1
|
Huang C, Li X, Li H, Chen R, Li Z, Li D, Xu X, Zhang G, Qin L, Li B, Chu XM. Role of gut microbiota in doxorubicin-induced cardiotoxicity: from pathogenesis to related interventions. J Transl Med 2024; 22:433. [PMID: 38720361 PMCID: PMC11077873 DOI: 10.1186/s12967-024-05232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.
Collapse
Affiliation(s)
- Chao Huang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266000, China
| | - Hanqing Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Ruolan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Zhaoqing Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Xiaojian Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Guoliang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Luning Qin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266000, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266033, China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China.
- The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao, 266071, China.
| |
Collapse
|
2
|
Xu T, Wang L, Fan L, Ren H, Zhang Q, Wang J. Composite Microparticles from Microfluidics for Chemo-/Photothermal Therapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38594624 DOI: 10.1021/acsami.4c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Hydrogel microcarrier-based drug delivery systems are of great value in the combination therapy of tumors. Current research directions concentrate on the development of more economic, convenient, and effective combined therapeutic platforms. Herein, we developed novel adhesive composite microparticles (MPPMD) with combined chemo- and photothermal therapy ability via microfluidic electrospray technology for local hepatocellular carcinoma treatment. These composite microparticles consisted of doxorubicin (DOX)-loaded and polydopamine-wrapped mesoporous silicon and alginate. Benefiting from such a strategy of hierarchical structure drug loading, DOX could be gradually released from the system, effectively avoiding the direct toxicity of chemotherapeutics to the body. Additionally, the designed microparticles could not only effectively treat tumors by releasing the chemotherapy drug DOX but also show excellent photothermal properties under the irradiation of near-infrared light, achieving combined chemo- and photothermal treatment effects. Based on these advantages, the MPPMD could remarkably eliminate tumor cells in vitro and enormously restrict tumor development in vivo. These results illustrate that such composite microparticles are ideal combination treatment platforms, possessing promising expectations for cancer therapy.
Collapse
Affiliation(s)
- Tianyuan Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Li Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lu Fan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Qingfei Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
3
|
Wang CZ, Guo HZ, Leng JZ, Liang ZD, Wang JT, Luo LJ, Wang SQ, Yuan Y. Exercise preconditioning inhibits doxorubicin-induced cardiotoxicity via YAP/STAT3 signaling. Heliyon 2024; 10:e27035. [PMID: 38515673 PMCID: PMC10955211 DOI: 10.1016/j.heliyon.2024.e27035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Doxorubicin (DOX) possesses strong anti-tumor effects but is limited by its irreversible cardiac toxicity. The relationship between exercise, a known enhancer of cardiovascular health, and DOX-induced cardiotoxicity has been a focus of recent research. Exercise has been suggested to mitigate DOX's cardiac harm by modulating the Yes-associated protein (YAP) and Signal transducer and activator of transcription 3 (STAT3) pathways, which are crucial in regulating cardiac cell functions and responses to damage. This study aimed to assess the protective role of exercise preconditioning against DOX-induced cardiac injury. We used Sprague-Dawley rats, divided into five groups (control, DOX, exercise preconditioning (EP), EP-DOX, and verteporfin + EP + DOX), to investigate the potential mechanisms. Our findings, including echocardiography, histological staining, Western blot, and q-PCR analysis, demonstrated that exercise preconditioning could alleviate DOX-induced cardiac dysfunction and structural damage. Notably, exercise preconditioning enhanced the nuclear localization and co-localization of YAP and STAT3. Our study suggests that exercise preconditioning may counteract DOX-induced cardiotoxicity by activating the YAP/STAT3 pathway, highlighting a potential therapeutic approach for reducing DOX's cardiac side effects.
Collapse
Affiliation(s)
- Chuan-Zhi Wang
- School of Physical Education, Qingdao University, Qingdao, China
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
- School of Physical Education and Sports Science, South China Normal University, China
| | - Heng-Zhi Guo
- School of Physical Education, Qingdao University, Qingdao, China
| | - Jing-Zhi Leng
- School of Physical Education, Qingdao University, Qingdao, China
| | - Zhi-De Liang
- School of Physical Education, Qingdao University, Qingdao, China
| | - Jing-Tai Wang
- School of Physical Education, Qingdao University, Qingdao, China
| | - Li-Jie Luo
- Jining University and School of Physical Education, Jining, China
| | - Shi-Qiang Wang
- Hunan Research Centre in Physical Fitness, Health, and Performance Excellence, Hunan University of Technology, Hunan, China
| | - Yang Yuan
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
4
|
Das B. Pharmacotherapy for Cancer Treatment-Related Cardiac Dysfunction and Heart Failure in Childhood Cancer Survivors. Paediatr Drugs 2023; 25:695-707. [PMID: 37639193 DOI: 10.1007/s40272-023-00585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
The number of childhood cancer survivors is increasing rapidly. According to American Association for Cancer Research, there are more than 750,000 childhood cancer survivors in the United States and Europe. As the number of childhood cancer survivors increases, so does cancer treatment-related cardiac dysfunction (CTRCD), leading to heart failure (HF). It has been reported that childhood cancer survivors who received anthracyclines are 15 times more likely to have late cancer treatment-related HF and have a 5-fold higher risk of death from cardiovascular (CV) disease than the general population. CV disease is the leading cause of death in childhood cancer survivors. The increasing need to manage cancer survivor patients has led to the rapid creation and adaptation of cardio-oncology. Cardio-oncology is a multidisciplinary science that monitors, treats, and prevents CTRCD. Many guidelines and position statements have been published to help diagnose and manage CTRCD, including those from the American Society of Clinical Oncology, the European Society of Cardiology, the Canadian Cardiovascular Society, the European Society of Medical Oncology, the International Late Effects of Childhood Cancer Guideline Harmonization Group, and many others. However, there remains a gap in identifying high-risk patients likely to develop cardiomyopathy and HF in later life, thus reducing primary and secondary measures being instituted, and when to start treatment when there is echocardiographic evidence of left ventricular (LV) dysfunctions without symptoms of HF. There are no randomized controlled clinical trials for treatment for CTRCD leading to HF in childhood cancer survivors. The treatment of HF due to cancer treatment is similar to the guidelines for general HF. This review describes the latest pharmacologic therapy for preventing and treating LV dysfunction and HF in childhood cancer survivors based on expert consensus guidelines and extrapolating data from adult HF trials.
