- Keren Baranes-Bachar
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Levy-Barda
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Judith Oehler
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Dylan A Reid
- Perlmutter NYU Cancer Center and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Isabel Soria-Bretones
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, Spain
| | - Ty C Voss
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Dudley Chung
- Departments of Pathology and Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Yoon Park
- Department of Biochemistry and Protein Network Research Center, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, Korea
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jong-Bok Yoon
- Department of Biochemistry and Protein Network Research Center, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, Korea
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Graham Dellaire
- Departments of Pathology and Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, Spain
| | - Eli Rothenberg
- Perlmutter NYU Cancer Center and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
29
|
Abstract
Fanconi anemia is an inherited disease characterized by genomic instability, hypersensitivity to DNA cross-linking agents, bone marrow failure, short stature, skeletal abnormalities, and a high relative risk of myeloid leukemia and epithelial malignancies. The 21 Fanconi anemia genes encode proteins involved in multiple nuclear biochemical pathways that effect DNA interstrand crosslink repair. In the past, bone marrow failure was attributed solely to the failure of stem cells to repair DNA. Recently, non-canonical functions of many of the Fanconi anemia proteins have been described, including modulating responses to oxidative stress, viral infection, and inflammation as well as facilitating mitophagic responses and enhancing signals that promote stem cell function and survival. Some of these functions take place in non-nuclear sites and do not depend on the DNA damage response functions of the proteins. Dysfunctions of the canonical and non-canonical pathways that drive stem cell exhaustion and neoplastic clonal selection are reviewed, and the potential therapeutic importance of fully investigating the scope and interdependences of the canonical and non-canonical pathways is emphasized.
Collapse
Affiliation(s)
- Grover Bagby
- Departments of Medicine and Molecular and Medical Genetics, Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
30
|
Alavattam KG, Kato Y, Sin HS, Maezawa S, Kowalski IJ, Zhang F, Pang Q, Andreassen PR, Namekawa SH. Elucidation of the Fanconi Anemia Protein Network in Meiosis and Its Function in the Regulation of Histone Modifications. Cell Rep 2017; 17:1141-1157. [PMID: 27760317 PMCID: PMC5095620 DOI: 10.1016/j.celrep.2016.09.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 08/17/2016] [Accepted: 09/21/2016] [Indexed: 01/14/2023] Open
Abstract
Precise epigenetic regulation of the sex chromosomes is vital for the male germline. Here, we analyze meiosis in eight mouse models deficient for various DNA damage response (DDR) factors, including Fanconi anemia (FA) proteins. We reveal a network of FA and DDR proteins in which FA core factors FANCA, FANCB, and FANCC are essential for FANCD2 foci formation, whereas BRCA1 (FANCS), MDC1, and RNF8 are required for BRCA2 (FANCD1) and SLX4 (FANCP) accumulation on the sex chromosomes during meiosis. In addition, FA proteins modulate distinct histone marks on the sex chromosomes: FA core proteins and FANCD2 regulate H3K9 methylation, while FANCD2 and RNF8 function together to regulate H3K4 methylation independently of FA core proteins. Our data suggest that RNF8 integrates the FA-BRCA pathway. Taken together, our study reveals distinct functions for FA proteins and illuminates the male sex chromosomes as a model to dissect the function of the FA-BRCA pathway.
Collapse
Affiliation(s)
- Kris G Alavattam
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Yasuko Kato
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Ho-Su Sin
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - So Maezawa
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Ian J Kowalski
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Fan Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA.
| |
Collapse
|
31
|
Hengel SR, Spies MA, Spies M. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy. Cell Chem Biol 2017; 24:1101-1119. [PMID: 28938088 PMCID: PMC5679738 DOI: 10.1016/j.chembiol.2017.08.027] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/11/2017] [Accepted: 08/30/2017] [Indexed: 01/13/2023]
Abstract
To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase.
Collapse
Affiliation(s)
- Sarah R Hengel
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - M Ashley Spies
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutical Sciences and Experimental Therapeutics, Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
32
|
Genomic profiles of a hepatoblastoma from a patient with Beckwith-Wiedemann syndrome with uniparental disomy on chromosome 11p15 and germline mutation of APC and PALB2. Oncotarget 2017; 8:91950-91957. [PMID: 29190888 PMCID: PMC5696154 DOI: 10.18632/oncotarget.20515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a congenital overgrowth disorder mainly associated with altered genomic imprinting at chromosome 11p15.5. Children with BWS, especially uniparental disomy (UPD) at 11p15.5, are at increased risk of embryonal tumors including hepatoblastoma. Although genetic alterations of sporadic hepatoblastomas have been identified, integrated germline and somatic alterations of BWS-related hepatoblastoma have not been reported. For this, we performed whole-exome sequencing and genome-wide loss of heterozygosity/copy number analyses using a single nucleotide polymorphism (SNP) array for a hepatoblastoma in a BWS infant with paternal UPD at chromosome 11p15.5. We found germline 11p15.5 UPD as well as germline mutations of APC and PALB2 in the patient. At the somatic level, we found a CTNNB1 hotspot mutation and chromosome 1q gain in the tumor. The development of hepatoblastoma in this case might be explained by predisposition of the germline events (11p15.5 UPD, mutations of APC and PALB2) and later by somatic events with CTNNB1 somatic mutation and 1q gain. To our knowledge, this is the first report of germline and somatic genomic alteration profiles in hepatoblastoma arising from BWS. Clinically, our results provide a rationale for performing a more strict and intense protocol for hepatoblastoma surveillance in a high-risk BWS infant, such as the UPD-carrying case, for early detection and treatment.
