1
|
Cellini BR, Edachola SV, Faw TD, Cigliola V. Blueprints for healing: central nervous system regeneration in zebrafish and neonatal mice. BMC Biol 2025; 23:115. [PMID: 40307837 PMCID: PMC12044871 DOI: 10.1186/s12915-025-02203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
In adult mammals, including humans, neurons, and axons in the brain and spinal cord are inherently incapable of regenerating after injury. Studies of animals with innate capacity for regeneration are providing valuable insights into the mechanisms driving tissue healing. The aim of this review is to summarize recent data on regeneration mechanisms in the brain and spinal cord of zebrafish and neonatal mice. We infer that elucidating these mechanisms and understanding how and why they are lost in adult mammals will contribute to the development of strategies to promote central nervous system regeneration.
Collapse
Affiliation(s)
- Brianna R Cellini
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA
| | | | - Timothy D Faw
- Department of Orthopaedic Surgery, Duke University, Durham, NC, 27710, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA
| | - Valentina Cigliola
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
2
|
Basaran Emengen E, Pirhan D, Yazir Y, Duruksu G, Rencber SF, Ozturk A, Kılıc KC. Nintedanib and ranibizumab attenuates pathological neovascularization in a rat model of oxygen induced retinopathy. Exp Eye Res 2025; 253:110285. [PMID: 39952427 DOI: 10.1016/j.exer.2025.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Affiliation(s)
| | - Dilara Pirhan
- Kocaeli University Faculty of Medicine, Department of Ophthalmology, Kocaeli, Turkey
| | - Yusufhan Yazir
- Kocaeli University Faculty of Medicine, Department of Histology and Embryology, Kocaeli, Turkey; Kocaeli University Institute of Health Sciences, Department of Stem Cell, Kocaeli, Turkey; Kocaeli University, Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli, Turkey
| | - Gokhan Duruksu
- Kocaeli University Institute of Health Sciences, Department of Stem Cell, Kocaeli, Turkey; Kocaeli University, Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli, Turkey
| | - Selenay Furat Rencber
- Kocaeli University Faculty of Medicine, Department of Histology and Embryology, Kocaeli, Turkey; Kocaeli University Institute of Health Sciences, Department of Stem Cell, Kocaeli, Turkey; Kocaeli University, Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli, Turkey
| | - Ahmet Ozturk
- Kocaeli University Faculty of Medicine, Department of Histology and Embryology, Kocaeli, Turkey; Kocaeli University Institute of Health Sciences, Department of Stem Cell, Kocaeli, Turkey; Kocaeli University, Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli, Turkey
| | - Kamil Can Kılıc
- Kocaeli University Faculty of Medicine, Department of Histology and Embryology, Kocaeli, Turkey; Kocaeli University Institute of Health Sciences, Department of Stem Cell, Kocaeli, Turkey; Kocaeli University, Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli, Turkey
| |
Collapse
|
3
|
Smail MA, Lenz KM. Developmental functions of microglia: Impact of psychosocial and physiological early life stress. Neuropharmacology 2024; 258:110084. [PMID: 39025401 DOI: 10.1016/j.neuropharm.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Microglia play numerous important roles in brain development. From early embryonic stages through adolescence, these immune cells influence neuronal genesis and maturation, guide connectivity, and shape brain circuits. They also interact with other glial cells and structures, influencing the brain's supportive microenvironment. While this central role makes microglia essential, it means that early life perturbations to microglia can have widespread effects on brain development, potentially resulting in long-lasting behavioral impairments. Here, we will focus on the effects of early life psychosocial versus physiological stressors in rodent models. Psychosocial stress refers to perceived threats that lead to stress axes activation, including prenatal stress, or chronic postnatal stress, including maternal separation and resource scarcity. Physiological stress refers to physical threats, including maternal immune activation, postnatal infection, and traumatic brain injury. Differing sources of early life stress have varied impacts on microglia, and these effects are moderated by factors such as developmental age, brain region, and sex. Overall, these stressors appear to either 1) upregulate basal microglia numbers and activity throughout the lifespan, while possibly blunting their responsivity to subsequent stressors, or 2) shift the developmental curve of microglia, resulting in differential timing and function, impacting the critical periods they govern. Either could contribute to behavioral dysfunctions that occur after the resolution of early life stress. Exploring how different stressors impact microglia, as well as how multiple stressors interact to alter microglia's developmental functions, could deepen our understanding of how early life stress changes the brain's developmental trajectory. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Psychology, Ohio State University, Columbus, OH, USA.
| | - Kathryn M Lenz
- Department of Psychology, Ohio State University, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Logan-Wesley AL, Gorse KM, Lafrenaye AD. Microglial process convergence onto injured axonal swellings, a human postmortem brain tissue study. Sci Rep 2024; 14:21369. [PMID: 39266604 PMCID: PMC11392954 DOI: 10.1038/s41598-024-71312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Traumatic brain injury (TBI) affects millions globally, with a majority of TBI cases being classified as mild, in which diffuse pathologies prevail. Two of the pathological hallmarks of TBI are diffuse axonal injury (DAI) and microglial activation. While progress has been made investigating the breadth of TBI-induced axonal injury and microglial changes in rodents, the neuroinflammatory progression and interaction between microglia and injured axons in humans is less well understood. Our group previously investigated microglial process convergence (MPC), in which processes of non-phagocytic microglia directly contact injured proximal axonal swellings, in rats and micropigs acutely following TBI. These studies demonstrated that MPC occurred on injured axons in the micropig, but not in the rat, following diffuse TBI. While it has been shown that microglia co-exist and interact with injured axons in humans post-TBI, the occurrence of MPC has not been quantitatively measured in the human brain. Therefore, in the current study we sought to validate our pig findings in human postmortem tissue. We investigated MPC onto injured axonal swellings and intact myelinated fibers in cases from individuals with confirmed DAI and control human brain tissue using multiplex immunofluorescent histochemistry. We found an increase in MPC onto injured axonal swellings, consistent with our previous findings in micropigs, indicating that MPC is a clinically relevant phenomenon that warrants further investigation.
Collapse
Affiliation(s)
| | - Karen M Gorse
- Virginia Commonwealth University, BOX 980709, Richmond, VA, 23298, USA
| | | |
Collapse
|
5
|
Logan-Wesley AL, Gorse KM, Lafrenaye AD. Microglial process convergence onto injured axonal swellings, a human postmortem brain tissue study. RESEARCH SQUARE 2024:rs.3.rs-4713316. [PMID: 39149456 PMCID: PMC11326398 DOI: 10.21203/rs.3.rs-4713316/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Traumatic brain injury (TBI) affects millions globally, with a majority of TBI cases being classified as mild, in which diffuse pathologies prevail. Two of the pathological hallmarks of TBI are diffuse axonal injury and microglial activation. While progress has been made investigating the breadth of TBI-induced axonal injury and microglial changes in rodents, the neuroinflammatory progression and interaction between microglia and injured axons following brain injury in humans is less well understood. Our group previously investigated microglial process convergence (MPC), in which processes of non-phagocytic microglia directly contact injured proximal axonal segments, in rats and micropigs acutely following TBI. These studies demonstrated that MPC occurred on injured axons in the micropig, but not in the rat, following diffuse TBI. While it has been shown that microglia co-exist and interact with injured axons in humans post-TBI, the occurrence of MPC has not been quantitatively measured in the human brain. Therefore, in the current study we sought to validate our pig findings in human postmortem tissue. We investigated MPC onto injured axonal swellings and intact myelinated fibers in cases from individuals that sustained a TBI and control human brain tissue using multiplex immunofluorescent histochemistry. We found an increase in MPC onto injured axonal swellings, consistent with our previous findings in micropigs, indicating that MPC is a clinically relevant phenomenon that warrants further investigation.