Collapse
Affiliation(s)
- Bibhuti Das
- Division of Pediatric Cardiology, Department of Pediatrics, Baylor Scott and White McLane Children's Medical Center, Temple, TX, 76502, USA.
| |
Collapse
|
5
|
Nunes JHC, Cella PS, Guimarães TAS, Buçu IP, Deminice R. Chemotherapy periodization to maximize resistance training adaptations in oncology. Cancer Chemother Pharmacol 2023; 92:357-367. [PMID: 37582913 DOI: 10.1007/s00280-023-04576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
INTRODUCTION Engaging in exercise programs during cancer treatment is challenging due to the several chemotherapy-induced side effects. Using a pre-clinical model that mimics chemotherapy treatment, we investigated if a periodized-within-chemotherapy training strategy can maximize resistance training (RT) adaptations such as increasing muscle mass and strength. METHODS Swiss mice were randomly allocated into one of the following five groups (n = 14): control (C), resistance training (RT), chemotherapy-treated non-exercised group (Ch), resistance training chemotherapy treated (RTCh), and resistance training periodized-within-chemotherapy (RTPCh). Doxorubicin (i.p.) was weekly injected for a total of 3 weeks (total dose of 12 mg/kg). Resistance training consisted of ladder climbing with progressive intensity, three times a week for 3 weeks, during chemotherapy treatment. RTPCh prescriptions considered "bad day" adjustments while RTCh did not. "Bad day" adjustments considered the presence or absence of clinical signs (e.g., severe weight loss, diarrhea, mice refusing to train) to replace RT sessions. At the end of the third week, animals were euthanized. RESULTS Weekly doxorubicin injection promoted progressive body weight loss, muscle atrophy, strength loss, local oxidative stress, and elevated inflammatory mediators, such as TNF-α and IL-6. Non-periodized-within-chemotherapy RT promoted mild protection against doxorubicin-induced skeletal muscle disturbances; moreover, when periodized-within-chemotherapy was applied, RT prevented elevated skeletal muscle inflammatory mediators and oxidative damage markers and promoted muscle mass and strength gains. CONCLUSION Considering chemotherapy-induced side effects is a crucial aspect when prescribing resistance exercise during cancer, it will maximize the effectiveness of exercise in enhancing muscle mass and strength.
Collapse
Affiliation(s)
- Jonathan H C Nunes
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil
| | - Paola S Cella
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil
| | - Tatiana A S Guimarães
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil
| | - Icaro P Buçu
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil
| | - Rafael Deminice
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil.
| |
Collapse
|
6
|
Shen C, Yang B, Huang L, Chen Y, Zhao H, Zhu Z. Cardioprotective effect of crude polysaccharide fermented by Trametes Sanguinea Lyoyd on doxorubicin-induced myocardial injury mice. BMC Pharmacol Toxicol 2023; 24:1. [PMID: 36627724 PMCID: PMC9832647 DOI: 10.1186/s40360-022-00641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum anti-tumor drug, but its clinical application is greatly limited because of the cardiotoxicity. Thus, exploration of effective therapies against DOX-induced cardiotoxicity is necessary. The aim of this study is to investigate the effects and possible mechanisms of Trametes Sanguinea Lyoyd fermented crude polysaccharide (TSLFACP) against DOX-induced cardiotoxicity. We investigated the protective effects of TSLFACP on myocardial injury and its possible mechanisms using two in vitro cells of DOX-treated cardiomyocytes H9C2 and embryonic myocardial cell line CCC-HEH-2 and a in vivo mouse model of DOX-induced myocardial injury. We found that TSLFACP could reverse DOX-induced toxicity in H9C2 and CCC-HEH-2 cells. Similarly, we found that when pretreatment with TSLFACP (200 mg/kg, i.g.) daily for 6 days, DOX-induced myocardial damage was attenuated, including the decrease in serum myocardial injury index, and the amelioration in cardiac histopathological morphology. Additionally, immunohistochemistry and western blotting were used to identify the underlying and possible signal pathways. We found that TSLFACP attenuated the expression of LC3-II, Beclin-1 and PRAP induced by DOX. In conclusion, our results demonstrated that TSLFACP could protect against DOX-induced cardiotoxicity by inhibiting autophagy and apoptosis.
Collapse
Affiliation(s)
- Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Bo Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Yueru Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China.