Collapse
|
33
|
Abstract
The correct duplication and transmission of genetic material to daughter cells is the primary objective of the cell division cycle. DNA replication and chromosome segregation present both challenges and opportunities for DNA repair pathways that safeguard genetic information. As a consequence, there is a profound, two-way connection between DNA repair and cell cycle control. Here, we review how DNA repair processes, and DNA double-strand break repair in particular, are regulated during the cell cycle to optimize genomic integrity.
Collapse
|
34
|
PALB2 mutations in BRCA1/2-mutation negative breast and ovarian cancer patients from Poland. BMC Med Genomics 2017; 10:14. [PMID: 28279176 PMCID: PMC5345197 DOI: 10.1186/s12920-017-0251-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
Background The PALB2 gene encodes a protein that plays a crucial role in maintaining genomic integrity. Germline inactivating mutations in PALB2 are associated with an increased risk of breast and ovarian cancer. The prevalence and spectrum of recurrent PALB2 germline mutations in breast and ovarian cancer patients from Poland is not clearly defined. Methods PALB2 exons were amplified from 460 BRCA1/2-mutation negative women with familial breast and/or ovarian cancer and early-onset breast cancer using AmpliSeq technology and sequenced on an Ion Torrent PGM sequencer. In addition, eight selected variants were genotyped using TaqMan assays in 807 BRCA1/2-mutation negative breast cancer patients and 1690 healthy women. Results Two recurrent PALB2 mutations, c.172_175delTTGT and c.509_510delGA, were identified, along with one novel mutation, c.347insT. In total, PALB2 pathogenic mutations were detected in 7/460 (1.5%) patients. Furthermore, in breast and/or ovarian cancer patients, several single nucleotide variants (SNVs) were detected in the PALB2 coding region. In an additional group of 807 patients, eight (1%) carriers of two pathogenic mutations, c.172_175delTTGT (0.5%) and c.509_510delGA (0.5%), were identified. The c.509_510delGA mutation was not identified in healthy controls, while c.172_175delTTGT was identified in 4/1690 (0.24%) of control women. Conclusions Germline mutations in the PALB2 gene were observed at a frequency of approximately 1.5% in Polish breast and/or ovarian cancer patients. Our study confirms two recurrent PALB2 mutations; c.172_175delGA and c.509_510delGA.
Collapse
|
35
|
Zou XD, Hu XJ, Ma J, Li T, Ye ZQ, Wu YD. Genome-wide Analysis of WD40 Protein Family in Human. Sci Rep 2016; 6:39262. [PMID: 27991561 PMCID: PMC5172248 DOI: 10.1038/srep39262] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/22/2016] [Indexed: 01/16/2023] Open
Abstract
The WD40 proteins, often acting as scaffolds to form functional complexes in fundamental cellular processes, are one of the largest families encoded by the eukaryotic genomes. Systematic studies of this family on genome scale are highly required for understanding their detailed functions, but are currently lacking in the animal lineage. Here we present a comprehensive in silico study of the human WD40 family. We have identified 262 non-redundant WD40 proteins, and grouped them into 21 classes according to their domain architectures. Among them, 11 animal-specific domain architectures have been recognized. Sequence alignment indicates the complicated duplication and recombination events in the evolution of this family. Through further phylogenetic analysis, we have revealed that the WD40 family underwent more expansion than the overall average in the evolutionary early stage, and the early emerged WD40 proteins are prone to domain architectures with fundamental cellular roles and more interactions. While most widely and highly expressed human WD40 genes originated early, the tissue-specific ones often have late origin. These results provide a landscape of the human WD40 family concerning their classification, evolution, and expression, serving as a valuable complement to the previous studies in the plant lineage.
Collapse
Affiliation(s)
- Xu-Dong Zou
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Xue-Jia Hu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Jing Ma
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Tuan Li
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.,College of Chemistry, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
36
|
Mamrak NE, Shimamura A, Howlett NG. Recent discoveries in the molecular pathogenesis of the inherited bone marrow failure syndrome Fanconi anemia. Blood Rev 2016; 31:93-99. [PMID: 27760710 DOI: 10.1016/j.blre.2016.10.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
Abstract
Fanconi anemia (FA) is a rare autosomal and X-linked genetic disease characterized by congenital abnormalities, progressive bone marrow failure (BMF), and increased cancer risk during early adulthood. The median lifespan for FA patients is approximately 33years. The proteins encoded by the FA genes function together in the FA-BRCA pathway to repair DNA damage and to maintain genome stability. Within the past two years, five new FA genes have been identified-RAD51/FANCR, BRCA1/FANCS, UBE2T/FANCT, XRCC2/FANCU, and REV7/FANCV-bringing the total number of disease-causing genes to 21. This review summarizes the discovery of these new FA genes and describes how these proteins integrate into the FA-BRCA pathway to maintain genome stability and critically prevent early-onset BMF and cancer.
