1
|
Gu C, ChenLiu Z, Wu Q, Tang D. ncRNAs as Key Regulators in Gastric Cancer: From Molecular Subtyping to Therapeutic Targets. Ann Surg Oncol 2025:10.1245/s10434-025-17368-9. [PMID: 40358781 DOI: 10.1245/s10434-025-17368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025]
Abstract
Gastric cancer (GC) poses a major global health challenge, underscoring the need for advanced diagnostic and therapeutic approaches. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have emerged as pivotal regulators in GC, with their dysregulated expression driving key processes such as tumorigenesis, metastasis, immune evasion, and chemoresistance. The functional diversity of ncRNAs across different GC molecular subtypes highlights their potential as biomarkers for improved subtype classification and patient stratification. Beyond their diagnostic value, ncRNAs demonstrate critical regulatory functions in tumor biology, establishing these RNA molecules as promising targets for therapeutic development. Strategies based on RNA hold considerable promise for addressing critical challenges such as immune escape and drug resistance by modulating key signaling pathways. These approaches can enhance immune responses, reprogram the tumor microenvironment, and reverse resistance mechanisms that compromise treatment efficacy, thereby improving clinical outcomes. Although ncRNAs represent a promising frontier in GC precision medicine, further research is required to fully harness their clinical potential.
Collapse
Affiliation(s)
- Chen Gu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhenni ChenLiu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Qihang Wu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Northern Jiangsu People's Hospital, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Xuzhou Medical University, Yangzhou, China.
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China.
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian Medical University, Yangzhou, China.
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China.
| |
Collapse
|
2
|
Bharti PS, Rani K, Singh R, Rai S, Rastogi S, Batra M, Mishra A, Zehra S, Gorai PK, Sasidhar MV, Modi GP, Malik G, Rani N, Dev K, Reddy TJ, Inampudi KK, Nikolajeff F, Kumar S. A simplified and efficient method for isolating small extracellular vesicles for comparative and comprehensive translational research. Sci Rep 2025; 15:16367. [PMID: 40350518 PMCID: PMC12066714 DOI: 10.1038/s41598-025-99822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
Small extracellular vesicles (sEVs) can provide information about the pathophysiology of the cells; therefore, sEVs have attracted considerable interest as possible diagnostic biomarkers. A key challenge lies in the necessity for simple and cost-effective sEV isolation methods to achieve high purity and yield suitable for research and clinical applications. We are introducing a comprehensive study on isolating sEVs using a novel cocktail strategy that integrates chemical precipitation and ultrafiltration with a two-step filtering process to ensure a highly pure and homogeneous population and further compared with PEG-based precipitation, ultra-centrifugation, and size-exclusion-chromatography columns. The isolated sEVs from each protocol are quantified for size and yield using nanoparticle tracking analysis, morphologically characterized through transmission electron microscopy, and validated by quantifying the expression profiles of sEV surface biomarkers. Furthermore, the study explores the applicability of our method for downstream multi-omics analyses. The results highlight the efficacy of the proposed protocol, demonstrating the ease and efficiency of isolating sEVs from different biofluids with minimal laboratory requirements and confirming the compatibility with multi-omics analyses. These findings position our method as particularly valuable for translational research, offering a promising avenue for advancing the study and application of sEVs in diagnostic and therapeutic research.
Collapse
Affiliation(s)
- Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Komal Rani
- Department of Pathology & Laboratory Medicine, All India Institute of Medical Sciences Bibinagar, Hyderabad, Telangana, 508126, India
| | - Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Manya Batra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Abhay Mishra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Sadaqa Zehra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Manda Venkata Sasidhar
- Apollo Hospitals Educational and Research Foundation, Hyderabad, Telangana, 500033, India
| | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, 221005, India
| | - Garima Malik
- Indian Council of Medical Research, New Delhi, 110029, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Thota Jagadeshwar Reddy
- Analytical Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Krishna Kishore Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Lulea University of Technology, 97187, Lulea, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
- Department of Health, Education and Technology, Lulea University of Technology, 97187, Lulea, Sweden.