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
7
|
Mokhtari B, Abdi A, Athari SZ, Nozad-Charoudeh H, Alihemmati A, Badalzadeh R. Effect of troxerutin on the expression of genes regulating mitochondrial biogenesis and microRNA-140 in doxorubicin-induced testicular toxicity. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2023; 28:35. [PMID: 37213461 PMCID: PMC10199378 DOI: 10.4103/jrms.jrms_120_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/09/2022] [Accepted: 02/27/2023] [Indexed: 05/23/2023]
Abstract
Background Application of doxorubicin (DOX) in cancer patients is limited due to its dose-dependent toxicity to nontarget tissues such as testis and subsequent infertility. Due to limitation of our knowledge about the mechanisms of DOX toxicity in the reproductive system, reduction of DOX-induced testicular toxicity remains an actual and primary clinical challenge. Considering the potentials of troxerutin (TXR) in generating a protective phenotype in many tissues, we aimed to examine the effect of TXR on DOX-induced testicular toxicity by evaluating the histological changes and the expression of mitochondrial biogenesis genes and microRNA-140 (miR-140). Materials and Methods Twenty-four adult male Wistar rats (250-300 g) were divided in groups with/without DOX and/or TXR. DOX was injected intraperitoneally at 6 consecutive doses over 12 days (cumulative dose: 12 mg/kg). TXR (150 mg/kg/day; orally) was administered for 4 weeks before DOX challenge. One week after the last injection of DOX, testicular histopathological changes, spermatogenesis activity, and expression of mitochondrial biogenesis genes and miR-140 were determined. Results DOX challenge significantly increased testicular histopathological changes, decreased testicular expression profiles of sirtuin 1 (SIRT-1) and nuclear respiratory factor-2 (NRF-2), and increased expression of miR-140 (P < 0.05 to P < 0.01). Pretreatment of DOX-received rats with TXR significantly reversed testicular histopathological changes, spermatogenesis activity index, and the expression levels of SIRT-1, peroxisome proliferator-activated receptor-γ coactivator 1-alpha (PGC-1α), NRF-2, and miR-140 (P < 0.05 to P < 0.01). Conclusion Reduction of DOX-induced testicular toxicity following TXR pretreatment was associated with upregulation of SIRT-1/PGC-1α/NRF-2 profiles and better regulation of miR-140 expression. It seems that improving microRNA-mitochondrial biogenesis network can play a role in the beneficial effect of TXR on DOX-induced testicular toxicity.
Collapse
Affiliation(s)
- Behnaz Mokhtari
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Abdi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Zanyar Athari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Alireza Alihemmati
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Address for correspondence: Prof. Reza Badalzadeh, Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. E-mail:
| |
Collapse
|
8
|
Wu L, Wang L, Du Y, Zhang Y, Ren J. Mitochondrial quality control mechanisms as therapeutic targets in doxorubicin-induced cardiotoxicity. Trends Pharmacol Sci 2023; 44:34-49. [PMID: 36396497 DOI: 10.1016/j.tips.2022.10.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug that is utilized for solid tumors and hematologic malignancies, but its clinical application is hampered by life-threatening cardiotoxicity including cardiac dilation and heart failure. Mitochondrial quality control processes, including mitochondrial proteostasis, mitophagy, and mitochondrial dynamics and biogenesis, serve to maintain mitochondrial homeostasis in the cardiovascular system. Importantly, recent advances have unveiled a major role for defective mitochondrial quality control in the etiology of DOX cardiomyopathy. Moreover, specific interventions targeting these quality control mechanisms to preserve mitochondrial function have emerged as potential therapeutic strategies to attenuate DOX cardiotoxicity. However, clinical translation is challenging because of obscure mechanisms of action and potential adverse effects. The purpose of this review is to provide new insights regarding the role of mitochondrial quality control in the pathogenesis of DOX cardiotoxicity, and to explore promising therapeutic approaches targeting these mechanisms to aid clinical management.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Litao Wang
- Department of Cardiology and Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuxin Du
- Department of Cardiology and Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Effect of High-Intensity Interval Training on Cardiac Apoptosis Markers in Methamphetamine-Dependent Rats. Curr Issues Mol Biol 2022; 44:3030-3038. [PMID: 35877433 PMCID: PMC9315973 DOI: 10.3390/cimb44070209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic methamphetamine use increases apoptosis, leading to heart failure and sudden cardiac death. Previous studies have shown the importance of high-intensity interval training (HIIT) in reducing indices of cardiac tissue apoptosis in different patients, but in the field of sports science, the molecular mechanisms of apoptosis in methamphetamine-dependent rats are still unclear. The present article aimed to investigate the changes in cardiac apoptosis markers in methamphetamine-dependent rats in response to HIIT. Left ventricular tissue was used to evaluate caspase-3, melusin, FAK, and IQGAP1 gene expression. Rats were divided into four groups: sham, methamphetamine (METH), METH-control, and METH-HIIT. METH was injected for 21 days and then the METH-HIIT group performed HIIT for 8 weeks at 5 sessions per week. The METH groups showed increased caspase-3 gene expression and decreased melusin, FAK, and IQGAP1 when compared to the sham group. METH-HIIT showed decreased caspase-3 and increased melusin and FAK gene expression compared with the METH and METH-control groups. The IQGAP1 gene was higher in METH-HIIT when compared with METH, while no difference was observed between METH-HIIT and METH-control. Twenty-one days of METH exposure increased apoptosis markers in rat cardiac tissue; however, HIIT might have a protective effect, as shown by the apoptosis markers.