Collapse
Affiliation(s)
- Nicholas E Mamrak
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, United States.
| | - Akiko Shimamura
- Dana-Farber Cancer Institute/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, United States.
| | - Niall G Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, United States.
| |
Collapse
|
37
|
Park JY, Virts EL, Jankowska A, Wiek C, Othman M, Chakraborty SC, Vance GH, Alkuraya FS, Hanenberg H, Andreassen PR. Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene. J Med Genet 2016; 53:672-680. [PMID: 27208205 PMCID: PMC5035190 DOI: 10.1136/jmedgenet-2016-103847] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/19/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Fanconi anaemia (FA) is a heterogeneous inherited disorder clinically characterised by progressive bone marrow failure, congenital anomalies and a predisposition to malignancies. OBJECTIVE Determine, based on correction of cellular phenotypes, whether XRCC2 is a FA gene. METHODS Cells (900677A) from a previously identified patient with biallelic mutation of XRCC2, among other mutations, were genetically complemented with wild-type XRCC2. RESULTS Wild-type XRCC2 corrects each of three phenotypes characteristic of FA cells, all related to the repair of DNA interstrand crosslinks, including increased sensitivity to mitomycin C (MMC), chromosome breakage and G2-M accumulation in the cell cycle. Further, the p.R215X mutant of XRCC2, which is harboured by the patient, is unstable. This provides an explanation for the pathogenesis of this mutant, as does the fact that 900677A cells have reduced levels of other proteins in the XRCC2-RAD51B-C-D complex. Also, FANCD2 monoubiquitination and foci formation, but not assembly of RAD51 foci, are normal in 900677A cells. Thus, XRCC2 acts late in the FA-BRCA pathway as also suggested by hypersensitivity of 900677A cells to ionising radiation. These cells also share milder sensitivities towards olaparib and formaldehyde with certain other FA cells. CONCLUSIONS XRCC2/FANCU is a FA gene, as is another RAD51 paralog gene, RAD51C/FANCO. Notably, similar to a subset of FA genes that act downstream of FANCD2, biallelic mutation of XRCC2/FANCU has not been associated with bone marrow failure. Taken together, our results yield important insights into phenotypes related to FA and its genetic origins.
Collapse
Affiliation(s)
- Jung-Young Park
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Research Foundation, Cincinnati, OH 45229
| | - Elizabeth L. Virts
- Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Anna Jankowska
- Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Constanze Wiek
- Department of Otorhinolaryngology & Head/Neck Surgery, Heinrich Heine University 40225 Duesseldorf, Germany
| | - Mohamed Othman
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, 11211, Saudi Arabia
| | - Sujata C. Chakraborty
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gail H. Vance
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Fowzan S. Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Helmut Hanenberg
- Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Otorhinolaryngology & Head/Neck Surgery, Heinrich Heine University 40225 Duesseldorf, Germany
- Division of Pediatrics III, University Children’s Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Paul R. Andreassen
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Research Foundation, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
38
|
Abstract
Identifying and characterizing novel genetic risk factors for BRCA1/2 negative breast cancers is highly relevant for early diagnosis and development of a management plan. Mutations in a number of DNA repair genes have been associated with genomic instability and development of breast and various other cancers. Whole exome sequencing efforts by 2 groups have led to the discovery in distinct populations of multiple breast cancer susceptibility mutations in RECQL, a gene that encodes a DNA helicase involved in homologous recombination repair and response to replication stress. RECQL pathogenic mutations were identified that truncated or disrupted the RECQL protein or introduced missense mutations in its helicase domain. RECQL mutations may serve as a useful biomarker for breast cancer. Targeting RECQL associated tumors with novel DNA repair inhibitors may provide a new strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Taraswi Banerjee
- a Laboratory of Molecular Gerontology; National Institute on Aging (NIH); NIH Biomedical Research Center ; Baltimore , MD USA
| | - Robert M Brosh
- a Laboratory of Molecular Gerontology; National Institute on Aging (NIH); NIH Biomedical Research Center ; Baltimore , MD USA
| |
Collapse
|
39
|
Norquist BM, Harrell MI, Brady MF, Walsh T, Lee MK, Gulsuner S, Bernards SS, Casadei S, Yi Q, Burger RA, Chan JK, Davidson SA, Mannel RS, DiSilvestro PA, Lankes HA, Ramirez NC, King MC, Swisher EM, Birrer MJ. Inherited Mutations in Women With Ovarian Carcinoma. JAMA Oncol 2016; 2:482-90. [PMID: 26720728 DOI: 10.1001/jamaoncol.2015.5495] [Citation(s) in RCA: 537] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE Germline mutations in BRCA1 and BRCA2 are relatively common in women with ovarian, fallopian tube, and peritoneal carcinoma (OC) causing a greatly increased lifetime risk of these cancers, but the frequency and relevance of inherited mutations in other genes is less well characterized. OBJECTIVE To determine the frequency and importance of germline mutations in cancer-associated genes in OC. DESIGN, SETTING, AND PARTICIPANTS A study population of 1915 woman with OC and available germline DNA were identified from the University of Washington (UW) gynecologic tissue bank (n = 570) and from Gynecologic Oncology Group (GOG) phase III clinical trials 218 (n = 788) and 262 (n = 557). Patients were enrolled at diagnosis and were not selected for age or family history. Germline DNA was sequenced from women with OC using