| |
Collapse
|
3
|
Tiwari PK, Chaudhary AA, Gupta S, Chouhan M, Singh HN, Rustagi S, Khan SUD, Kumar S. Extracellular vesicles in triple-negative breast cancer: current updates, challenges and future prospects. Front Mol Biosci 2025; 12:1561464. [PMID: 40297849 PMCID: PMC12034555 DOI: 10.3389/fmolb.2025.1561464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 04/30/2025] Open
Abstract
Breast cancer (BC) remains a complex and widespread problem, affecting millions of women worldwide, Among the various subtypes of BC, triple-negative breast cancer (TNBC) is particularly challenging, representing approximately 20% of all BC cases, and the survival rate of TNBC patients is generally worse than other subtypes of BC. TNBC is a heterogeneous disease characterized by lack of expression of three receptors: estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2), resulting conventional hormonal therapies are ineffective for its management. Despite various therapeutic approaches have been explored, but no definitive solution has been found yet for TNBC. Current treatments options are chemotherapy, immunotherapy, radiotherapy and surgery, although, these therapies have some limitations, such as the development of resistance to anti-cancer drugs, and off-target toxicity, which remain primary obstacles and significant challenges for TNBC. Several findings have shown that EVs exhibit significant therapeutic promise in many diseases, and a similar important role has been observed in various types of tumor. Studies suggest that EVs may offer a potential solution for the management of TNBC. This review highlights the multifaceted roles of EVs in TNBC, emphasizing their involvement in disease progression, diagnosis and therapeutic approach, as well as their potential as biomarkers and drug delivery.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life science, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
4
|
Li X, Zhao H. Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Exp Hematol Oncol 2025; 14:12. [PMID: 39893499 PMCID: PMC11786567 DOI: 10.1186/s40164-025-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Secretory autophagy is a classical form of unconventional secretion that integrates autophagy with the secretory process, relying on highly conserved autophagy-related molecules and playing a critical role in tumor progression and treatment resistance. Traditional autophagy is responsible for degrading intracellular substances by fusing autophagosomes with lysosomes. However, secretory autophagy uses autophagy signaling to mediate the secretion of specific substances and regulate the tumor microenvironment (TME). Cytoplasmic substances are preferentially secreted rather than directed toward lysosomal degradation, involving various selective mechanisms. Moreover, substances released by secretory autophagy convey biological signals to the TME, inducing immune dysregulation and contributing to drug resistance. Therefore, elucidating the mechanisms underlying secretory autophagy is essential for improving clinical treatments. This review systematically summarizes current knowledge of secretory autophagy, from initiation to secretion, considering inter-tumor heterogeneity, explores its role across different tumor types. Furthermore, it proposes future research directions and highlights unresolved clinical challenges.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China.
| |
Collapse
|
5
|
Li Y, Yang Q, Li D, Li W, Men W. Exosomes: Key Messengers Mediating the Interaction Between Tumor Cells and CD8 + T Cells in the Tumor Microenvironment. Int J Nanomedicine 2025; 20:653-667. [PMID: 39835179 PMCID: PMC11745065 DOI: 10.2147/ijn.s502363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
In recent years, with an increasingly profound comprehension of the tumor microenvironment, it has been discovered that the constituent cells within the immune microenvironment, such as macrophages, CD4+T cells, and CD8+T cells, interact with tumor cells in manners conducive to tumorigenesis and progression. Exosomes play a pivotal role as essential mediators for intercellular material exchange and signal transmission in this context. Tumor cell-derived exosomes carrying cargo such as PD-L1 and ncRNAs engage with CD8+T cells to induce cytotoxic responses and facilitate immune evasion, thereby promoting tumor advancement. When combined with current immune checkpoint inhibitors like anti-PD-L1/PD-1 therapy, enhancing CD8+T cell function through exosomal pathways while monitoring and augmenting therapeutic effects can significantly improve efficacy. This review delineates the crucial role of exosomes derived from both tumor cells and CD8+T cells within the tumor microenvironment along with their impact mechanisms on both tumor cells and CD8+T cells. Furthermore, it summarizes the potential for clinical treatment in this realm when integrated with existing immunotherapy methods-particularly exploring the feasibility of clinical translation alongside engineering materials science techniques.