Collapse
|
10
|
Hu B, Zhen D, Bai M, Xuan T, Wang Y, Liu M, Yu L, Bai D, Fu D, Wei C. Ethanol extracts of Rhaponticum uniflorum (L.) DC flowers attenuate doxorubicin-induced cardiotoxicity via alleviating apoptosis and regulating mitochondrial dynamics in H9c2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114936. [PMID: 35007682 DOI: 10.1016/j.jep.2021.114936] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Loulu flowers (LLF) is the inflorescence of Rhaponticum uniflorum (L.) DC. (R. uniflorum), a member of the Compositae family. This plant possesses heat-clearing properties, detoxification effects, and is therefore frequently used for the treatment of cardiovascular diseases. AIM OF THIS STUDY This study aimed to investigate the cardioprotective effects of ethanol extracts of LLF against doxorubicin (DOX)-induced cardiotoxicity and explore the associated mechanisms. MATERIAL AND METHODS Ethanol extracts of LLF were prepared and analyzed by LC-ESI-MS/MS. DOX-treated H9c2 cells and DOX-treated zebrafish models were used to explore the cardioprotective effect of ethanol extracts on myocardial function. The effects of LLF on DOX-induced cytotoxicity in H9c2 cells were investigated by MTT assay. Reactive Oxygen Species (ROS) levels, mitochondrial membrane potential (MMP), and nuclear translocation of NF-κB p65 were examined using fluorescent probes. The expression level of Bax, Bcl-2, PARP, caspase-3, cleaved-caspase3, caspase9, IκBα, p-IκBα, IKK, p-IKK, p65, p-p65, OPA1, Mfn1, MFF and Fis 1 and GAPDH was determined by western blotting. RESULTS Twenty-five compounds were detected in ethanol extracts of LLF, include Nicotinamide, Coumarin, Parthenolide, and Ligustilide. Pre-treatment with LLF attenuated the DOX-induced decrease in viability and ROS production in H9c2 cells. Moreover, LLF treatment maintained the mitochondrial membrane integrity and suppressed apoptosis by upregulating expression level of Bcl-2 and downregulating the expression level of Bax, cleaved-caspase-3, cleaved-caspase-9 and cleaved-PARP. In addition, LLF significantly inhibited the DOX-induced activation of NF-κB signaling. Cells treated with DOX showed aberrant expression of mitochondrial dynamics related proteins, and these effects were alleviated by LLF pre-treatment. In conclusion, these results show that LLF can alleviate DOX-induced cardiotoxicity by blocking NF-κB signaling and re-balancing mitochondrial dynamics. CONCLUSION Ethanol extracts of LLF is a potential treatment option to against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Boqin Hu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Dong Zhen
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Meirong Bai
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Tianqi Xuan
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Yu Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Mingjie Liu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Lijun Yu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Dongsong Bai
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Danni Fu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Chengxi Wei
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
11
|
Huang J, Wu R, Chen L, Yang Z, Yan D, Li M. Understanding Anthracycline Cardiotoxicity From Mitochondrial Aspect. Front Pharmacol 2022; 13:811406. [PMID: 35211017 PMCID: PMC8861498 DOI: 10.3389/fphar.2022.811406] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Anthracyclines, such as doxorubicin, represent one group of chemotherapy drugs with the most cardiotoxicity. Despite that anthracyclines are capable of treating assorted solid tumors and hematological malignancies, the side effect of inducing cardiac dysfunction has hampered their clinical use. Currently, the mechanism underlying anthracycline cardiotoxicity remains obscure. Increasing evidence points to mitochondria, the energy factory of cardiomyocytes, as a major target of anthracyclines. In this review, we will summarize recent findings about mitochondrial mechanism during anthracycline cardiotoxicity. In particular, we will focus on the following aspects: 1) the traditional view about anthracycline-induced reactive oxygen species (ROS), which is produced by mitochondria, but in turn causes mitochondrial injury. 2) Mitochondrial iron-overload and ferroptosis during anthracycline cardiotoxicity. 3) Autophagy, mitophagy and mitochondrial dynamics during anthracycline cardiotoxicity. 4) Anthracycline-induced disruption of cardiac metabolism.
Collapse
Affiliation(s)
- Junqi Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rundong Wu
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Linyi Chen
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ziqiang Yang
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Daoguang Yan
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mingchuan Li
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Rao V, Bhushan R, Kumari P, Cheruku SP, Ravichandiran V, Kumar N. Chemobrain: A review on mechanistic insight, targets and treatments. Adv Cancer Res 2022; 155:29-76. [DOI: 10.1016/bs.acr.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Bansal N, Joshi C, Adams MJ, Hutchins K, Ray A, Lipshultz SE. Cardiotoxicity in pediatric lymphoma survivors. Expert Rev Cardiovasc Ther 2021; 19:957-974. [PMID: 34958622 DOI: 10.1080/14779072.2021.2013811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Over the past five decades, the diagnosis and management of children with various malignancies have improved tremendously. As a result, an increasing number of children are long-term cancer survivors. With improved survival, however, has come an increased risk of treatment-related cardiovascular complications that can appear decades later. AREAS COVERED This review discusses the pathophysiology, epidemiology and effects of treatment-related cardiovascular complications from anthracyclines and radiotherapy in pediatric lymphoma survivors. There is a paucity of evidence-based recommendations for screening for and treatment of cancer therapy-induced cardiovascular complications. We discuss current preventive measures and strategies for their treatment. EXPERT OPINION Significant cardiac adverse effects occur due to radiation and chemotherapy received by patients treated for lymphoma. Higher lifetime cumulative doses, female sex, longer follow-up, younger age, and preexisting cardiovascular disease are associated with a higher incidence of cardiotoxicity. With deeper understanding of the mechanisms of these adverse cardiac effects and identification of driver mutations causing these effects, personalized cancer therapy to limit cardiotoxic effects while ensuring an adequate anti-neoplastic effect would be ideal. In the meantime, expanding the use of cardioprotective agents with the best evidence such as dexrazoxane should be encouraged and further studied.