a targeted capture and multiplex sequencing assay. MAIN OUTCOMES AND MEASURES Mutation frequencies in OC were compared with the National Heart, Lung, and Blood Institute GO Exome Sequencing Project (ESP) and the Exome Aggregation Consortium (ExAC). Clinical characteristics and survival were assessed by mutation status. RESULTS Overall, the median (range) age at diagnosis was 60 (28-91) years in patients recruited from UW and 61 (23-87) years in patients recruited from the GOG trials. A higher number of black women were recruited from the GOG trials (4.3% vs 1.4%; P = .009); but in patients recruited from UW, there was a higher proportion of fallopian tube carcinomas (13.3% vs 5.7%; P < .001); stage I and II disease (14.6% vs 0% [GOG trials were restricted to advanced-stage cancer]); and nonserous carcinomas (29.9% vs 13.1%, P < .001). Of 1915 patients, 280 (15%) had mutations in BRCA1 (n = 182), or BRCA2 (n = 98), and 8 (0.4%) had mutations in DNA mismatch repair genes. Mutations in BRIP1 (n = 26), RAD51C (n = 11), RAD51D (n = 11), PALB2 (n = 12), and BARD1 (n = 4) were significantly more common in patients with OC than in the ESP or ExAC, present in 3.3%. Race, histologic subtype, and disease site were not predictive of mutation frequency. Patients with a BRCA2 mutation from the GOG trials had longer progression-free survival (hazard ratio [HR], 0.60; 95% CI, 0.45-0.79; P < .001) and overall survival (HR, 0.39; 95% CI, 0.25-0.60; P < .001) compared with those without mutations. CONCLUSIONS AND RELEVANCE Of 1915 patients with OC, 347 (18%) carried pathogenic germline mutations in genes associated with OC risk. PALB2 and BARD1 are suspected OC genes and together with established OC genes (BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, MSH2, MLH1, PMS2, and MSH6) bring the total number of genes suspected to cause hereditary OC to 11.
Collapse
Affiliation(s)
- Barbara M Norquist
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle
| | - Maria I Harrell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle
| | - Mark F Brady
- The NRG Oncology Statistical and Data Center, Roswell Park Cancer Center Institute, Buffalo, New York
| | - Tom Walsh
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle4Department of Genome Sciences, University of Washington, Seattle
| | - Ming K Lee
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle4Department of Genome Sciences, University of Washington, Seattle
| | - Suleyman Gulsuner
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle4Department of Genome Sciences, University of Washington, Seattle
| | - Sarah S Bernards
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle
| | - Silvia Casadei
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle4Department of Genome Sciences, University of Washington, Seattle
| | - Qian Yi
- Department of Genome Sciences, University of Washington, Seattle
| | - Robert A Burger
- Division of Gynecologic Oncology, University of Pennsylvania, Philadelphia
| | - John K Chan
- Division of Gynecologic Oncology, Sutter Health California Pacific Medical Center, San Francisco, California
| | - Susan A Davidson
- Division of Gynecologic Oncology, University of Colorado, Denver
| | - Robert S Mannel
- Division of Gynecologic Oncology, University of Oklahoma, Oklahoma City
| | - Paul A DiSilvestro
- Division of Gynecologic Oncology, Women and Infants Hospital, Providence, Rhode Island
| | - Heather A Lankes
- The NRG Oncology Statistical and Data Center, Roswell Park Cancer Center Institute, Buffalo, New York
| | - Nilsa C Ramirez
- Department of Pathology and Laboratory Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Mary Claire King
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle4Department of Genome Sciences, University of Washington, Seattle
| | - Elizabeth M Swisher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle3Division of Medical Genetics, Department of Medicine, University of Washington, Seattle
| | - Michael J Birrer
- Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston
| |
Collapse
|
40
|
Hartford SA, Chittela R, Ding X, Vyas A, Martin B, Burkett S, Haines DC, Southon E, Tessarollo L, Sharan SK. Interaction with PALB2 Is Essential for Maintenance of Genomic Integrity by BRCA2. PLoS Genet 2016; 12:e1006236. [PMID: 27490902 PMCID: PMC4973925 DOI: 10.1371/journal.pgen.1006236] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022] Open
Abstract
Human breast cancer susceptibility gene, BRCA2, encodes a 3418-amino acid protein that is essential for maintaining genomic integrity. Among the proteins that physically interact with BRCA2, Partner and Localizer of BRCA2 (PALB2), which binds to the N-terminal region of BRCA2, is vital for its function by facilitating its subnuclear localization. A functional redundancy has been reported between this N-terminal PALB2-binding domain and the C-terminal DNA-binding domain of BRCA2, which undermines the relevance of the interaction between these two proteins. Here, we describe a genetic approach to examine the functional significance of the interaction between BRCA2 and PALB2 by generating a knock-in mouse model of Brca2 carrying a single amino acid change (Gly25Arg, Brca2G25R) that disrupts this interaction. In addition, we have combined Brca2G25R homozygosity as well as hemizygosity with Palb2 and Trp53 heterozygosity to generate an array of genotypically and phenotypically distinct mouse models. Our findings reveal defects in body size, fertility, meiotic progression, and genome stability, as well as increased tumor susceptibility in these mice. The severity of the phenotype increased with a decrease in the interaction between BRCA2 and PALB2, highlighting the significance of this interaction. In addition, our findings also demonstrate that hypomorphic mutations such as Brca2G25R have the potential to be more detrimental than the functionally null alleles by increasing genomic instability to a level that induces tumorigenesis, rather than apoptosis.