Collapse
Affiliation(s)
- Yilin Li
- Department of Thoracic Surgery, the First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| | - Qiwei Yang
- Department of Thoracic Surgery, the First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| | - Danni Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| | - Wenya Li
- Department of Thoracic Surgery, the First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| | - Wanfu Men
- Department of Thoracic Surgery, the First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| |
Collapse
|
6
|
Ibrahim FM, Saleh RO, Uinarni H, Bokov DO, Menon SV, Zarifovich KB, Misra N, Al-Hamdani MM, Husseen B, Jawad MA. Exosomal noncoding RNA (ncRNA) in breast cancer pathogenesis and therapy; two sides of the same coin. Exp Cell Res 2025; 444:114359. [PMID: 39608481 DOI: 10.1016/j.yexcr.2024.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Over the past few years, breast cancer has become the most prevalent type of cancer globally, with the primary cause of death from the disease being metastatic cancer. This has led to the development of early detection techniques, mainly using non-invasive biomarkers in a range of body fluids. Exosomes are unique extracellular vesicles (EVs) transmitting cellular signals over great distances via various cargo. They are readily apparent in physiological fluids due to release by breast cancer cells or breast cancer-tumor microenvironment (TME) cells. In light of this, numerous biological and functional facets of human tumours, such as breast cancer, are intimately associated with exosomal noncoding RNAs (ncRNAs), containing miRNAs (microRNAs), lncRNAs (long noncoding RNAs), and circRNAs (circular RNAs). Exosomal ncRNAs serve a critical role in various steps of breast cancer development, enabling the exchange of genetic information between cancer cells and other cells (e.g., immune cells), thus regulating tumour angiogenesis, growth, metastasis, immune responses and drug resistance. They interact with multiple regulatory complexes with dissimilar enzymatic actions, which, in turn, modify the chromatin sceneries, including nucleosome modifications, DNA methylation, and histone modifications. Herein, we look into the exosomes' underlying regulatory mechanisms in breast cancer. Furthermore, we inspect the existing understanding of the functions of exosomal miRNAs, lncRNAs, and circRNAs in breast cancer to authenticate their possible significance in identifying biomarkers, deciphering their role in immune escape and drug resistance, and finally, analyzing treatment practices.
Collapse
Affiliation(s)
- Fatma Magdi Ibrahim
- Community Health Nursing, RAK Medical and Health Sciences University, Dubai, United Arab Emirates; Geriatric Department, Mansoura University, Mansoura, Egypt.
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, the Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia; Radiology Department of Pantai Indah Kapuk Hospital Jakarta, Jakarta, Indonesia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation.
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | | | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun 248007, India.
| | | | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | | |
Collapse
|
7
|
Zihan R, Jingsi C, Lingwen D, Xin L, Yan Z. Exosomes in esophageal cancer: a promising frontier for liquid biopsy in diagnosis and therapeutic monitoring. Front Pharmacol 2024; 15:1459938. [PMID: 39741631 PMCID: PMC11685219 DOI: 10.3389/fphar.2024.1459938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Esophageal cancer is a common and lethal digestive system malignancy, and both treatment efficacy and patient survival rates face significant challenges. In recent years, exosomes have emerged as crucial mediators of intercellular communication, demonstrating tremendous clinical potential, particularly in the diagnosis, treatment, and prognostic evaluation of esophageal cancer. These exosomes not only serve as biomarkers for early diagnosis and prognosis but also modulate tumor growth, metastasis, and drug resistance by delivering bioactive molecules. Importantly, exosomes can act as carriers for esophageal cancer-related therapeutic agents, optimizing gene therapy strategies to enhance efficacy while reducing toxicity and side effects. Despite facing challenges in clinical applications such as purification, enrichment, and standardization of analytical methods, exosomes maintain broad prospects for application in esophageal cancer treatment, with the potential to significantly improve patient outcomes and quality of life. This review focuses on the innovative role of exosomes in the early diagnosis of esophageal cancer, exploring their application value and safety in disease monitoring and assessment of treatment response. Furthermore, this study outlines the challenges and limitations of transitioning exosome research from basic studies to clinical applications, as well as potential solutions and future research directions to address these obstacles.
Collapse
Affiliation(s)
- Ren Zihan
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Cao Jingsi
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ding Lingwen
- Department of Vaccination Clinic, Xiangyang Center for Disease Control and Prevention, Xiangyang, Hubei, China
| | - Liu Xin
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhang Yan
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Wang C, Zhou C, Wang D, Zhang YF, Lv HX, He H, Ren YQ, Wang J, Zhou FH. Proangiogenic potential of plasma exosomes from prostate cancer patients. Cell Signal 2024; 124:111398. [PMID: 39265728 DOI: 10.1016/j.cellsig.2024.111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/23/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Angiogenesis plays a pivotal role in the progression and metastasis of solid cancers, including prostate cancer (PCa). While small extracellular vesicles derived from PCa cell lines induce a proangiogenic phenotype in vascular endothelial cells, the contribution of plasma exosomes from patients with PCa to this process remains unclear. Here, we successfully extracted and characterized plasma exosomes. Notably, a ring of PKH67-labeled exosomes was observed around the HUVEC nucleus using fluorescence microscopy, indicating the uptake of exosomes by HUVEC. At the cellular level, PCa plasma exosomes enhanced angiogenesis, proliferation, invasion, and migration of HUVEC cells. Moreover, PCa plasma exosomes promoted angiogenesis and aortic sprouting. MicroRNAs are the most common genetic material in exosomes, and to identify miRNAs associated with the angiogenic response, we performed small RNA sequencing followed by RT-qPCR and bioinformatics analysis. These analyses revealed distinct miRNA profiles in plasma exosomes from patients with PCa compared to healthy individuals. Notably, hsa-miR-184 emerged as a potential regulator implicated in the proangiogenic effects of PCa plasma exosomes.