Collapse
Affiliation(s)
- Neha Bansal
- Division of Pediatric Cardiology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx NY, USA
| | - Chaitya Joshi
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo NY, USA
| | - Michael Jacob Adams
- Department of Public Health Sciences, University of Rochester, Rochester NY, USA
| | - Kelley Hutchins
- John A. Burns School of Medicine, Pediatric Hematology/Oncology, Kapiolani Medical Center for Women and Children, Honolulu HI, USA
| | - Andrew Ray
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo NY, USA
| | - Steven E Lipshultz
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo NY, USA.,Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo NY, USA.,Pediatrics Department, John R. Oishei Children's Hospital, UBMD Pediatrics Practice Group, Buffalo NY, USA
| |
Collapse
|
14
|
The therapeutic effect of hesperetin on doxorubicin-induced testicular toxicity: Potential roles of the mechanistic target of rapamycin kinase (mTOR) and dynamin-related protein 1 (DRP1). Toxicol Appl Pharmacol 2021; 435:115833. [PMID: 34933056 DOI: 10.1016/j.taap.2021.115833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
Clinical utilization of doxorubicin (DOX), which is a commonly used chemotherapeutic, is restricted due to toxic effects on various tissues. Using hesperetin (HST), an antioxidant used in Chinese traditional medicine protects testis against DOX-induced toxicity although the molecular mechanisms are not well-known. The study was aimed to examine the possible role of the mechanistic target of rapamycin kinase (mTOR) and dynamin 1-like dynamin-related protein 1 (DRP1) in the therapeutic effects of HST on the DOX-induced testicular toxicity. Rats were divided into Control, DOX, DOX + HST, and HST groups (n = 7). Single-dose DOX (15 mg/kg) was administered intraperitoneally and HST (50 mg/kg) was administered by oral gavage every other day for 28 days. Total antioxidant status (TAS), histopathological evaluations, immunohistochemistry, and gene expression level detection analyses were performed. Histopathologically, DOX-induced testicular damage was ameliorated by HST treatment. DOX reduced testicular TAS levels and increased oxidative stress markers, 8-Hydroxy-deoxyguanosine (8-OHdG), and 4-Hydroxynonenal (4-HNE). Also, upregulated mTOR and DRP1 expressions with DOX exposure were decreased after HST treatment in the testis (p < 0.05). On the other hand, DOX-administration downregulated miR-150-5p and miR-181b-2-3p miRNAs, targeting mTOR and mRNA levels of beclin 1 (BECN1) and autophagy-related 5 (ATG5), autophagic markers. Furthermore, these levels were nearly similar to control testis samples in the DOX + HST group (p < 0.05). The study demonstrated that HST may have a therapeutic effect on DOX-induced testicular toxicity by removing reactive oxygen species (ROS) and by modulating the mTOR and DRP1 expressions, which have a critical role in regulating the balance of generation/elimination of ROS.
Collapse
|
15
|
Erdem Guzel E, Kaya Tektemur N, Tektemur A, Acay H, Yildirim A. The antioxidant and anti-apoptotic potential of Pleurotus eryngii extract and its chitosan-loaded nanoparticles against doxorubicin-induced testicular toxicity in male rats. Andrologia 2021; 53:e14225. [PMID: 34431122 DOI: 10.1111/and.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022] Open
Abstract
This study was conducted to evaluate the protective role of Pleurotus eryngii extract (PE) and Pleurotus eryngii extract-loaded chitosan nanoparticles (PE-CSNP) against doxorubicin (DOX)-induced testicular toxicity in rats. Male rats were divided into six groups: control (DMSO/ethanol), PE (200 mg/kg PE), PE-CSNP (30 mg/kg PE-CSNP), DOX (10 mg/kg DOX, a single dose, i.p), DOX+PE (10 mg/kg DOX+200 mg/kg PE) and DOX+PE-CSNP (10 mg/kg DOX+30 mg/kg PE-CSNP). PE and PE-CSNP were administered by oral gavage every other day for 21 days. DOX-treated rats showed histopathological impairment compared with the control group. There was an increase in the apoptotic index, caspase 3 (CASP3), BCL2-associated X apoptosis regulator (BAX), dynamin-related protein 1 (DRP1) expression and total oxidative status (TOS) in the DOX group, while mitofusin-2 (MFN2), total antioxidative status (TAS) and serum testosterone levels of the DOX group reduced when compared with the other groups. PE and PE-CSNP treatments provided significant protection against DOX-induced oxidative stress by reducing TOS levels and increasing TAS levels. CASP3, BAX, apoptotic index and DRP1-MFN2 expressions were restored by PE and PE-CSNP. However, the PE-CSNP showed higher antioxidant and anti-apoptotic efficacy compared with PE. Thus, our results provide evidence that CSNP and PE could synergistically have a potent antioxidant and anti-apoptotic therapy against DOX-induced testicular damage in male rats.
Collapse
Affiliation(s)
- Elif Erdem Guzel
- Department of Midwifery, Faculty of Health Sciences, Mardin Artuklu University, Mardin, Turkey
| | - Nalan Kaya Tektemur
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Hilal Acay
- Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, Mardin, Turkey
| | - Ayfer Yildirim
- Vocational Higher School of Healthcare Studies, Mardin Artuklu University, Mardin, Turkey
| |
Collapse
|
16
|
Davoodi M, Zilaei Bouri S, Dehghan Ghahfarokhi S. Antioxidant Effects of Aerobic Training and Crocin Consumption on Doxorubicin-Induced Testicular Toxicity in Rats. J Family Reprod Health 2021; 15:28-37. [PMID: 34429734 PMCID: PMC8346744 DOI: 10.18502/jfrh.v15i1.6075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective: Doxorubicin (DOX) treatment has been reported to increase the risk of serious toxicity in testis, therefore the aim of the present study was to investigate the antioxidant effects of training and Crocin on doxorubicin-induced testicular toxicity in rats. Materials and methods:⊆max) 5 day/w. Also, groups 2 to 7 administered 2 mg/kg/w DOX intraperitoneal. The testes were removed and glutathione peroxidase (GPX), total antioxidant capacity (TAC) and protein carbonyl (PC) were analyzed using ELISA methods, one-way analysis of variance along with Bonferroni’s post hoc test were used for analysis in SPSS (P≤0.05). Results: The results of the present study showed that doxorubicin induced oxidative stress in testicular tissue by decreasing the level of GPX and TAC and increasing PC level (P≤0.05); TAC and GPX improved in all groups except groups 2 and 5, respectively, and their increase in the group 7 was significantly higher compared to other groups (P≤0.05). Increased PC levels were significantly reduced in the groups 5, 6 and 7. Conclusion: The increase in antioxidant levels in the concurrent Crocin and training group seems to be dose-dependent, but the oxidative stress in both Crocin and training groups of 10 and 50 mg/kg/d is associated with a decrease, but its modulation in the Crocin consumption group alone depends on the dose.