Collapse
Affiliation(s)
- Suzanne A. Hartford
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Rajanikant Chittela
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Xia Ding
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Aradhana Vyas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Betty Martin
- Leidos Biomedical Inc., National Cancer Institute, Frederick, Maryland, United States of America
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Diana C. Haines
- Leidos Biomedical Inc., National Cancer Institute, Frederick, Maryland, United States of America
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- Leidos Biomedical Inc., National Cancer Institute, Frederick, Maryland, United States of America
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Shyam K. Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|
41
|
Hengel SR, Malacaria E, Folly da Silva Constantino L, Bain FE, Diaz A, Koch BG, Yu L, Wu M, Pichierri P, Spies MA, Spies M. Small-molecule inhibitors identify the RAD52-ssDNA interaction as critical for recovery from replication stress and for survival of BRCA2 deficient cells. eLife 2016; 5. [PMID: 27434671 PMCID: PMC4982760 DOI: 10.7554/elife.14740] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/18/2016] [Indexed: 12/20/2022] Open
Abstract
The DNA repair protein RAD52 is an emerging therapeutic target of high importance for BRCA-deficient tumors. Depletion of RAD52 is synthetically lethal with defects in tumor suppressors BRCA1, BRCA2 and PALB2. RAD52 also participates in the recovery of the stalled replication forks. Anticipating that ssDNA binding activity underlies the RAD52 cellular functions, we carried out a high throughput screening campaign to identify compounds that disrupt the RAD52-ssDNA interaction. Lead compounds were confirmed as RAD52 inhibitors in biochemical assays. Computational analysis predicted that these inhibitors bind within the ssDNA-binding groove of the RAD52 oligomeric ring. The nature of the inhibitor-RAD52 complex was validated through an in silico screening campaign, culminating in the discovery of an additional RAD52 inhibitor. Cellular studies with our inhibitors showed that the RAD52-ssDNA interaction enables its function at stalled replication forks, and that the inhibition of RAD52-ssDNA binding acts additively with BRCA2 or MUS81 depletion in cell killing. DOI:http://dx.doi.org/10.7554/eLife.14740.001 Cells are constantly in danger of losing or scrambling critical genetic information because of DNA damage. To cope with this stress, cells have numerous DNA repair systems. One of these systems – homology-directed DNA repair – involves the proteins BRCA1 and BRCA2, which are often missing or defective in breast and ovarian cancers. The BRCA-deficient cancer cells can still survive, but become “addicted” to other DNA repair proteins – among them a protein called RAD52. It might be possible to kill these cancer cells using drugs that stop RAD52 from working. Such treatments would have the benefit of not harming normal healthy cells, as these cells contain working BRCA proteins and can survive without RAD52. It is not currently known exactly how RAD52 allows the BRCA-deficient cells to survive, but this probably depends on RAD52’s ability to bind to single strands of DNA. Small molecules that block the interaction between the RAD52 protein and DNA might therefore help to kill cancer cells. Hengel et al. developed a high throughput biophysical method to search through a large collection of small molecules to find those that prevent RAD52 from binding to DNA. The best potential drug leads were then tested in laboratory-grown human cells and using biophysical and biochemical techniques. Computational approaches were also used to model how these molecules block the interaction between RAD52 and DNA at the atomistic level. Hengel et al. then used the information about how the small molecules bind to RAD52 to perform further computational screening. This identified a natural compound that competes with single-stranded DNA to bind to RAD52. The activity of this molecule was then validated using biophysical methods. The methods used by Hengel et al. provide the foundation for further searches for new anticancer drugs. Future studies that employ the small molecule drugs identified so far will also help to determine exactly how RAD52 works in human cells and how it helps cancer cells to survive. DOI:http://dx.doi.org/10.7554/eLife.14740.002
Collapse
Affiliation(s)
- Sarah R Hengel
- Department of Biochemistry, University of Iowa, Iowa City, United States
| | - Eva Malacaria
- Department of Environment and Health, Section of Experimental and Computational Carcinogenesis, Istituto Superiore di Sanita, Rome, Italy
| | - Laura Folly da Silva Constantino
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, United States
| | - Fletcher E Bain
- Department of Biochemistry, University of Iowa, Iowa City, United States
| | - Andrea Diaz
- Department of Biochemistry, University of Iowa, Iowa City, United States
| | - Brandon G Koch
- Department of Biochemistry, University of Iowa, Iowa City, United States
| | - Liping Yu
- Department of Biochemistry, University of Iowa, Iowa City, United States.,NMR Core Facility, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Meng Wu
- Department of Biochemistry, University of Iowa, Iowa City, United States.,Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, United States.,High Throughput Screening Facility, University of Iowa, Iowa City, United States
| | - Pietro Pichierri
- Department of Environment and Health, Section of Experimental and Computational Carcinogenesis, Istituto Superiore di Sanita, Rome, Italy
| | - M Ashley Spies
- Department of Biochemistry, University of Iowa, Iowa City, United States.,Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, United States
| | - Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, United States
| |
Collapse