Collapse
Affiliation(s)
- Chao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China
| | - Chuan Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China
| | - Dong Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yun-Feng Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Hao-Xuan Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China
| | - Han He
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China
| | - Yong-Qi Ren
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jia Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Feng-Hai Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China; Department of Urology, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
9
|
Marjani AA, Nader ND, Aghanejad A. Exosomes as targeted diagnostic biomarkers: Recent studies and trends. Life Sci 2024; 354:122985. [PMID: 39151882 DOI: 10.1016/j.lfs.2024.122985] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Different categories of extracellular vesicles (EVs) are identified based on their origin and formation processes. Among these, exosomes (EXOs) originate from endosomal compartments merging with the plasma membrane, forming small lipid vesicles that transport a range of molecular cargo such as nucleic acids, proteins, and lipids. The composition of EXOs varies depending on their cellular source, encompassing various cell types, including neutrophils, dendritic cells, and even tumor cells. Remarkably, EXOs possess inherent stability, low immunogenicity, and compatibility, making them efficient nano vectors for drug delivery. Imaging techniques like bioluminescence, fluorescence, and nuclear imaging are crucial in non-invasively tracking EXOs within living organisms. This process requires the attachment of radionuclides to the EXO's structure without altering its essential characteristics. Real-time imaging of EXOs is vital for their clinical application, and recent advancements in labeling and tracking methodologies provide insights into biodistribution, functionality, and potential pathways for EXO-mediated drug delivery. This review presents updated progress in the diverse applications of EXOs in targeted imaging across various modalities, where they function as contrast agents facilitating tissue visualization and disease tracking. Consequently, EXOs emerge as promising entities in medical diagnostics and imaging.
Collapse
Affiliation(s)
- Aida Abbasi Marjani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Long J, Wang J, Xiao C, You F, Jiang Y, Li X. Intratumoral microbiota in colorectal cancer: focus on specific distribution and potential mechanisms. Cell Commun Signal 2024; 22:455. [PMID: 39327582 PMCID: PMC11426098 DOI: 10.1186/s12964-024-01831-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal malignant tumors globally, posing significant health risks and societal burdens. Recently, advancements in next-generation sequencing technology have identified CRC intratumoral microbiota, thereby opening up novel avenues for further research. This review synthesizes the current advancements in CRC intratumoral microbiota and their impact on CRC progression and discusses the disparities in the relative abundance and community composition of CRC intratumoral microbiota across various colorectal tumors based on their anatomical location and molecular subtypes, as well as the tumor stages, and spatial tumor distribution. Intratumoral microbiota predominantly influence CRC development by modulating colonic epithelial cells, tumor cells, and the tumor microenvironment. Mechanistically, they can cause DNA damage, apoptosis and epithelial-mesenchymal transition. The effects of different intratumoral microbiota on CRC have been shown to be two-fold. In the future, to address the limitations of existing studies, it is important to develop comprehensive experimental protocols and suitable in vitro models for elucidating more mechanisms of intratumoral microbiota on CRC, which will facilitate the clinical application of microbe-related therapeutic strategies in CRC and potentially other tumors.