Collapse
|
6
|
Jacquens A, Csaba Z, Soleimanzad H, Bokobza C, Delmotte PR, Userovici C, Boussemart P, Chhor V, Bouvier D, van de Looij Y, Faivre V, Diao S, Lemoine S, Blugeon C, Schwendimann L, Young-Ten P, Naffaa V, Laprevote O, Tanter M, Dournaud P, Van Steenwinckel J, Degos V, Gressens P. Deleterious effect of sustained neuroinflammation in pediatric traumatic brain injury. Brain Behav Immun 2024; 120:99-116. [PMID: 38705494 DOI: 10.1016/j.bbi.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
INTRODUCTION Despite improved management of traumatic brain injury (TBI), it still leads to lifelong sequelae and disability, particularly in children. Chronic neuroinflammation (the so-called tertiary phase), in particular, microglia/macrophage and astrocyte reactivity, is among the main mechanisms suspected of playing a role in the generation of lesions associated with TBI. The role of acute neuroinflammation is now well understood, but its persistent effect and impact on the brain, particularly during development, are not. Here, we investigated the long-term effects of pediatric TBI on the brain in a mouse model. METHODS Pediatric TBI was induced in mice on postnatal day (P) 7 by weight-drop trauma. The time course of neuroinflammation and myelination was examined in the TBI mice. They were also assessed by magnetic resonance, functional ultrasound, and behavioral tests at P45. RESULTS TBI induced robust neuroinflammation, characterized by acute microglia/macrophage and astrocyte reactivity. The long-term consequences of pediatric TBI studied on P45 involved localized scarring astrogliosis, persistent microgliosis associated with a specific transcriptomic signature, and a long-lasting myelination defect consisting of the loss of myelinated axons, a decreased level of myelin binding protein, and severe thinning of the corpus callosum. These results were confirmed by reduced fractional anisotropy, measured by diffusion tensor imaging, and altered inter- and intra-hemispheric connectivity, measured by functional ultrasound imaging. In addition, adolescent mice with pediatric TBI showed persistent social interaction deficits and signs of anxiety and depressive behaviors. CONCLUSIONS We show that pediatric TBI induces tertiary neuroinflammatory processes associated with white matter lesions and altered behavior. These results support our model as a model for preclinical studies for tertiary lesions following TBI.
Collapse
Affiliation(s)
- Alice Jacquens
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France; Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| | - Zsolt Csaba
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Haleh Soleimanzad
- Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, 75005 Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | | | | | | | - Vibol Chhor
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Damien Bouvier
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Yohan van de Looij
- Université de Genève, Service Développement et Croissance, Département de Pédiatrie, Faculté de Médecine, 1211 Genève, Suisse; Centre d'Imagerie Biomédicale, Section Technologie d'Imagerie Animale, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Suisse
| | - Valérie Faivre
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Siaho Diao
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Sophie Lemoine
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Université PSL, Paris, France
| | - Corinne Blugeon
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Université PSL, Paris, France
| | | | | | - Vanessa Naffaa
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Olivier Laprevote
- Université de Paris, CNRS, CiTCoM, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 75015 Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, 75005 Paris, France
| | - Pascal Dournaud
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | | | - Vincent Degos
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France; Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
7
|
Banderwal R, Kadian M, Garg S, Kumar A. 'Comprehensive review of emerging drug targets in traumatic brain injury (TBI): challenges and future scope. Inflammopharmacology 2024:10.1007/s10787-024-01524-w. [PMID: 39023681 DOI: 10.1007/s10787-024-01524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/12/2024] [Indexed: 07/20/2024]
Abstract
Traumatic brain injury (TBI) is a complex brain problem that causes significant morbidity and mortality among people of all age groups. The complex pathophysiology, varied symptoms, and inadequate treatment further precipitate the problem. Further, TBI produces several psychiatric problems and other related complications in post-TBI survival patients, which are often treated symptomatically or inadequately. Several approaches, including neuroprotective agents targeting several pathways of oxidative stress, neuroinflammation, cytokines, immune system GABA, glutamatergic, microglia, and astrocytes, are being tried by researchers to develop effective treatments or magic bullets to manage the condition effectively. The problem of TBI is therefore treated as a challenge among pharmaceutical scientists or researchers to develop drugs for the effective management of this problem. The goal of the present comprehensive review is to provide an overview of the several pharmacological targets, processes, and cellular pathways that researchers are focusing on, along with an update on their current state.
Collapse
Affiliation(s)
- Rittu Banderwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Monika Kadian
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Sukant Garg
- Department of General Pathology, Dr HS Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, 160014, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Ziaka M, Exadaktylos A. Gut-derived immune cells and the gut-lung axis in ARDS. Crit Care 2024; 28:220. [PMID: 38965622 PMCID: PMC11225303 DOI: 10.1186/s13054-024-05006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The gut serves as a vital immunological organ orchestrating immune responses and influencing distant mucosal sites, notably the respiratory mucosa. It is increasingly recognized as a central driver of critical illnesses, with intestinal hyperpermeability facilitating bacterial translocation, systemic inflammation, and organ damage. The "gut-lung" axis emerges as a pivotal pathway, where gut-derived injurious factors trigger acute lung injury (ALI) through the systemic circulation. Direct and indirect effects of gut microbiota significantly impact immune responses. Dysbiosis, particularly intestinal dysbiosis, termed as an imbalance of microbial species and a reduction in microbial diversity within certain bodily microbiomes, influences adaptive immune responses, including differentiating T regulatory cells (Tregs) and T helper 17 (Th17) cells, which are critical in various lung inflammatory conditions. Additionally, gut and bone marrow immune cells impact pulmonary immune activity, underscoring the complex gut-lung interplay. Moreover, lung microbiota alterations are implicated in diverse gut pathologies, affecting local and systemic immune landscapes. Notably, lung dysbiosis can reciprocally influence gut microbiota composition, indicating bidirectional gut-lung communication. In this review, we investigate the pathophysiology of ALI/acute respiratory distress syndrome (ARDS), elucidating the role of immune cells in the gut-lung axis based on recent experimental and clinical research. This exploration aims to enhance understanding of ALI/ARDS pathogenesis and to underscore the significance of gut-lung interactions in respiratory diseases.
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic of Geriatric Medicine, Center of Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
He H, Zhang X, He H, Xiao C, Xu G, Li L, Liu YE, Yang C, Zhou T, You Z, Zhang J. Priming of hippocampal microglia by IFN-γ/STAT1 pathway impairs social memory in mice. Int Immunopharmacol 2024; 134:112191. [PMID: 38759369 DOI: 10.1016/j.intimp.2024.112191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024]
Abstract
Social behavior is inextricably linked to the immune system. Although IFN-γ is known to be involved in social behavior, yet whether and how it encodes social memory remains unclear. In the current study, we injected with IFN-γ into the lateral ventricle of male C57BL/6J mice, and three-chamber social test was used to examine the effects of IFN-γ on their social preference and social memory. The morphology of microglia in the hippocampus, prelimbic cortex and amygdala was examined using immunohistochemistry, and the phenotype of microglia were examined using immunohistochemistry and enzyme-linked immunosorbent assays. The IFN-γ-injected mice were treated with lipopolysaccharide, and effects of IFN-γ on behavior and microglial responses were evaluated. STAT1 pathway and microglia-neuron interactions were examined in vivo or in vitro using western blotting and immunohistochemistry. Finally, we use STAT1 inhibitor or minocycline to evaluated the role of STAT1 in mediating the microglial priming and effects of primed microglia in IFN-γ-induced social dysfunction. We demonstrated that 500 ng of IFN-γ injection results in significant decrease in social index and social novelty recognition index, and induces microglial priming in hippocampus, characterized by enlarged cell bodies, shortened branches, increased expression of CD68, CD86, CD74, CD11b, CD11c, CD47, IL-33, IL-1β, IL-6 and iNOS, and decreased expression of MCR1, Arg-1, IGF-1 and BDNF. This microglia subpopulation is more sensitive to LPS challenge, which characterized by more significant morphological changes and inflammatory responses, as well as induced increased sickness behaviors in mice. IFN-γ upregulated pSTAT1 and STAT1 and promoted the nuclear translocation of STAT1 in the hippocampal microglia and in the primary microglia. Giving minocycline or STAT1 inhibitor fludarabin blocked the priming of hippocampal microglia induced by IFN-γ, ameliorated the dysfunction in hippocampal microglia-neuron interactions and synapse pruning by microglia, thereby improving social memory deficits in IFN-γ injected mice. IFN-γ initiates STAT1 pathway to induce priming of hippocampal microglia, thereby disrupts hippocampal microglia-neuron interactions and neural circuit link to social memory. Blocking STAT1 pathway or inhibiting microglial priming may be strategies to reduce the effects of IFN-γ on social behavior.