|
42
|
Bick G, Zhang F, Meetei AR, Andreassen PR. Coordination of the recruitment of the FANCD2 and PALB2 Fanconi anemia proteins by an ubiquitin signaling network. Chromosoma 2016; 126:417-430. [PMID: 27277787 DOI: 10.1007/s00412-016-0602-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 12/26/2022]
Abstract
Fanconi anemia (FA) is a chromosome instability syndrome and the 20 identified FA proteins are organized into two main arms which are thought to function at distinct steps in the repair of DNA interstrand crosslinks (ICLs). These two arms include the upstream FA pathway, which culminates in the monoubiquitination of FANCD2 and FANCI, and downstream breast cancer (BRCA)-associated proteins that interact in protein complexes. How, and whether, these two groups of FA proteins are integrated is unclear. Here, we show that FANCD2 and PALB2, as indicators of the upstream and downstream arms, respectively, colocalize independently of each other in response to DNA damage induced by mitomycin C (MMC). We also show that ubiquitin chains are induced by MMC and colocalize with both FANCD2 and PALB2. Our finding that the RNF8 E3 ligase has a role in recruiting FANCD2 and PALB2 also provides support for the hypothesis that the two branches of the FA-BRCA pathway are coordinated by ubiquitin signaling. Interestingly, we find that the RNF8 partner, MDC1, as well as the ubiquitin-binding protein, RAP80, specifically recruit PALB2, while a different ubiquitin-binding protein, FAAP20, functions only in the recruitment of FANCD2. Thus, FANCD2 and PALB2 are not recruited in a single linear pathway, rather we define how their localization is coordinated and integrated by a network of ubiquitin-related proteins. We propose that such regulation may enable upstream and downstream FA proteins to act at distinct steps in the repair of ICLs.
Collapse
Affiliation(s)
- Gregory Bick
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Fan Zhang
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - A Ruhikanta Meetei
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
43
|
DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation. Semin Cancer Biol 2016; 37-38:51-64. [DOI: 10.1016/j.semcancer.2016.03.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
|
44
|
Fenoy IM, Bogado SS, Contreras SM, Gottifredi V, Angel SO. The Knowns Unknowns: Exploring the Homologous Recombination Repair Pathway in Toxoplasma gondii. Front Microbiol 2016; 7:627. [PMID: 27199954 PMCID: PMC4853372 DOI: 10.3389/fmicb.2016.00627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/18/2016] [Indexed: 12/17/2022] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite of medical and veterinary importance which causes toxoplasmosis in humans. Great effort is currently being devoted toward the identification of novel drugs capable of targeting such illness. In this context, we believe that the thorough understanding of the life cycle of this model parasite will facilitate the identification of new druggable targets in T. gondii. It is important to exploit the available knowledge of pathways which could modulate the sensitivity of the parasite to DNA damaging agents. The homologous recombination repair (HRR) pathway may be of particular interest in this regard as its inactivation sensitizes other cellular models such as human cancer to targeted therapy. Herein we discuss the information available on T. gondii's HRR pathway from the perspective of its conservation with respect to yeast and humans. Special attention was devoted to BRCT domain-containing and end-resection associated proteins in T. gondii as in other experimental models such proteins have crucial roles in early/late steps or HRR and in the pathway choice for double strand break resolution. We conclude that T. gondii HRR pathway is a source of several lines of investigation that allow to to comprehend the extent of diversification of HRR in T. gondii. Such an effort will serve to determine if HRR could represent a potential targer for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Ignacio M Fenoy
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM Chascomús, Argentina
| | - Silvina S Bogado
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM Chascomús, Argentina
| | - Susana M Contreras
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM Chascomús, Argentina
| | - Vanesa Gottifredi
- Cell Cycle Genomic Instability Laboratory, Fundación Instituto Leloir, IIBBA-CONICET Chascomús, Argentina
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM Chascomús, Argentina
| |
Collapse
|
45
|
Godin SK, Sullivan MR, Bernstein KA. Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication. Biochem Cell Biol 2016; 94:407-418. [PMID: 27224545 DOI: 10.1139/bcb-2016-0012] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review we focus on new insights that challenge our understanding of homologous recombination (HR) and Rad51 regulation. Recent advances using high-resolution microscopy and single molecule techniques have broadened our knowledge of Rad51 filament formation and strand invasion at double-strand break (DSB) sites and at replication forks, which are one of most physiologically relevant forms of HR from yeast to humans. Rad51 filament formation and strand invasion is regulated by many mediator proteins such as the Rad51 paralogues and the Shu complex, consisting of a Shu2/SWS1 family member and additional Rad51 paralogues. Importantly, a novel RAD51 paralogue was discovered in Caenorhabditis elegans, and its in vitro characterization has demonstrated a new function for the worm RAD51 paralogues during HR. Conservation of the human RAD51 paralogues function during HR and repair of replicative damage demonstrate how the RAD51 mediators play a critical role in human health and genomic integrity. Together, these new findings provide a framework for understanding RAD51 and its mediators in DNA repair during multiple cellular contexts.