Collapse
Affiliation(s)
- Jing Long
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Jiamei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Chong Xiao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
| | - Xueke Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
| |
Collapse
|
11
|
Galeone A, Annicchiarico A, Buccoliero C, Barile B, Luciani GB, Onorati F, Nicchia GP, Brunetti G. Diabetic Cardiomyopathy: Role of Cell Death, Exosomes, Fibrosis and Epicardial Adipose Tissue. Int J Mol Sci 2024; 25:9481. [PMID: 39273428 PMCID: PMC11395197 DOI: 10.3390/ijms25179481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents one of the typical complications associated with diabetes. It has been described as anomalies in heart function and structure, with consequent high morbidity and mortality. DCM development can be described by two stages; the first is characterized by left ventricular hypertrophy and diastolic dysfunction, and the second by heart failure (HF) with systolic dysfunction. The proposed mechanisms involve cardiac inflammation, advanced glycation end products (AGEs) and angiotensin II. Furthermore, different studies have focused their attention on cardiomyocyte death through the different mechanisms of programmed cell death, such as apoptosis, autophagy, necrosis, pyroptosis and ferroptosis. Exosome release, adipose epicardial tissue and aquaporins affect DCM development. This review will focus on the description of the mechanisms involved in DCM progression and development.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
12
|
Zhao G, Wang Y, Xing S, Jiang Y, Ding J, Cai Y, Ma P, Miao H, Fang Y, Jiang N, Cui D, Yu Y, Tang Q, Wang S, Li N. Exosome-based anticancer vaccines: From Bench to bedside. Cancer Lett 2024; 595:216989. [PMID: 38825162 DOI: 10.1016/j.canlet.2024.216989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Exosomes, a subset of extracellular vesicles, are released by all active cells and play a crucial role in intercellular communications. Exosomes could facilitate the transfer of various biologically active molecules, such as DNA, non-coding RNAs, and proteins, from donor to recipient cells, thereby participating in diverse biological and pathological processes. Besides, exosomes possess unique characteristics, including non-toxicity, low-immunogenicity, and stability within biological systems, rendering them highly advantageous for cancer drug development. Meanwhile, accumulating evidence suggests that exosomes originating from tumor cells and immune cells possess distinct composition profiles that play a direct role in anticancer immunotherapy. Of note, exosomes can transport their contents to specific cells, thereby exerting an impact on the phenotype and immune-regulatory functions of targeted cells. Therapeutic cancer vaccines, an emerging therapeutics of immunotherapy, could enhance antitumor immune responses by delivering a large number of tumor antigens, thereby augmenting the immune response against tumor cells. Therefore, the therapeutic rationale of cancer vaccines and exosome-based immunotherapy are almost similar to some extent, but some challenges have hindered their application in the clinical setting. Here, in this review, we first summarized the biogenesis, structure, compositions, and biological functions of exosomes. Then we described the roles of exosomes in cancer biology, particularly in tumor immunity. We also comprehensively reviewed current exosome-based anticancer vaccine development and we divided them into three types. Finally, we give some insights into clinical translation and clinical trial progress of exosome-based anticancer vaccines for future direction.
Collapse
Affiliation(s)
- Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuning Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shujun Xing
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yale Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiatong Ding
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanting Cai
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peiwen Ma
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Huilei Miao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dandan Cui
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue Yu
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qiyu Tang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
13
|
Annicchiarico A, Barile B, Buccoliero C, Nicchia GP, Brunetti G. Alternative therapeutic strategies in diabetes management. World J Diabetes 2024; 15:1142-1161. [PMID: 38983831 PMCID: PMC11229975 DOI: 10.4239/wjd.v15.i6.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetes is a heterogeneous metabolic disease characterized by elevated blood glucose levels resulting from the destruction or malfunction of pancreatic β cells, insulin resistance in peripheral tissues, or both, and results in a non-sufficient production of insulin. To adjust blood glucose levels, diabetic patients need exogenous insulin administration together with medical nutrition therapy and physical activity. With the aim of improving insulin availability in diabetic patients as well as ameliorating diabetes comorbidities, different strategies have been investigated. The first approaches included enhancing endogenous β cell activity or transplanting new islets. The protocol for this kind of intervention has recently been optimized, leading to standardized procedures. It is indicated for diabetic patients with severe hypoglycemia, complicated by impaired hypoglycemia awareness or exacerbated glycemic lability. Transplantation has been associated with improvement in all comorbidities associated with diabetes, quality of life, and survival. However, different trials are ongoing to further improve the beneficial effects of transplantation. Furthermore, to overcome some limitations associated with the availability of islets/pancreas, alternative therapeutic strategies are under evaluation, such as the use of mesenchymal stem cells (MSCs) or induced pluripotent stem cells for transplantation. The cotransplantation of MSCs with islets has been successful, thus providing protection against proinflammatory cytokines and hypoxia through different mechanisms, including exosome release. The use of induced pluripotent stem cells is recent and requires further investigation. The advantages of MSC implantation have also included the improvement of diabetes-related comorbidities, such as wound healing. Despite the number of advantages of the direct injection of MSCs, new strategies involving biomaterials and scaffolds have been developed to improve the efficacy of mesenchymal cell delivery with promising results. In conclusion, this paper offered an overview of new alternative strategies for diabetes management while highlighting some limitations that will need to be overcome by future approaches.