Collapse
Affiliation(s)
- Haili He
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xiaomei Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui He
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chenghong Xiao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Gaojie Xu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Liangyuan Li
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yu-E Liu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chengyan Yang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Tao Zhou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Zili You
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jinqiang Zhang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
10
|
Van Steenwinckel J, Bokobza C, Laforge M, Shearer IK, Miron VE, Rua R, Matta SM, Hill‐Yardin EL, Fleiss B, Gressens P. Key roles of glial cells in the encephalopathy of prematurity. Glia 2024; 72:475-503. [PMID: 37909340 PMCID: PMC10952406 DOI: 10.1002/glia.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
Across the globe, approximately one in 10 babies are born preterm, that is, before 37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants develop brain injury, encephalopathy of prematurity (EoP), that substantially increases their risk for developing lifelong defects in motor skills and domains of learning, memory, emotional regulation, and cognition. We are still severely limited in our abilities to prevent or predict preterm birth. No longer just the "support cells," we now clearly understand that during development glia are key for building a healthy brain. Glial dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendrocyte injury. Our knowledge of glial biology during development is exponentially expanding but hasn't developed sufficiently for development of effective neuroregenerative therapies. This review summarizes the current state of knowledge for the roles of glia in infants with EoP and its animal models, and a description of known glial-cell interactions in the context of EoP, such as the roles for border-associated macrophages. The field of perinatal medicine is relatively small but has worked passionately to improve our understanding of the etiology of EoP coupled with detailed mechanistic studies of pre-clinical and human cohorts. A primary finding from this review is that expanding our collaborations with computational biologists, working together to understand the complexity of glial subtypes, glial maturation, and the impacts of EoP in the short and long term will be key to the design of therapies that improve outcomes.
Collapse
Affiliation(s)
| | - Cindy Bokobza
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
| | | | - Isabelle K. Shearer
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Veronique E. Miron
- Barlo Multiple Sclerosis CentreSt. Michael's HospitalTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- College of Medicine and Veterinary MedicineThe Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Rejane Rua
- CNRS, INSERM, Centre d'Immunologie de Marseille‐Luminy (CIML), Turing Centre for Living SystemsAix‐Marseille UniversityMarseilleFrance
| | - Samantha M. Matta
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Elisa L. Hill‐Yardin
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Bobbi Fleiss
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | | |
Collapse
|
11
|
Kazis D, Chatzikonstantinou S, Ciobica A, Kamal FZ, Burlui V, Calin G, Mavroudis I. Epidemiology, Risk Factors, and Biomarkers of Post-Traumatic Epilepsy: A Comprehensive Overview. Biomedicines 2024; 12:410. [PMID: 38398011 PMCID: PMC10886732 DOI: 10.3390/biomedicines12020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
This paper presents an in-depth exploration of Post-Traumatic Epilepsy (PTE), a complex neurological disorder following traumatic brain injury (TBI), characterized by recurrent, unprovoked seizures. With TBI being a global health concern, understanding PTE is crucial for effective diagnosis, management, and prognosis. This study aims to provide a comprehensive overview of the epidemiology, risk factors, and emerging biomarkers of PTE, thereby informing clinical practice and guiding future research. The epidemiological aspect of the study reveals PTE as a significant contributor to acquired epilepsies, with varying incidence influenced by injury severity, age, and intracranial pathologies. The paper delves into the multifactorial nature of PTE risk factors, encompassing clinical, demographic, and genetic elements. Key insights include the association of injury severity, intracranial hemorrhages, and early seizures with increased PTE risk, and the roles of age, gender, and genetic predispositions. Advancements in neuroimaging, electroencephalography, and molecular biology are presented, highlighting their roles in identifying potential PTE biomarkers. These biomarkers, ranging from radiological signs to electroencephalography EEG patterns and molecular indicators, hold promise for enhancing PTE pathogenesis understanding, early diagnosis, and therapeutic guidance. The paper also discusses the critical roles of astrocytes and microglia in PTE, emphasizing the significance of neuroinflammation in PTE development. The insights from this review suggest potential therapeutic targets in neuroinflammation pathways. In conclusion, this paper synthesizes current knowledge in the field, emphasizing the need for continued research and a multidisciplinary approach to effectively manage PTE. Future research directions include longitudinal studies for a better understanding of TBI and PTE outcomes, and the development of targeted interventions based on individualized risk profiles. This research contributes significantly to the broader understanding of epilepsy and TBI.
Collapse
Affiliation(s)
- Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.)
| | - Symela Chatzikonstantinou
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, 700506 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech 40000, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, Settat 26000, Morocco
| | - Vasile Burlui
- Department of Biomaterials, Faculty of Dental Medicine, Apollonia University, 700511 Iasi, Romania;
| | - Gabriela Calin
- Department of Biomaterials, Faculty of Dental Medicine, Apollonia University, 700511 Iasi, Romania;
| | - Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, Leeds LS2 9JT, UK
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| |
Collapse
|
12
|
Leonard J, Ladner L, Harris EA, de Jager C, Theus MH. The Neuroimmune Interface: Age-Related Responses to Traumatic Brain Injury. ADVANCES IN NEUROBIOLOGY 2024; 42:241-262. [PMID: 39432046 DOI: 10.1007/978-3-031-69832-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Traumatic Brain Injury (TBI) is a significant public health issue, with diverse consequences across the lifespan. This comprehensive review explores the complex interplay between age-related responses and the immune system following TBI. TBI exhibits distinct effects in pediatric, adult, and elderly populations, with profound implications for recovery and long-term outcomes. The immune system, as a key player in the post-TBI inflammatory cascade, exerts age-dependent influences on inflammation, neuroinflammation, and tissue repair. We examine the evolving understanding of age-related neuroinflammatory responses, cytokine profiles, and the role of immune cells, such as microglia and T cells, in the context of TBI. Furthermore, we evaluate the therapeutic implications of age-specific immunomodulation strategies toward mitigating TBI-associated neuropathology. This review consolidates the current knowledge on age-related immune responses in TBI, shedding light on potential avenues for tailored therapeutic interventions across the age spectrum. Understanding these nuanced responses is crucial for optimizing patient care and enhancing recovery outcomes in the aftermath of traumatic brain injury.