Collapse
Affiliation(s)
- Stephen K Godin
- University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics.,University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics
| | - Meghan R Sullivan
- University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics.,University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics
| | - Kara A Bernstein
- University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics
| |
Collapse
|
46
|
Byrd PJ, Stewart GS, Smith A, Eaton C, Taylor AJ, Guy C, Eringyte I, Fooks P, Last JI, Horsley R, Oliver AW, Janic D, Dokmanovic L, Stankovic T, Taylor AMR. A Hypomorphic PALB2 Allele Gives Rise to an Unusual Form of FA-N Associated with Lymphoid Tumour Development. PLoS Genet 2016; 12:e1005945. [PMID: 26990772 PMCID: PMC4798644 DOI: 10.1371/journal.pgen.1005945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/26/2016] [Indexed: 12/26/2022] Open
Abstract
Patients with biallelic truncating mutations in PALB2 have a severe form of Fanconi anaemia (FA-N), with a predisposition for developing embryonal-type tumours in infancy. Here we describe two unusual patients from a single family, carrying biallelic PALB2 mutations, one truncating, c.1676_1677delAAinsG;(p.Gln559ArgfsTer2), and the second, c.2586+1G>A; p.Thr839_Lys862del resulting in an in frame skip of exon 6 (24 amino acids). Strikingly, the affected individuals did not exhibit the severe developmental defects typical of FA-N patients and initially presented with B cell non-Hodgkin lymphoma. The expressed p.Thr839_Lys862del mutant PALB2 protein retained the ability to interact with BRCA2, previously unreported in FA-N patients. There was also a large increased chromosomal radiosensitivity following irradiation in G2 and increased sensitivity to mitomycin C. Although patient cells were unable to form Rad51 foci following exposure to either DNA damaging agent, U2OS cells, in which the mutant PALB2 with in frame skip of exon 6 was induced, did show recruitment of Rad51 to foci following damage. We conclude that a very mild form of FA-N exists arising from a hypomorphic PALB2 allele.
Collapse
Affiliation(s)
- Philip J. Byrd
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Grant. S. Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anna Smith
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Charlotte Eaton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexander J. Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chloe Guy
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ieva Eringyte
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peggy Fooks
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James I. Last
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert Horsley
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Antony W. Oliver
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Dragana Janic
- University Children’s Hospital, School of Medicine University of Belgrade, Belgrade, Serbia
| | - Lidija Dokmanovic
- University Children’s Hospital, School of Medicine University of Belgrade, Belgrade, Serbia
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - A. Malcolm R. Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
47
|
Norquist BM, Harrell MI, Brady MF, Walsh T, Lee MK, Gulsuner S, Bernards SS, Casadei S, Yi Q, Burger RA, Chan JK, Davidson SA, Mannel RS, DiSilvestro PA, Lankes HA, Ramirez NC, King MC, Swisher EM, Birrer MJ. Inherited Mutations in Women With Ovarian Carcinoma. JAMA Oncol 2016. [PMID: 26720728 DOI: 10.1001/jamaoncol.2015.5495] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Germline mutations in BRCA1 and BRCA2 are relatively common in women with ovarian, fallopian tube, and peritoneal carcinoma (OC) causing a greatly increased lifetime risk of these cancers, but the frequency and relevance of inherited mutations in other genes is less well characterized. OBJECTIVE To determine the frequency and importance of germline mutations in cancer-associated genes in OC. DESIGN, SETTING, AND PARTICIPANTS A study population of 1915 woman with OC and available germline DNA were identified from the University of Washington (UW) gynecologic tissue bank (n = 570) and from Gynecologic Oncology Group (GOG) phase III clinical trials 218 (n = 788) and 262 (n = 557). Patients were enrolled at diagnosis and were not selected for age or family history. Germline DNA was sequenced from women with OC using a targeted capture and multiplex sequencing assay. MAIN OUTCOMES AND MEASURES Mutation frequencies in OC were compared with the National Heart, Lung, and Blood Institute GO Exome Sequencing Project (ESP) and the Exome Aggregation Consortium (ExAC). Clinical characteristics and survival were assessed by mutation status. RESULTS Overall, the median (range) age at diagnosis was 60 (28-91) years in patients recruited from UW and 61 (23-87) years in patients recruited from the GOG trials. A higher number of black women were recruited from the GOG trials (4.3% vs 1.4%; P = .009); but in patients recruited from UW, there was a higher proportion of fallopian tube carcinomas (13.3% vs 5.7%; P < .001); stage I and II disease (14.6% vs 0% [GOG trials were restricted to advanced-stage cancer]); and nonserous carcinomas (29.9% vs 13.1%, P < .001). Of 1915 patients, 280 (15%) had mutations in BRCA1 (n = 182), or BRCA2 (n = 98), and 8 (0.4%) had mutations in DNA mismatch repair genes. Mutations in BRIP1 (n = 26), RAD51C (n = 11), RAD51D (n = 11), PALB2 (n = 12), and BARD1 (n = 4) were significantly more common in patients with OC than in the ESP or ExAC, present in 3.3%. Race, histologic subtype, and disease site were not predictive of mutation frequency. Patients with a BRCA2 mutation from the GOG trials had longer progression-free survival (hazard ratio [HR], 0.60; 95% CI, 0.45-0.79; P < .001) and overall survival (HR, 0.39; 95% CI, 0.25-0.60; P < .001) compared with those without mutations. CONCLUSIONS AND RELEVANCE Of 1915 patients with OC, 347 (18%) carried pathogenic germline mutations in genes associated with OC risk. PALB2 and BARD1 are suspected OC genes and together with established OC genes (BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, MSH2, MLH1, PMS2, and MSH6) bring the total number of genes suspected to cause hereditary OC to 11.