Collapse
Affiliation(s)
- Mohsen Davoodi
- Department of Physical Education & Sport Sciences, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Shirin Zilaei Bouri
- Department of Physical Education & Sport Sciences, Masjed-Soleiman Branch, Islamic Azad University, Masjed-Soleiman, Iran
| | | |
Collapse
|
17
|
Büeler H. Mitochondrial and Autophagic Regulation of Adult Neurogenesis in the Healthy and Diseased Brain. Int J Mol Sci 2021; 22:ijms22073342. [PMID: 33805219 PMCID: PMC8036818 DOI: 10.3390/ijms22073342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.
Collapse
Affiliation(s)
- Hansruedi Büeler
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
18
|
Wang C, Zhao Y, Wang L, Pan S, Liu Y, Li S, Wang D. C-phycocyanin Mitigates Cognitive Impairment in Doxorubicin-Induced Chemobrain: Impact on Neuroinflammation, Oxidative Stress, and Brain Mitochondrial and Synaptic Alterations. Neurochem Res 2021; 46:149-158. [PMID: 33237471 DOI: 10.1007/s11064-020-03164-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a common detrimental effect of cancer treatment, occurring in up to 75% of cancer patients. The widely utilized chemotherapeutic agent doxorubicin (DOX) has been implicated in cognitive decline, mostly via cytokine-induced neuroinflammatory and oxidative and mitochondrial damage to brain tissues. C-phycocyanin (CP) has previously been shown to have potent anti-inflammatory, antioxidant, and mitochondrial protective properties. Therefore, this present study was aimed to investigate the neuroprotective effects of CP against DOX-elicited cognitive impairment and explore the underlying mechanisms. CP treatment (50 mg/kg) significantly improved behavioral deficits in DOX-treated mice. Furthermore, CP suppressed DOX-induced neuroinflammation and oxidative stress, mitigated mitochondrial abnormalities, rescued dendritic spine loss, and increased synaptic density in the hippocampus of DOX-treated mice. Our results suggested that CP improves established DOX-induced cognitive deficits, which could be explained at least partly by inhibition of neuroinflammatory and oxidant stress and attenuation of mitochondrial and synaptic dysfunction.
Collapse
Affiliation(s)
- Chenying Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, China
- Department of Clinical Laboratory Science, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | | | - Lewei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shunji Pan
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Sanqiang Li
- Henan Centre for Engineering and Technology Research On Prevention and Treatment of Liver Diseases, Luoyang, China.
| | - Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
19
|
Su X, Yuan C, Wang L, Chen R, Li X, Zhang Y, Liu C, Liu X, Liang W, Xing Y. The Beneficial Effects of Saffron Extract on Potential Oxidative Stress in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6699821. [PMID: 33542784 PMCID: PMC7840270 DOI: 10.1155/2021/6699821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Saffron is commonly used in traditional medicines and precious perfumes. It contains pharmacologically active compounds with notably potent antioxidant activity. Saffron has a variety of active components, including crocin, crocetin, and safranal. Oxidative stress plays an important role in many cardiovascular diseases, and its uncontrolled chain reaction is related to myocardial injury. Numerous studies have confirmed that saffron exact exhibits protective effects on the myocardium and might be beneficial in the treatment of cardiovascular disease. In view of the role of oxidative stress in cardiovascular disease, people have shown considerable interest in the potential role of saffron extract as a treatment for a range of cardiovascular diseases. This review analyzed the use of saffron in the treatment of cardiovascular diseases through antioxidant stress from four aspects: antiatherosclerosis, antimyocardial ischemia, anti-ischemia reperfusion injury, and improvement in drug-induced cardiotoxicity, particularly anthracycline-induced. Although data is limited in humans with only two clinically relevant studies, the results of preclinical studies regarding the antioxidant stress effects of saffron are promising and warrant further research in clinical trials. This review summarized the protective effect of saffron in cardiovascular diseases and drug-induced cardiotoxicity. It will facilitate pharmacological research and development and promote utilization of saffron.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chao Yuan
- Dezhou Second People's Hospital, Dezhou 253000, China
| | - Li Wang
- Xingtai People's Hospital, Xingtai 054001, China
| | - Runqi Chen
- Shanxi Province Cancer Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Xiangying Li
- Xingtai People's Hospital, Xingtai 054001, China
| | - Yijun Zhang
- The First Affiliated Hospital, Hebei North University, Zhangjiakou 075000, China
| | - Can Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xu Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanping Liang
- The First Affiliated Hospital, Hebei North University, Zhangjiakou 075000, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
20
|
Bredahl EC, Najdawi W, Pass C, Siedlik J, Eckerson J, Drescher K. Use of Creatine and Creatinine to Minimize Doxorubicin-Induced Cytotoxicity in Cardiac and Skeletal Muscle Myoblasts. Nutr Cancer 2020; 73:2597-2604. [PMID: 33135456 DOI: 10.1080/01635581.2020.1842893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Doxorubicin (DOX), an effective anticancer agent, can damage cardiac and skeletal muscle tissue via excessive generation of reactive oxygen species (ROS). Supplemental creatine (Cr) has been shown to have a therapeutic role in disease states characterized by increased oxidative stress. To investigate the effects of Cr and creatinine (CrN) on DOX-induced cytotoxicity. Cultured L6 and H9C2 myoblasts were exposed to 25 μM DOX, 10 mM Cr, 10 mM CrN, 25 μM DOX + 10 mM Cr, 25 μM DOX + 10 mM CrN, or control media for 12 h. Viability was assessed using Confocal and Widefield imaging. Immunoblotting was used to determine protein expression. Viability was lowest in the DOX-treated group regardless of cell type; however, when DOX was combined with Cr or CrN, viability was improved. Levels of oxidative stress, as measured by 4-hydroxynonenal (4HNE), were significantly (p < 0.05) higher in the DOX treated cells vs. controls; however, Cr + DOX and CrN + DOX significantly lowered 4HNE levels compared to DOX-treated cells. Creatine kinase (CK), a key marker of cellular damage, was significantly higher in DOX-treated H9c2 cells vs. controls. However, Cr or CrN in combination with DOX, resulted in no significant differences in CK vs. controls. Supplementation with Cr or CrN may preserve cell viability during DOX treatment.