Collapse
Affiliation(s)
- John Leonard
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Liliana Ladner
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Elizabeth A Harris
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Caroline de Jager
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Michelle H Theus
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA.
| |
Collapse
|
13
|
Wang R, Li T, Diao S, Chen C. Inhibition of the proteoglycan receptor PTPσ promotes functional recovery on a rodent model of preterm hypoxic-ischemic brain injury. Exp Neurol 2023; 370:114564. [PMID: 37806512 DOI: 10.1016/j.expneurol.2023.114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Preterm white matter injury (WMI) is the most common brain injury in preterm infants and is associated with long-term adverse neurodevelopmental outcomes. Protein tyrosine phosphatase sigma (PTPσ) was discovered as chondroitin sulfate proteoglycan (CSPG) receptor that played roles in inhibiting myelin regeneration in spinal injury, experimental autoimmune encephalomyelitis, and stroke models. However, the role of PTPσ in perinatal WMI is not well understood. AIMS This study examines the effect of PTPσ inhibition on neurodevelopmental outcomes, myelination, and neuroinflammation in a mouse model of preterm WMI. MATERIALS AND METHODS Modified Rice-Vannucci model was performed on postnatal day 3 (P3) C57BL/6 mice. Intracellular Sigma Peptide (ISP) or vehicle was administrated subcutaneously one hour after injury for an additional 14 consecutive days. A battery of behavioral tests was performed to evaluate the short- and long-term effects of ISP on neurobehavioral deficit. Real time qPCR, western blot, immunofluorescence, and transmission electron microscopy were performed to assess white matter development. qPCR and flow cytometry were performed to evaluate neuroinflammation and microglia/macrophage phenotype. RESULTS The expression of PTPσ was increased after preterm WMI. ISP improved short-term neurological outcomes and ameliorated long-term motor and cognitive function of mice after preterm WMI. ISP promoted oligodendrocyte differentiation, maturation, myelination, and improved microstructure of myelin after preterm WMI. Furthermore, ISP administration fostered a beneficial inflammatory response in the acute phase after preterm WMI, inhibited the infiltration of peripheral macrophages, and promoted anti-inflammatory phenotype of microglia/macrophages. CONCLUSION PTPσ inhibition can ameliorate neurofunctional deficit, promote white matter development, modulate neuroinflammation and microglia/macrophage phenotype after preterm WMI. Thus, ISP administration may be a potential therapeutic strategy to improve neurodevelopmental outcomes of perinatal WMI.
Collapse
Affiliation(s)
- Ran Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China; Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tiantian Li
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Sihao Diao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China.
| |
Collapse
|
14
|
Bergold PJ, Furhang R, Lawless S. Treating Traumatic Brain Injury with Minocycline. Neurotherapeutics 2023; 20:1546-1564. [PMID: 37721647 PMCID: PMC10684850 DOI: 10.1007/s13311-023-01426-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Traumatic brain injury (TBI) results in both rapid and delayed brain damage. The speed, complexity, and persistence of TBI present large obstacles to drug development. Preclinical studies from multiple laboratories have tested the FDA-approved anti-microbial drug minocycline (MINO) to treat traumatic brain injury. At concentrations greater than needed for anti-microbial action, MINO readily inhibits microglial activation. MINO has additional pleotropic effects including anti-inflammatory, anti-oxidant, and anti-apoptotic activities. MINO inhibits multiple proteins that promote brain injury including metalloproteases, caspases, calpain, and polyADP-ribose-polymerase-1. At these elevated doses, MINO is well tolerated and enters the brain even when the blood-brain barrier is intact. Most preclinical studies with a first dose of MINO at less than 1 h after injury have shown improved multiple outcomes after TBI. Fewer studies with more delayed dosing have yielded similar results. A small number of clinical trials for TBI have established the safety of MINO and suggested some drug efficacy. Studies are also ongoing that either improve MINO pharmacology or combine MINO with other drugs to increase its therapeutic efficacy against TBI. This review builds upon a previous, recent review by some of the authors (Lawless and Bergold, Neural Regen Res 17:2589-92, 2022). The present review includes the additional preclinical studies examining the efficacy of minocycline in preclinical TBI models. This review also includes recommendations for a clinical trial to test MINO to treat TBI.
Collapse
Affiliation(s)
- Peter J Bergold
- Graduate Programs in Neural and Behavioral Sciences, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA.
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA.
| | - Rachel Furhang
- Graduate Programs in Neural and Behavioral Sciences, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA
| | - Siobhán Lawless
- Graduate Programs in Neural and Behavioral Sciences, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA
| |
Collapse
|
15
|
Panchenko PE, Hippauf L, Konsman JP, Badaut J. Do astrocytes act as immune cells after pediatric TBI? Neurobiol Dis 2023; 185:106231. [PMID: 37468048 PMCID: PMC10530000 DOI: 10.1016/j.nbd.2023.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Astrocytes are in contact with the vasculature, neurons, oligodendrocytes and microglia, forming a local network with various functions critical for brain homeostasis. One of the primary responders to brain injury are astrocytes as they detect neuronal and vascular damage, change their phenotype with morphological, proteomic and transcriptomic transformations for an adaptive response. The role of astrocytic responses in brain dysfunction is not fully elucidated in adult, and even less described in the developing brain. Children are vulnerable to traumatic brain injury (TBI), which represents a leading cause of death and disability in the pediatric population. Pediatric brain trauma, even with mild severity, can lead to long-term health complications, such as cognitive impairments, emotional disorders and social dysfunction later in life. To date, the underlying pathophysiology is still not fully understood. In this review, we focus on the astrocytic response in pediatric TBI and propose a potential immune role of the astrocyte in response to trauma. We discuss the contribution of astrocytes in the local inflammatory cascades and secretion of various immunomodulatory factors involved in the recruitment of local microglial cells and peripheral immune cells through cerebral blood vessels. Taken together, we propose that early changes in the astrocytic phenotype can alter normal development of the brain, with long-term consequences on neurological outcomes, as described in preclinical models and patients.
Collapse
Affiliation(s)
| | - Lea Hippauf
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| | | | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
16
|
Wang R, Zhou G, Wang J, Ma B, Wang P, Gao G, Sun S, Zhang Z. Reducing CSF complications by a recycled Hadad's flap combined with autologous mucosa in secondary endoscope transsphenoidal surgery. Front Oncol 2023; 13:1224804. [PMID: 37601654 PMCID: PMC10433748 DOI: 10.3389/fonc.2023.1224804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Background Transsphenoidal secondary operations are a minority but not a rare occurrence. How to viably prevent cerebral fluid (CSF)-related complications and confine surgery-caused injury in secondary surgery as minimally as possible is a huge challenge. This article shares our solution of recycling a prior Hadad-Bassagasteguy flap (HBF) along with a using small piece of free autologous mucosa to reconstruct the skull base. Methods Of 69 patients, fitted criteria were assigned into 2 different groups: a recycled HBF incorporated with an autologous free mucosa and a recycled HBF incorporated with an artificial dura to rebuild the skull base in secondary transsphenoidal surgery. The postoperative morbidities of pseudomeningocele, CSF leakage and meningitis were recorded and analyzed. Results A recycled HBF incorporated with an autologous mucosa is capable of reducing CSF complications compared to that of the matched group, particularly decreasing the morbidity of meningitis in secondary transsphenoidal surgery. Diabetes mellitus, craniopharyngioma, chordoma and the utilization of artificial dura were independent risk factors for CSF complications in secondary transsphenoidal surgery through univariate and multivariate logistic regression. In addition, diabetes mellitus and artificial dura are more likely to induce CSF leakage and meningitis. Patients suffering from craniopharyngioma are more susceptible to meningitis. Chordoma indiscriminately increased the risk of each CSF complication. Conclusion A recycled HBF incorporated with an autologous mucosa is reliable for reconstructing the skull base in secondary transsphenoidal surgery, especially for patients simultaneously suffering from diabetes mellitus and central skull base tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhiguo Zhang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
17
|
Pan M, Li X, Xu G, Tian X, Li Y, Fang W. Tripartite Motif Protein Family in Central Nervous System Diseases. Cell Mol Neurobiol 2023; 43:2567-2589. [PMID: 36988770 PMCID: PMC11410135 DOI: 10.1007/s10571-023-01337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
Tripartite motif (TRIM) protein superfamily is a group of E3 ubiquitin ligases characterized by the conserved RING domain, the B-box domain, and the coiled-coil domain (RBCC). It is widely involved in various physiological and pathological processes, such as intracellular signal transduction, cell cycle regulation, oncogenesis, and innate immune response. Central nervous system (CNS) diseases are composed of encephalopathy and spinal cord diseases, which have a high disability and mortality rate. Patients are often unable to take care of themselves and their life quality can be seriously declined. Initially, the function research of TRIM proteins mainly focused on cancer. However, in recent years, accumulating attention is paid to the roles they play in CNS diseases. In this review, we integrate the reported roles of TRIM proteins in the pathological process of CNS diseases and related signaling pathways, hoping to provide theoretical bases for further research in treating CNS diseases targeting TRIM proteins. TRIM proteins participated in CNS diseases. TRIM protein family is characterized by a highly conserved RBCC domain, referring to the RING domain, the B-box domain, and the coiled-coil domain. Recent research has discovered the relations between TRIM proteins and various CNS diseases, especially Alzheimer's disease, Parkinson's disease, and ischemic stroke.