Collapse
Affiliation(s)
- Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| |
Collapse
|
14
|
Wu Y, Cao Y, Chen L, Lai X, Zhang S, Wang S. Role of Exosomes in Cancer and Aptamer-Modified Exosomes as a Promising Platform for Cancer Targeted Therapy. Biol Proced Online 2024; 26:15. [PMID: 38802766 PMCID: PMC11129508 DOI: 10.1186/s12575-024-00245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Exosomes are increasingly recognized as important mediators of intercellular communication in cancer biology. Exosomes can be derived from cancer cells as well as cellular components in tumor microenvironment. After secretion, the exosomes carrying a wide range of bioactive cargos can be ingested by local or distant recipient cells. The released cargos act through a variety of mechanisms to elicit multiple biological effects and impact most if not all hallmarks of cancer. Moreover, owing to their excellent biocompatibility and capability of being easily engineered or modified, exosomes are currently exploited as a promising platform for cancer targeted therapy. In this review, we first summarize the current knowledge of roles of exosomes in risk and etiology, initiation and progression of cancer, as well as their underlying molecular mechanisms. The aptamer-modified exosome as a promising platform for cancer targeted therapy is then briefly introduced. We also discuss the future directions for emerging roles of exosome in tumor biology and perspective of aptamer-modified exosomes in cancer therapy.
Collapse
Affiliation(s)
- Yating Wu
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Medical Oncology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Yue Cao
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Li Chen
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Xiaofeng Lai
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| | - Shuiliang Wang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| |
Collapse
|
15
|
Xu C, Xu P, Zhang J, He S, Hua T, Huang A. Exosomal noncoding RNAs in gynecological cancers: implications for therapy resistance and biomarkers. Front Oncol 2024; 14:1349474. [PMID: 38737906 PMCID: PMC11082286 DOI: 10.3389/fonc.2024.1349474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Gynecologic cancers, including ovarian cancer (OC), cervical cancer (CC), and endometrial cancer (EC), pose a serious threat to women's health and quality of life due to their high incidence and lethality. Therapeutic resistance in tumors refers to reduced sensitivity of tumor cells to therapeutic drugs or radiation, which compromises the efficacy of treatment or renders it ineffective. Therapeutic resistance significantly contributes to treatment failure in gynecologic tumors, although the specific molecular mechanisms remain unclear. Exosomes are nanoscale vesicles released and received by distinct kinds of cells. Exosomes contain proteins, lipids, and RNAs closely linked to their origins and functions. Recent studies have demonstrated that exosomal ncRNAs may be involved in intercellular communication and can modulate the progression of tumorigenesis, aggravation and metastasis, tumor microenvironment (TME), and drug resistance. Besides, exosomal ncRNAs also have the potential to become significant diagnostic and prognostic biomarkers in various of diseases. In this paper, we reviewed the biological roles and mechanisms of exosomal ncRNAs in the drug resistance of gynecologic tumors, as well as explored the potential of exosomal ncRNAs acting as the liquid biopsy molecular markers in gynecologic cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiwu Huang
- Department of Gynecology and Obstetrics , Hangzhou Lin'an Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Mishra A, Zehra S, Bharti PK, Mathur SR, Ranjan P, Batra A, Inampudi KK, Modi GP, Nikolajeff F, Kumar S. Spectroscopic insight into breast cancer: profiling small extracellular vesicles lipids via infrared spectroscopy for diagnostic precision. Sci Rep 2024; 14:9347. [PMID: 38654096 DOI: 10.1038/s41598-024-59863-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Breast cancer, a leading cause of female mortality due to delayed detection owing to asymptomatic nature and limited early diagnostic tools, was investigated using a multi-modal approach. Plasma-derived small EVs from breast cancer patients (BrCa, n = 74) and healthy controls (HC, n = 30) were analyzed. Small EVs (n = 104), isolated through chemical precipitation, underwent characterization via transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Validation involved antibody-based tests (TSG101, CD9, CD81, CD63). Infrared spectra of small EVs were obtained, revealing significant differences in lipid acyl chains, particularly in the C-H stretching of CH3. The study focused on the lipid region (3050-2900 cm-1), identifying peaks (3015 cm-1, 2960 cm-1, 2929 cm-1) as distinctive lipid characteristics. Spectroscopic lipid-to-lipid ratios [(I3015/I2929), (I2960/I2929)] emerged as prominent breast cancer markers. Exploration of protein, nucleic acid, and carbohydrate ratios indicated variations in alpha helices, asymmetric C-H stretching vibrations, and C-O stretching at 1033 cm-1. Principal component analysis (PCA) successfully differentiated BrCa and HC small EVs, and heatmap analysis and receiver operating characteristic (ROC) curve evaluations underscored the discriminatory power of lipid ratios. Notably, (I2960/I2929) exhibited 100% sensitivity and specificity, highlighting its potential as a robust BrCa sEV marker for breast cancer detection.