Collapse
Affiliation(s)
- Barbara M Norquist
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle
| | - Maria I Harrell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle
| | - Mark F Brady
- The NRG Oncology Statistical and Data Center, Roswell Park Cancer Center Institute, Buffalo, New York
| | - Tom Walsh
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle4Department of Genome Sciences, University of Washington, Seattle
| | - Ming K Lee
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle4Department of Genome Sciences, University of Washington, Seattle
| | - Suleyman Gulsuner
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle4Department of Genome Sciences, University of Washington, Seattle
| | - Sarah S Bernards
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle
| | - Silvia Casadei
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle4Department of Genome Sciences, University of Washington, Seattle
| | - Qian Yi
- Department of Genome Sciences, University of Washington, Seattle
| | - Robert A Burger
- Division of Gynecologic Oncology, University of Pennsylvania, Philadelphia
| | - John K Chan
- Division of Gynecologic Oncology, Sutter Health California Pacific Medical Center, San Francisco, California
| | - Susan A Davidson
- Division of Gynecologic Oncology, University of Colorado, Denver
| | - Robert S Mannel
- Division of Gynecologic Oncology, University of Oklahoma, Oklahoma City
| | - Paul A DiSilvestro
- Division of Gynecologic Oncology, Women and Infants Hospital, Providence, Rhode Island
| | - Heather A Lankes
- The NRG Oncology Statistical and Data Center, Roswell Park Cancer Center Institute, Buffalo, New York
| | - Nilsa C Ramirez
- Department of Pathology and Laboratory Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Mary Claire King
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle4Department of Genome Sciences, University of Washington, Seattle
| | - Elizabeth M Swisher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle3Division of Medical Genetics, Department of Medicine, University of Washington, Seattle
| | - Michael J Birrer
- Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston
| |
Collapse
|
48
|
Orthwein A, Noordermeer SM, Wilson MD, Landry S, Enchev RI, Sherker A, Munro M, Pinder J, Salsman J, Dellaire G, Xia B, Peter M, Durocher D. A mechanism for the suppression of homologous recombination in G1 cells. Nature 2015; 528:422-6. [PMID: 26649820 PMCID: PMC4880051 DOI: 10.1038/nature16142] [Citation(s) in RCA: 364] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/13/2015] [Indexed: 12/17/2022]
Abstract
DNA repair by homologous recombination is highly suppressed in G1 cells to ensure that mitotic recombination occurs solely between sister chromatids. Although many homologous recombination factors are cell-cycle regulated, the identity of the events that are both necessary and sufficient to suppress recombination in G1 cells is unknown. Here we report that the cell cycle controls the interaction of BRCA1 with PALB2-BRCA2 to constrain BRCA2 function to the S/G2 phases in human cells. We found that the BRCA1-interaction site on PALB2 is targeted by an E3 ubiquitin ligase composed of KEAP1, a PALB2-interacting protein, in complex with cullin-3 (CUL3)-RBX1 (ref. 6). PALB2 ubiquitylation suppresses its interaction with BRCA1 and is counteracted by the deubiquitylase USP11, which is itself under cell cycle control. Restoration of the BRCA1-PALB2 interaction combined with the activation of DNA-end resection is sufficient to induce homologous recombination in G1, as measured by RAD51 recruitment, unscheduled DNA synthesis and a CRISPR-Cas9-based gene-targeting assay. We conclude that the mechanism prohibiting homologous recombination in G1 minimally consists of the suppression of DNA-end resection coupled with a multi-step block of the recruitment of BRCA2 to DNA damage sites that involves the inhibition of BRCA1-PALB2-BRCA2 complex assembly. We speculate that the ability to induce homologous recombination in G1 cells with defined factors could spur the development of gene-targeting applications in non-dividing cells.
Collapse
Affiliation(s)
- Alexandre Orthwein
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Sylvie M. Noordermeer
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Marcus D. Wilson
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Sébastien Landry
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Radoslav I. Enchev
- ETH Zurich, Institute of Biochemistry, Department of Biology, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Alana Sherker
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, ON, M5S 3E1, Canada
| | - Meagan Munro
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Jordan Pinder
- Departments of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jayme Salsman
- Departments of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Graham Dellaire
- Departments of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Matthias Peter
- ETH Zurich, Institute of Biochemistry, Department of Biology, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, ON, M5S 3E1, Canada
| |
Collapse
|
49
|
Brown JS, Jackson SP. Ubiquitylation, neddylation and the DNA damage response. Open Biol 2015; 5:150018. [PMID: 25833379 PMCID: PMC4422126 DOI: 10.1098/rsob.150018] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/09/2015] [Indexed: 12/19/2022] Open
Abstract
Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair.
Collapse
Affiliation(s)
- Jessica S Brown
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
50
|
|