Collapse
Affiliation(s)
- Mengtian Pan
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Guangchen Xu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xinjuan Tian
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
18
|
Oey NE, Tan PT, Pande SD. Young Age, Liver Dysfunction, and Neurostimulant Use as Independent Risk Factors for Post-Traumatic Seizures: A Multiracial Single-Center Experience. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2301. [PMID: 36767668 PMCID: PMC9915627 DOI: 10.3390/ijerph20032301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
We aimed to determine the potentially modifiable risk factors that are predictive of post-traumatic brain injury seizures in relation to the severity of initial injury, neurosurgical interventions, neurostimulant use, and comorbidities. This retrospective study was conducted on traumatic brain injury (TBI) patients admitted to a single center from March 2008 to October 2017. We recruited 151 patients from a multiracial background with TBI, of which the data from 141 patients were analyzed, as 10 were excluded due to incomplete follow-up records or a past history of seizures. Of the remaining 141 patients, 33 (24.4%) patients developed seizures during long-term follow up post-TBI. Young age, presence of cerebral contusion, Indian race, low Glasgow Coma Scale (GCS) scores on admission, and use of neurostimulant medications were associated with increased risk of seizures. In conclusion, due to increased risk of seizures, younger TBI patients, as well as patients with low GCS on admission, cerebral contusions on brain imaging, and those who received neurostimulants or neurosurgical interventions should be monitored for post-TBI seizures. While it is possible that these findings may be explained by the differing mechanisms of injury in younger vs. older patients, the finding that patients on neurostimulants had an increased risk of seizures will need to be investigated in future studies.
Collapse
Affiliation(s)
| | - Pei Ting Tan
- Department of Rehabilitation Medicine, Changi General Hospital, Singapore 529889, Singapore
| | | |
Collapse
|
19
|
Qin J, Chen X, Wang R, Tian Z, Li Y, Shu S. Reactive oxygen species-responsive HET0016 prodrug-loaded liposomes attenuate neuroinflammation and improve neurological deficit in a rat model of juvenile traumatic brain injury. Front Neurosci 2023; 17:1153349. [PMID: 37034179 PMCID: PMC10073507 DOI: 10.3389/fnins.2023.1153349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The arachidonic acid pathway metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to ischemia/reperfusion brain injury. Inhibition of 20-HETE formation can protect the developing brain from global ischemia. In previous studies, we have found that treatment with the 20-HETE synthesis inhibitor N-hydroxy-N-4-butyl-2-methylphenylformamidine (HET0016) can protect the immature brain from traumatic brain injury (TBI), but its hydrophobic nature limits its full potential. We designed a reactive oxygen species-responsive HET0016 prodrug, which consists of a thioketal link between HET0016 and stearyl alcohol (HET-TK-SA), and used the nanoprodrug strategy to successfully synthesize liposomes HET0016 prodrug liposomes (HPLs) to facilitate the application of HET0016 in protection from TBI. HPLs demonstrated spherical shape, size of about 127.8 nm, a zeta potential of -28.8 mv, a narrow particle size distribution and good stability. Male rats at postnatal day 16-17 underwent controlled cortical impact (CCI) followed by intravenous injection with vehicle or HET0016 (1 mg/kg, 2 h post-injury, once/day for 3 days). The results of the in vivo demonstrated that HPLs has good biosafety and can pass through the blood-brain barrier. Not only that compared with HET0016, HPLs better-inhibited inflammation and improved neuronal degeneration, which further led to lesion volume reduction, upgraded behavioral task performance, and ameliorated the degree of TBI impairment. Our results demonstrated HPLs could be a new strategy for juvenile TBI therapy.
Collapse
Affiliation(s)
- Jun Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zedan Tian
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Shiyu Shu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Shiyu Shu,
| |
Collapse
|
20
|
Aghdash SN, Foroughi G. Chemical Kindling as an Experimental Model to Assess the Conventional Drugs in the Treatment of Post-traumatic Epilepsy. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1417-1428. [PMID: 36443981 DOI: 10.2174/1871527322666221128155813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality today, which will surpass many infectious diseases in the coming years/decades. Posttraumatic epilepsy (PTE) is one of the most common debilitating consequences of TBI. PTE is a secondary, acquired epilepsy that causes recurrent, spontaneous seizures more than a week after TBI. The extent of head injury in individuals who develop PTE is unknown; however, trauma is thought to account for 20% of symptomatic epilepsy worldwide. Understanding the mechanisms of epilepsy following TBI is crucial for the discovery of new anticonvulsant drugs for the treatment of PTE, as well as for improving the quality of life of patients with PTE. OBJECTIVE This review article explains the rationale for the usage of a chemical model to access new treatments for post-traumatic epilepsy. RESULTS There are multiple methods to control and manage PTE. The essential and available remedy for the management of epilepsy is the use of antiepileptic drugs. Antiepileptic drugs (AEDs) decrease the frequency of seizures without affecting the disease's causality. Antiepileptic drugs are administrated for the prevention and treatment of PTE; however, 30% of epilepsy patients are drug-resistant, and AED side effects are significant in PTE patients. There are different types of animal models, such as the liquid percussion model, intracortical ferric chloride injection, and cortical subincision model, to study PTE and neurophysiological mechanisms underlying the development of epilepsy after head injury. However, these animal models do not easily mimic the pathological events occurring in epilepsy. Therefore, animal models of PTE are an inappropriate tool for screening new and putatively effective AEDs. Chemical kindling is the most common animal model used to study epilepsy. There is a strong similarity between the kindling model and different types of human epilepsy. CONCLUSION Today, researchers use experimental animal models to evaluate new anticonvulsant drugs. The chemical kindling models, such as pentylenetetrazol, bicuculline, and picrotoxin-induced seizures, are important experimental models to analyze the impact of putative antiepileptic drugs.