Collapse
Affiliation(s)
- Abhay Mishra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sadaqa Zehra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prahalad Kumar Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Piyush Ranjan
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Atul Batra
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Krishna K Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Lulea University of Technology, 97187, Luleå, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Health, Education, and Technology, Lulea University of Technology, 97187, Luleå, Sweden.
| |
Collapse
|
17
|
Cao L, Ouyang H. Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via exosomes in gastrointestinal tumors. Front Oncol 2024; 14:1374742. [PMID: 38463229 PMCID: PMC10920350 DOI: 10.3389/fonc.2024.1374742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Gastrointestinal (GI) tumors are a significant global health threat, with high rates of morbidity and mortality. Exosomes contain various biologically active molecules like nucleic acids, proteins, and lipids and can serve as messengers for intercellular communication. They play critical roles in the exchange of information between tumor cells and the tumor microenvironment (TME). The TME consists of mesenchymal cells and components of the extracellular matrix (ECM), with fibroblasts being the most abundant cell type in the tumor mesenchyme. Cancer-associated fibroblasts (CAFs) are derived from normal fibroblasts and mesenchymal stem cells that are activated in the TME. CAFs can secrete exosomes to modulate cell proliferation, invasion, migration, drug resistance, and other biological processes in tumors. Additionally, tumor cells can manipulate the function and behavior of fibroblasts through direct cell-cell interactions. This review provides a summary of the intercellular crosstalk between GI tumor cells and CAFs through exosomes, along with potential underlying mechanisms.
Collapse
Affiliation(s)
- Longyang Cao
- Department of Gastroenterology, The First Peoples' Hospital of Hangzhou Linan District, Hangzhou, China
| | - Hong Ouyang
- Department of Gastroenterology, The First Peoples' Hospital of Hangzhou Linan District, Hangzhou, China
| |
Collapse
|
18
|
Hussen BM, Abdullah ST, Abdullah SR, Younis YM, Hidayat HJ, Rasul MF, Mohamadtahr S. Exosomal non-coding RNAs: Blueprint in colorectal cancer metastasis and therapeutic targets. Noncoding RNA Res 2023; 8:615-632. [PMID: 37767111 PMCID: PMC10520679 DOI: 10.1016/j.ncrna.2023.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is ranked as the world's third-most prevalent cancer, and metastatic CRC considerably increases cancer-related fatalities globally. A number of complex mechanisms that are strictly controlled at the molecular level are involved in metastasis, which is the primary reason for death in people with CRC. Recently, it has become clear that exosomes, which are small extracellular vesicles released by non-tumorous and tumorigenic cells, play a critical role as communication mediators among tumor microenvironment (TME). To facilitate communication between the TME and cancer cells, non-coding RNAs (ncRNAs) play a crucial role and are recognized as potent regulators of gene expression and cellular processes, such as metastasis and drug resistance. NcRNAs are now recognized as potent regulators of gene expression and many hallmarks of cancer, including metastasis. Exosomal ncRNAs, like miRNAs, circRNAs, and lncRNAs, have been demonstrated to influence a number of cellular mechanisms that contribute to CRC metastasis. However, the molecular mechanisms that link exosomal ncRNAs with CRC metastasis are not well understood. This review highlights the essential roles that exosomal ncRNAs play in the progression of CRC metastatic disease and explores the therapeutic choices that are open to patients who have CRC metastases. However, exosomal ncRNA treatment strategy development is still in its early phases; consequently, additional investigation is required to improve delivery methods and find novel therapeutic targets as well as confirm the effectiveness and safety of these therapies in preclinical and clinical contexts.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Yousif Mohammed Younis
- Department of Nursing, College of Nursing, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Sayran Mohamadtahr
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| |
Collapse
|
19
|