Collapse
Affiliation(s)
- Eric Christopher Bredahl
- Department of Exercise Science & Pre-Health Professions, Creighton University, Omaha, Nebraska, USA
| | - Wisam Najdawi
- Department of Exercise Science & Pre-Health Professions, Creighton University, Omaha, Nebraska, USA
| | - Caroline Pass
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Jake Siedlik
- Department of Exercise Science & Pre-Health Professions, Creighton University, Omaha, Nebraska, USA
| | - Joan Eckerson
- Department of Exercise Science & Pre-Health Professions, Creighton University, Omaha, Nebraska, USA
| | - Kristen Drescher
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| |
Collapse
|
21
|
Abstract
Sestrins are a family of proteins that respond to a variety of environmental stresses, including genotoxic, oxidative, and nutritional stresses. Sestrins affect multiple signaling pathways: AMP-activated protein kinase, mammalian target of rapamycin complexes, insulin-AKT, and redox signaling pathways. By regulating these pathways, Sestrins are thought to help adapt to stressful environments and subsequently restore cell and tissue homeostasis. In this review, we describe how Sestrins mediate physiological stress responses in the context of nutritional and chemical stresses (liver), physical movement and exercise (skeletal muscle), and chemical, physical, and inflammatory injuries (heart). These findings also support the idea that Sestrins are a molecular mediator of hormesis, a paradoxical beneficial effect of low- or moderate-level stresses in living organisms.
Collapse
Affiliation(s)
- Myungjin Kim
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| | - Allison H Kowalsky
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| |
Collapse
|
22
|
Sodium nitrate co-supplementation does not exacerbate low dose metronomic doxorubicin-induced cachexia in healthy mice. Sci Rep 2020; 10:15044. [PMID: 32973229 PMCID: PMC7518269 DOI: 10.1038/s41598-020-71974-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study was to determine whether (1) sodium nitrate (SN) treatment progressed or alleviated doxorubicin (DOX)-induced cachexia and muscle wasting; and (2) if a more-clinically relevant low-dose metronomic (LDM) DOX treatment regimen compared to the high dosage bolus commonly used in animal research, was sufficient to induce cachexia in mice. Six-week old male Balb/C mice (n = 16) were treated with three intraperitoneal injections of either vehicle (0.9% NaCl; VEH) or DOX (4 mg/kg) over one week. To test the hypothesis that sodium nitrate treatment could protect against DOX-induced symptomology, a group of mice (n = 8) were treated with 1 mM NaNO3 in drinking water during DOX (4 mg/kg) treatment (DOX + SN). Body composition indices were assessed using echoMRI scanning, whilst physical and metabolic activity were assessed via indirect calorimetry, before and after the treatment regimen. Skeletal and cardiac muscles were excised to investigate histological and molecular parameters. LDM DOX treatment induced cachexia with significant impacts on both body and lean mass, and fatigue/malaise (i.e. it reduced voluntary wheel running and energy expenditure) that was associated with oxidative/nitrostative stress sufficient to induce the molecular cytotoxic stress regulator, nuclear factor erythroid-2-related factor 2 (NRF-2). SN co-treatment afforded no therapeutic potential, nor did it promote the wasting of lean tissue. Our data re-affirm a cardioprotective effect for SN against DOX-induced collagen deposition. In our mouse model, SN protected against LDM DOX-induced cardiac fibrosis but had no effect on cachexia at the conclusion of the regimen.
Collapse
|
23
|
Dame K, Ribeiro AJ. Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects. Exp Biol Med (Maywood) 2020; 246:317-331. [PMID: 32938227 PMCID: PMC7859673 DOI: 10.1177/1535370220959598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.
Collapse
Affiliation(s)
- Keri Dame
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Alexandre Js Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
24
|
Hinkley JM, Morton AB, Ichinoseki-Sekine N, Huertas AM, Smuder AJ. Exercise Training Prevents Doxorubicin-induced Mitochondrial Dysfunction of the Liver. Med Sci Sports Exerc 2019; 51:1106-1115. [PMID: 30629044 DOI: 10.1249/mss.0000000000001887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Doxorubicin (DOX) is a highly effective chemotherapeutic agent used in the treatment of a broad spectrum of cancers. However, clinical use of DOX is limited by irreversible and dose-dependent hepatotoxicity. The liver is the primary organ responsible for the clearance of antineoplastic agents, and evidence indicates that hepatotoxicity occurs as a result of impaired mitochondrial efficiency during DOX metabolism. In this regard, exercise training is sufficient to improve mitochondrial function and protect against DOX-induced cytotoxicity. Therefore, the purpose of this study was to determine whether short-term exercise preconditioning is sufficient to protect against DOX-induced liver mitochondrionopathy. METHODS Female Sprague-Dawley rats (4-6 months old) were randomly assigned to one of four groups: 1) sedentary, treated with saline; 2) sedentary, treated with DOX; 3) exercise trained, treated with saline; and 4) exercise trained, treated with DOX. Exercise-trained animals underwent 5 d of treadmill running habituation followed by 10 d of running for 60 min·d (30 m·min; 0% grade). After the last training bout, exercise-trained and sedentary animals were injected with either DOX (20 mg·kg i.p.) or saline. Two days after drug treatment, the liver was removed and mitochondria were isolated. RESULTS DOX treatment induced mitochondrial dysfunction of the liver in sedentary animals because of alterations in mitochondrial oxidative capacity, biogenesis, degradation, and protein acetylation. Furthermore, exercise preconditioning protected against DOX-mediated liver mitochondrionopathy, which was associated with the maintenance of mitochondrial oxidative capacity and protein acetylation. CONCLUSION These findings demonstrate that endurance exercise training protects against DOX-induced liver mitochondrial dysfunction, which was attributed to modifications in organelle oxidative capacity and mitochondrial protein acetylation.