Collapse
Affiliation(s)
- Simin Namvar Aghdash
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Golsa Foroughi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
21
|
Wang B, Shi W, Zhang Y, Wang Y, Yang C, Huang T, Tian QL, Qu Y, Wang JL. Duraplasty with autologous nuchal ligament fascia to reduce postoperative complications in pediatric patients undergoing neoplasia resection with a suboccipital midline approach. J Neurosurg Pediatr 2022; 30:538-546. [PMID: 35986733 DOI: 10.3171/2022.7.peds2265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors sought to explore the safety and efficacy of an autologous nuchal ligament for dural repair in pediatric patients undergoing tumor resection through a suboccipital midline approach. METHODS Pediatric patients diagnosed with posterior fossa neoplasia who underwent surgery through a suboccipital midline approach were retrospectively reviewed. The patients were divided into artificial graft and autograft groups according to whether artificial duraplasty material or autologous nuchal ligament was used to repair the dura. Postoperative complications were reviewed and analyzed, including CSF leak, pseudomeningocele, and meningitis, during hospitalization and follow-up. Univariate and multivariate logistic regression analyses were used to investigate the relationship between duraplasty material and postoperative complications, as well as other risk factors for postoperative complications. Furthermore, multinomial logistic regression analysis was used to clarify which postoperative complications the autologous nuchal ligament tended to reduce. RESULTS This retrospective study included 66 pediatric patients who underwent tumor resection through a suboccipital midline approach. The clinical baseline characteristics were comparable between the two groups. The results showed that the autograft group had significantly fewer postoperative complications, especially pseudomeningocele, compared with the artificial graft group. Moreover, the time required to repair the dura in the autograft group was significantly less than that in the artificial graft group. Further results revealed that the duraplasty material, ependymoma, preoperative severe hydrocephalus requiring an external ventricular drain (EVD), and postoperative hydrocephalus exacerbation were independent risk factors for postoperative complications. In particular, the autologous fascia of the nuchal ligament tended to reduce pseudomeningocele more than CSF leak and meningitis. However, compared with pseudomeningocele and CSF leak, both ependymoma and postoperative hydrocephalus exacerbation were more likely to increase the occurrence of meningitis. In contrast, preoperative severe hydrocephalus requiring EVD led to increased rates of postoperative complications. CONCLUSIONS For pediatric patients with intracranial tumors who need to undergo resection through a suboccipital midline approach, dural repair using the nuchal ligament is safe, cost-effective, and time saving and significantly reduces postoperative complications.
Collapse
Affiliation(s)
- Bao Wang
- 1Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province
| | - Wei Shi
- 2Department of Neurosurgery, PLA 960th Hospital, JiNan, ShanDong Province; and
| | - Yu Zhang
- 1Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province
| | - Yue Wang
- 3Department of Health Statistics, School of Public Health, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chen Yang
- 1Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province
| | - Tao Huang
- 1Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province
| | - Qi-Long Tian
- 1Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province
| | - Yan Qu
- 1Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province
| | - Ju-Lei Wang
- 1Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province
| |
Collapse
|
22
|
Jacquens A, Needham EJ, Zanier ER, Degos V, Gressens P, Menon D. Neuro-Inflammation Modulation and Post-Traumatic Brain Injury Lesions: From Bench to Bed-Side. Int J Mol Sci 2022; 23:11193. [PMID: 36232495 PMCID: PMC9570205 DOI: 10.3390/ijms231911193] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Head trauma is the most common cause of disability in young adults. Known as a silent epidemic, it can cause a mosaic of symptoms, whether neurological (sensory-motor deficits), psychiatric (depressive and anxiety symptoms), or somatic (vertigo, tinnitus, phosphenes). Furthermore, cranial trauma (CT) in children presents several particularities in terms of epidemiology, mechanism, and physiopathology-notably linked to the attack of an immature organ. As in adults, head trauma in children can have lifelong repercussions and can cause social and family isolation, difficulties at school, and, later, socio-professional adversity. Improving management of the pre-hospital and rehabilitation course of these patients reduces secondary morbidity and mortality, but often not without long-term disability. One hypothesized contributor to this process is chronic neuroinflammation, which could accompany primary lesions and facilitate their development into tertiary lesions. Neuroinflammation is a complex process involving different actors such as glial cells (astrocytes, microglia, oligodendrocytes), the permeability of the blood-brain barrier, excitotoxicity, production of oxygen derivatives, cytokine release, tissue damage, and neuronal death. Several studies have investigated the effect of various treatments on the neuroinflammatory response in traumatic brain injury in vitro and in animal and human models. The aim of this review is to examine the various anti-inflammatory therapies that have been implemented.
Collapse
Affiliation(s)
- Alice Jacquens
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Edward J. Needham
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| | - Elisa R. Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Vincent Degos
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Pierre Gressens
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - David Menon
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
23
|
Peripheral immune cells and perinatal brain injury: a double-edged sword? Pediatr Res 2022; 91:392-403. [PMID: 34750522 PMCID: PMC8816729 DOI: 10.1038/s41390-021-01818-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023]
Abstract
Perinatal brain injury is the leading cause of neurological mortality and morbidity in childhood ranging from motor and cognitive impairment to behavioural and neuropsychiatric disorders. Various noxious stimuli, including perinatal inflammation, chronic and acute hypoxia, hyperoxia, stress and drug exposure contribute to the pathogenesis. Among a variety of pathological phenomena, the unique developing immune system plays an important role in the understanding of mechanisms of injury to the immature brain. Neuroinflammation following a perinatal insult largely contributes to evolution of damage to resident brain cells, but may also be beneficial for repair activities. The present review will focus on the role of peripheral immune cells and discuss processes involved in neuroinflammation under two frequent perinatal conditions, systemic infection/inflammation associated with encephalopathy of prematurity (EoP) and hypoxia/ischaemia in the context of neonatal encephalopathy (NE) and stroke at term. Different immune cell subsets in perinatal brain injury including their infiltration routes will be reviewed and critical aspects such as sex differences and maturational stage will be discussed. Interactions with existing regenerative therapies such as stem cells and also potentials to develop novel immunomodulatory targets are considered. IMPACT: Comprehensive summary of current knowledge on the role of different immune cell subsets in perinatal brain injury including discussion of critical aspects to be considered for development of immunomodulatory therapies.
Collapse
|
24
|
Dervan A, Franchi A, Almeida-Gonzalez FR, Dowling JK, Kwakyi OB, McCoy CE, O’Brien FJ, Hibbitts A. Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics 2021; 13:2161. [PMID: 34959446 PMCID: PMC8706646 DOI: 10.3390/pharmaceutics13122161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Injury to the peripheral or central nervous systems often results in extensive loss of motor and sensory function that can greatly diminish quality of life. In both cases, macrophage infiltration into the injury site plays an integral role in the host tissue inflammatory response. In particular, the temporally related transition of macrophage phenotype between the M1/M2 inflammatory/repair states is critical for successful tissue repair. In recent years, biomaterial implants have emerged as a novel approach to bridge lesion sites and provide a growth-inductive environment for regenerating axons. This has more recently seen these two areas of research increasingly intersecting in the creation of 'immune-modulatory' biomaterials. These synthetic or naturally derived materials are fabricated to drive macrophages towards a pro-repair phenotype. This review considers the macrophage-mediated inflammatory events that occur following nervous tissue injury and outlines the latest developments in biomaterial-based strategies to influence macrophage phenotype and enhance repair.