Han M, Zhang M, Qi M, Zhou Y, Li F, Fang S. Regulatory mechanism and promising clinical application of exosomal circular RNA in gastric cancer. Front Oncol 2023; 13:1236679. [PMID: 38094607 PMCID: PMC10718620 DOI: 10.3389/fonc.2023.1236679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide and the leading cause of cancer-related deaths. Exosomes are nanoscale extracellular vesicles secreted by a variety of cells and play an important role in cellular communication and epigenetics by transporting bioactive substances in the tumor microenvironment (TME). Circular RNA (circRNA) is a type of non-coding RNA (ncRNA) with a specific structure, which is widely enriched in exosomes and is involved in various pathophysiological processes mediated by exosomes. Exosomal circRNAs play a critical role in the development of GC by regulating epithelial-mesenchymal transition (EMT), angiogenesis, proliferation, invasion, migration, and metastasis of GC. Given the biological characteristics of exosomal circRNAs, they have more significant diagnostic sensitivity and specificity in the clinic and may become biomarkers for GC diagnosis and prognosis. In this review, we briefly describe the biogenesis of exosomes and circRNAs and their biological functions, comprehensively summarize the mechanisms of exosomal circRNAs in the development of GC and chemotherapy resistance, and finally, we discuss the potential clinical application value and challenges of exosomal circRNAs in GC.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengquan Fang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Lin S, Zhou S, Han X, Yang Y, Zhou H, Chang X, Zhou Y, Ding Y, Lin H, Hu Q. Single-cell analysis reveals exosome-associated biomarkers for prognostic prediction and immunotherapy in lung adenocarcinoma. Aging (Albany NY) 2023; 15:11508-11531. [PMID: 37878007 PMCID: PMC10637798 DOI: 10.18632/aging.205140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Exosomes play a crucial role in tumor initiation and progression, yet the precise involvement of exosome-related genes (ERGs) in lung adenocarcinoma (LUAD) remains unclear. METHODS We conducted a comprehensive investigation of ERGs within the tumor microenvironment (TME) of LUAD using single-cell RNA sequencing (scRNA-seq) analysis. Multiple scoring methods were employed to assess exosome activity (EA). Differences in cell communication were examined between high and low EA groups, utilizing the "CellChat" R package. Subsequently, we leveraged multiple bulk RNA-seq datasets to develop and validate exosome-associated signatures (EAS), enabling a multifaceted exploration of prognosis and immunotherapy outcomes between high- and low-risk groups. RESULTS In the LUAD TME, epithelial cells demonstrated the highest EA, with even more elevated levels observed in advanced LUAD epithelial cells. The high-EA group exhibited enhanced intercellular interactions. EAS were established through the analysis of multiple bulk RNA-seq datasets. Patients in the high-risk group exhibited poorer overall survival (OS), reduced immune infiltration, and decreased expression of immune checkpoint genes. Finally, we experimentally validated the high expression of SEC61G in LUAD cell lines and demonstrated that knockdown of SEC61G reduced the proliferative capacity of LUAD cells using colony formation assays. CONCLUSION The integration of single-cell and bulk RNA-seq analyses culminated in the development of the profound and significant EAS, which imparts invaluable insights for the clinical diagnosis and therapeutic management of LUAD patients.
Collapse
Affiliation(s)
- Shengrong Lin
- Department of Thoracic Surgery, Dongtai People’s Hospital, Dongtai 224299, China
| | - Shengjie Zhou
- Department of Thoracic Surgery, Dongtai People’s Hospital, Dongtai 224299, China
| | - Xin Han
- Department of Thoracic Surgery, Dongtai People’s Hospital, Dongtai 224299, China
| | - Yang Yang
- Department of Thoracic Surgery, Dongtai People’s Hospital, Dongtai 224299, China
| | - Hao Zhou
- Department of Thoracic Surgery, Dongtai People’s Hospital, Dongtai 224299, China
| | - Xuejiao Chang
- Department of Thoracic Surgery, Dongtai People’s Hospital, Dongtai 224299, China
| | - Yefeng Zhou
- Department of Thoracic Surgery, Dongtai People’s Hospital, Dongtai 224299, China
| | - Yuqin Ding
- Department of Thoracic Surgery, Dongtai People’s Hospital, Dongtai 224299, China
| | - Huihui Lin
- Department of Hematology, Dongtai People’s Hospital, Dongtai 224299, China
| | - Qing Hu
- Department of Thoracic Surgery, Dongtai People’s Hospital, Dongtai 224299, China
| |
Collapse
|