Collapse
Affiliation(s)
- J Matthew Hinkley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Noriko Ichinoseki-Sekine
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL.,School of Health and Sports Science, Juntendo University, Inbamura, Chiba, JAPAN
| | - Andres Mor Huertas
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Ashley J Smuder
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC
| |
Collapse
|
25
|
Exercise as A Potential Therapeutic Target for Diabetic Cardiomyopathy: Insight into the Underlying Mechanisms. Int J Mol Sci 2019; 20:ijms20246284. [PMID: 31842522 PMCID: PMC6940726 DOI: 10.3390/ijms20246284] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is associated with cardiovascular, ophthalmic, and renal comorbidities. Among these, diabetic cardiomyopathy (DCM) causes the most severe symptoms and is considered to be a major health problem worldwide. Exercise is widely known as an effective strategy for the prevention and treatment of many chronic diseases. Importantly, the onset of complications arising due to diabetes can be delayed or even prevented by exercise. Regular exercise is reported to have positive effects on diabetes mellitus and the development of DCM. The protective effects of exercise include prevention of cardiac apoptosis, fibrosis, oxidative stress, and microvascular diseases, as well as improvement in cardiac mitochondrial function and calcium regulation. This review summarizes the recent scientific findings to describe the potential mechanisms by which exercise may prevent DCM and heart failure.
Collapse
|
26
|
Liu Z, Ran H, Wang Z, Zhou S, Wang Y. Targeted and pH-facilitated theranostic of orthotopic gastric cancer via phase-transformation doxorubicin-encapsulated nanoparticles enhanced by low-intensity focused ultrasound (LIFU) with reduced side effect. Int J Nanomedicine 2019; 14:7627-7642. [PMID: 31571868 PMCID: PMC6757192 DOI: 10.2147/ijn.s212888] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Focused ultrasound-mediated chemotherapy, as a non-invasive therapeutic modality, has been extensively explored in combating deep tumors for predominant penetration performance. However, the generally used high-intensity focused ultrasound (HIFU) inevitably jeopardizes normal tissue around the lesion for hyperthermal energy. To overcome this crucial issue, low-intensity focused ultrasound (LIFU) was introduced to fulfill precisely controlled imaging and therapy in lieu of HIFU. The objective of this study was to develop a facile and versatile nanoplatform (DPP-R) in response to LIFU and provide targeted drug delivery concurrently. Methods Multifunctional DPP-R was fabricated by double emulsion method and carbodiimide method. Physicochemical properties of DPP-R were detected respectively and the bio-compatibility and bio-safety were evaluated by CCK-8 assay, blood analysis, and histologic section. The targeted ability, imaging function, and anti-tumor effect were demonstrated in vitro and vivo. Results The synthetic DPP-R showed an average particle size at 367 nm, stable physical-chemical properties in different media, and high bio-compatibility and bio-safety. DPP-R was demonstrated to accumulate at the tumor site by active receptor/ligand reaction and passive EPR effect with intravenous administration. Stimulated by LIFU at the tumor site, phase-transformable PFH was vaporized in the core of the integration offering contrast-enhanced ultrasound imaging. The stimuli led to encapsulated DOX's initial burst release and subsequent sustained release for anti-tumor therapy which was verified to be more effective and have less adverse effects than free DOX. Conclusion DPP-R combined with LIFU provides a novel theranostic modality for GC treatment with potent therapeutic effect, including prominent performance of targeting, ultrasound imaging, and accurate drug release.
Collapse
Affiliation(s)
- Zhangluxi Liu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Haitao Ran
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Zhigang Wang
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Shiji Zhou
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yaxu Wang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
27
|
Physical exercise positively modulates DOX-induced hepatic oxidative stress, mitochondrial dysfunction and quality control signaling. Mitochondrion 2019; 47:103-113. [DOI: 10.1016/j.mito.2019.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/31/2019] [Accepted: 05/30/2019] [Indexed: 01/28/2023]
|
28
|
Endurance exercise protects skeletal muscle against both doxorubicin-induced and inactivity-induced muscle wasting. Pflugers Arch 2018; 471:441-453. [PMID: 30426248 DOI: 10.1007/s00424-018-2227-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
Repeated bouts of endurance exercise promotes numerous biochemical adaptations in skeletal muscle fibers resulting in a muscle phenotype that is protected against a variety of homeostatic challenges; these exercise-induced changes in muscle phenotype are often referred to as "exercise preconditioning." Importantly, exercise preconditioning provides protection against several threats to skeletal muscle health including cancer chemotherapy (e.g., doxorubicin) and prolonged muscle inactivity. This review summarizes our current understanding of the mechanisms responsible for exercise-induced protection of skeletal muscle fibers against both doxorubicin-induced muscle wasting and a unique form of inactivity-induced muscle atrophy (i.e., ventilator-induced diaphragm atrophy). Specifically, the first section of this article will highlight the potential mechanisms responsible for exercise-induced protection of skeletal muscle fibers against doxorubicin-induced fiber atrophy. The second segment will discuss the biochemical changes that are responsible for endurance exercise-mediated protection of diaphragm muscle against ventilator-induced diaphragm wasting. In each section, we highlight gaps in our knowledge in hopes of stimulating future research in this evolving field of investigation.
Collapse
|