Collapse
Affiliation(s)
- Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Antonio Franchi
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Francisco R. Almeida-Gonzalez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Ohemaa B. Kwakyi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| |
Collapse
|
25
|
Seitz M, Köster C, Dzietko M, Sabir H, Serdar M, Felderhoff-Müser U, Bendix I, Herz J. Hypothermia modulates myeloid cell polarization in neonatal hypoxic-ischemic brain injury. J Neuroinflammation 2021; 18:266. [PMID: 34772426 PMCID: PMC8590301 DOI: 10.1186/s12974-021-02314-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Background Neonatal encephalopathy due to hypoxia–ischemia (HI) is a leading cause of death and disability in term newborns. Therapeutic hypothermia (HT) is the only recommended therapy. However, 30% still suffer from neurological deficits. Inflammation is a major hallmark of HI pathophysiology with myeloid cells being key players, participating either in progression or in resolution of injury-induced inflammation. In the present study, we investigated the impact of HT on the temporal and spatial dynamics of microglia/macrophage polarization after neonatal HI in newborn mice. Methods Nine-day-old C57BL/6 mice were exposed to HI through occlusion of the right common carotid artery followed by 1 h hypoxia. Immediately after HI, animals were cooled for 4 h or kept at physiological body core temperature. Analyses were performed at 1, 3 and 7 days post HI. Brain injury, neuronal cell loss, apoptosis and microglia activation were assessed by immunohistochemistry. A broad set of typical genes associated with classical (M1) and alternative (M2) myeloid cell activation was analyzed by real time PCR in ex vivo isolated CD11b+ microglia/macrophages. Purity and composition of isolated cells was determined by flow cytometry. Results Immediate HT significantly reduced HI-induced brain injury and neuronal loss 7 days post HI, whereas only mild non-significant protection from HI-induced apoptosis and neuronal loss were observed 1 and 3 days after HI. Microglia activation, i.e., Iba-1 immunoreactivity peaked 3 days after HI and was not modulated by HT. However, ex vivo isolated CD11b+ cells revealed a strong upregulation of the majority of M1 but also M2 marker genes at day 1, which was significantly reduced by HT and rapidly declined at day 3. HI induced a significant increase in the frequency of peripheral macrophages in sorted CD11b+ cells at day 1, which deteriorated until day 7 and was significantly decreased by HT. Conclusion Our data demonstrate that HT-induced neuroprotection is preceded by acute suppression of HI-induced upregulation of inflammatory genes in myeloid cells and decreased infiltration of peripheral macrophages, both representing potential important effector mechanisms of HT. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02314-9.
Collapse
Affiliation(s)
- Marina Seitz
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Köster
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mark Dzietko
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany.,German Centre for Neurodegenerative Diseases, Bonn, Germany
| | - Meray Serdar
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany. .,Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Josephine Herz
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany. .,Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
26
|
Traumatic Brain Injury: An Age-Dependent View of Post-Traumatic Neuroinflammation and Its Treatment. Pharmaceutics 2021; 13:pharmaceutics13101624. [PMID: 34683918 PMCID: PMC8537402 DOI: 10.3390/pharmaceutics13101624] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability all over the world. TBI leads to (1) an inflammatory response, (2) white matter injuries and (3) neurodegenerative pathologies in the long term. In humans, TBI occurs most often in children and adolescents or in the elderly, and it is well known that immune responses and the neuroregenerative capacities of the brain, among other factors, vary over a lifetime. Thus, age-at-injury can influence the consequences of TBI. Furthermore, age-at-injury also influences the pharmacological effects of drugs. However, the post-TBI inflammatory, neuronal and functional consequences have been mostly studied in experimental young adult animal models. The specificity and the mechanisms underlying the consequences of TBI and pharmacological responses are poorly understood in extreme ages. In this review, we detail the variations of these age-dependent inflammatory responses and consequences after TBI, from an experimental point of view. We investigate the evolution of microglial, astrocyte and other immune cells responses, and the consequences in terms of neuronal death and functional deficits in neonates, juvenile, adolescent and aged male animals, following a single TBI. We also describe the pharmacological responses to anti-inflammatory or neuroprotective agents, highlighting the need for an age-specific approach to the development of therapies of TBI.
Collapse
|
27
|
Delahaye-Duriez A, Dufour A, Bokobza C, Gressens P, Van Steenwinckel J. Targeting Microglial Disturbances to Protect the Brain From Neurodevelopmental Disorders Associated With Prematurity. J Neuropathol Exp Neurol 2021; 80:634-648. [PMID: 34363661 DOI: 10.1093/jnen/nlab049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microglial activation during critical phases of brain development can result in short- and long-term consequences for neurological and psychiatric health. Several studies in humans and rodents have shown that microglial activation, leading to a transition from the homeostatic state toward a proinflammatory phenotype, has adverse effects on the developing brain and neurodevelopmental disorders. Targeting proinflammatory microglia may be an effective strategy for protecting the brain and attenuating neurodevelopmental disorders induced by inflammation. In this review we focus on the role of inflammation and the activation of immature microglia (pre-microglia) soon after birth in prematurity-associated neurodevelopmental disorders, and the specific features of pre-microglia during development. We also highlight the relevance of immunomodulatory strategies for regulating activated microglia in a rodent model of perinatal brain injury. An original neuroprotective approach involving a nanoparticle-based therapy and targeting microglia, with the aim of improving myelination and protecting the developing brain, is also addressed.
Collapse
Affiliation(s)
- Andrée Delahaye-Duriez
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France.,UFR SMBH, Université Sorbonne Paris Nord, Bobigny, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Jean Verdier, Service d'Histologie-Embryologie-Cytogénétique, Bondy, France
| | - Adrien Dufour
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | - Cindy Bokobza
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | - Pierre Gressens
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | | |
Collapse
|
28
|
Serpa RO, Ferguson L, Larson C, Bailard J, Cooke S, Greco T, Prins ML. Pathophysiology of Pediatric Traumatic Brain Injury. Front Neurol 2021; 12:696510. [PMID: 34335452 PMCID: PMC8319243 DOI: 10.3389/fneur.2021.696510] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
The national incidence of traumatic brain injury (TBI) exceeds that of any other disease in the pediatric population. In the United States the Centers for Disease Control and Prevention (CDC) reports 697,347 annual TBIs in children ages 0–19 that result in emergency room visits, hospitalization or deaths. There is a bimodal distribution within the pediatric TBI population, with peaks in both toddlers and adolescents. Preclinical TBI research provides evidence for age differences in acute pathophysiology that likely contribute to long-term outcome differences between age groups. This review will examine the timecourse of acute pathophysiological processes during cerebral maturation, including calcium accumulation, glucose metabolism and cerebral blood flow. Consequences of pediatric TBI are complicated by the ongoing maturational changes allowing for substantial plasticity and windows of vulnerabilities. This review will also examine the timecourse of later outcomes after mild, repeat mild and more severe TBI to establish developmental windows of susceptibility and altered maturational trajectories. Research progress for pediatric TBI is critically important to reveal age-associated mechanisms and to determine knowledge gaps for future studies.
Collapse
Affiliation(s)
- Rebecka O Serpa
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lindsay Ferguson
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cooper Larson
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julie Bailard
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samantha Cooke
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tiffany Greco
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mayumi L Prins
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
29
|
Sun L, Shan W, Yang H, Liu R, Wu J, Wang Q. The Role of Neuroinflammation in Post-traumatic Epilepsy. Front Neurol 2021; 12:646152. [PMID: 34122298 PMCID: PMC8194282 DOI: 10.3389/fneur.2021.646152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the consequences after traumatic brain injury (TBI), which increases the morbidity and mortality of survivors. About 20% of patients with TBI will develop PTE, and at least one-third of them are resistant to conventional antiepileptic drugs (AEDs). Therefore, it is of utmost importance to explore the mechanisms underlying PTE from a new perspective. More recently, neuroinflammation has been proposed to play a significant role in epileptogenesis. This review focuses particularly on glial cells activation, peripheral leukocytes infiltration, inflammatory cytokines release and chronic neuroinflammation occurrence post-TBI. Although the immune response to TBI appears to be primarily pro-epileptogenic, further research is needed to clarify the causal relationships. A better understanding of how neuroinflammation contributes to the development of PTE is of vital importance. Novel prevention and treatment strategies based on the neuroinflammatory mechanisms underlying epileptogenesis are evidently needed. Search Strategy Search MeSH Terms in pubmed: "["Epilepsy"(Mesh)] AND "Brain Injuries, Traumatic"[Mesh]". Published in last 30 years. 160 results were founded. Full text available:145 results. Record screened manually related to Neuroinflammation and Post-traumatic epilepsy. Then finally 123 records were included.
Collapse
Affiliation(s)
- Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Wei Shan
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Huajun Yang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
30
|
Microglia-Mediated Neurodegeneration in Perinatal Brain Injuries. Biomolecules 2021; 11:biom11010099. [PMID: 33451166 PMCID: PMC7828679 DOI: 10.3390/biom11010099] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Perinatal brain injuries, including encephalopathy related to fetal growth restriction, encephalopathy of prematurity, neonatal encephalopathy of the term neonate, and neonatal stroke, are a major cause of neurodevelopmental disorders. They trigger cellular and molecular cascades that lead in many cases to permanent motor, cognitive, and/or behavioral deficits. Damage includes neuronal degeneration, selective loss of subclasses of interneurons, blocked maturation of oligodendrocyte progenitor cells leading to dysmyelination, axonopathy and very likely synaptopathy, leading to impaired connectivity. The nature and severity of changes vary according to the type and severity of insult and maturation stage of the brain. Microglial activation has been demonstrated almost ubiquitously in perinatal brain injuries and these responses are key cell orchestrators of brain pathology but also attempts at repair. These divergent roles are facilitated by a diverse suite of transcriptional profiles and through a complex dialogue with other brain cell types. Adding to the complexity of understanding microglia and how to modulate them to protect the brain is that these cells have their own developmental stages, enabling them to be key participants in brain building. Of note, not only do microglia help build the brain and respond to brain injury, but they are a key cell in the transduction of systemic inflammation into neuroinflammation. Systemic inflammatory exposure is a key risk factor for poor neurodevelopmental outcomes in preterm born infants. Based on these observations, microglia appear as a key cell target for neuroprotection in perinatal brain injuries. Numerous strategies have been developed experimentally to modulate microglia and attenuate brain injury based on these strong supporting data and we will summarize these.
Collapse
|
31
|
Weber B, Lackner I, Braun CK, Kalbitz M, Huber-Lang M, Pressmar J. Laboratory Markers in the Management of Pediatric Polytrauma: Current Role and Areas of Future Research. Front Pediatr 2021; 9:622753. [PMID: 33816396 PMCID: PMC8010656 DOI: 10.3389/fped.2021.622753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Severe trauma is the most common cause of mortality in children and is associated with a high socioeconomic burden. The most frequently injured organs in children are the head and thorax, followed by the extremities and by abdominal injuries. The efficient and early assessment and management of these injuries is essential to improve patients' outcome. Physical examination as well as imaging techniques like ultrasound, X-ray and computer tomography are crucial for a valid early diagnosis. Furthermore, laboratory analyses constitute additional helpful tools for the detection and monitoring of pediatric injuries. Specific inflammatory markers correlate with post-traumatic complications, including the development of multiple organ failure. Other laboratory parameters, including lactate concentration, coagulation parameters and markers of organ injury, represent further clinical tools to identify trauma-induced disorders. In this review, we outline and evaluate specific biomarkers for inflammation, acid-base balance, blood coagulation and organ damage following pediatric polytrauma. The early use of relevant laboratory markers may assist decision making on imaging tools, thus contributing to minimize radiation-induced long-term consequences, while improving the outcome of children with multiple trauma.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Jochen Pressmar
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| |
Collapse
|
32
|
Kaminski N, Köster C, Mouloud Y, Börger V, Felderhoff-Müser U, Bendix I, Giebel B, Herz J. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Reduce Neuroinflammation, Promote Neural Cell Proliferation and Improve Oligodendrocyte Maturation in Neonatal Hypoxic-Ischemic Brain Injury. Front Cell Neurosci 2020; 14:601176. [PMID: 33362471 PMCID: PMC7758466 DOI: 10.3389/fncel.2020.601176] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Neonatal encephalopathy caused by hypoxia-ischemia (HI) is a major cause of childhood mortality and disability. Stem cell-based regenerative therapies seem promising to prevent long-term neurological deficits. Our previous work in neonatal HI revealed an unexpected interaction between mesenchymal stem/stromal cells (MSCs) and the brains' microenvironment leading to an altered therapeutic efficiency. MSCs are supposed to mediate most of their therapeutic effects in a paracrine mode via extracellular vesicles (EVs), which might be an alternative to cell therapy. In the present study, we investigated the impact of MSC-EVs on neonatal HI-induced brain injury. Methods: Nine-day-old C57BL/6 mice were exposed to HI through ligation of the right common carotid artery followed by 1 h hypoxia (10% oxygen). MSC-EVs were injected intraperitoneally 1, 3, and 5 days after HI. One week after HI, brain injury was evaluated by regional neuropathological scoring, atrophy measurements and immunohistochemistry to assess effects on neuronal, oligodendrocyte and vessel densities, proliferation, oligodendrocyte maturation, myelination, astro-, and microglia activation. Immunohistochemistry analyses were complemented by mRNA expression analyses for a broad set of M1/M2- and A1/A2-associated molecules and neural growth factors. Results: While total neuropathological scores and tissue atrophy were not changed, MSC-EVs significantly protected from HI-induced striatal tissue loss and decreased micro- and astroglia activation. MSC-EVs lead to a significant downregulation of the pro-inflammatory cytokine TNFa, accompanied by a significant upregulation of the M2 marker YM-1 and the anti-inflammatory cytokine TGFb. MSC-EVs significantly decreased astrocytic expression of the A1 marker C3, concomitant with an increased expression of neural growth factors (i.e., BDNF, VEGF, and EGF). These alterations were associated with an increased neuronal and vessel density, coinciding with a significant increase of proliferating cells in the neurogenic sub-ventricular zone juxtaposed to the striatum. MSC-EV-mediated neuroprotection went along with a significant improvement of oligodendrocyte maturation and myelination. Conclusion: The present study demonstrates that MSC-EVs mediate anti-inflammatory effects, promote regenerative responses and improve key developmental processes in the injured neonatal brain. The present results suggest different cellular target mechanisms of MSC-EVs, preventing secondary HI-induced brain injury. MSC-EV treatment may be a promising alternative to risk-associated cell therapies in neonatal brain injury.
Collapse
Affiliation(s)
- Nicole Kaminski
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Köster
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yanis Mouloud
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Verena Börger
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Josephine Herz
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
33
|
Tsui CT, MacGillivray SR, Weber SM, McAllister L, Churchward MA, Dennison CR, Todd KG. Applying a novel 3D hydrogel cell culture to investigate activation of microglia due to rotational kinematics associated with mild traumatic brain injury. J Mech Behav Biomed Mater 2020; 114:104176. [PMID: 33184015 DOI: 10.1016/j.jmbbm.2020.104176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/25/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Many investigations on mild traumatic brain injury (mTBI) aim to further understand how cells in the brain react to the mechanical forces associated with the injury. While it is known that rapid head rotation is a mechanism contributing to mTBI, establishing definitive thresholds for head rotation has proved challenging. One way to advance determining mechanisms and thresholds for injury is through in vitro models. Here, an apparatus has been designed that is capable of delivering rotational forces to three-dimensional (3D) hydrogel cell cultures. Using an in vitro model, we test the hypothesis that rotational kinematics can activate microglia suspended in a 3-dimensional mixed glia environment (absent neurons). The impact apparatus was able to deliver peak angular velocities of approximately 45 rad/s, a magnitude for angular velocity that in select literature is associated with diffuse brain injury. However, no measurable glial cell reactivity was observed in response to the rotational kinematics through any of the chosen metrics (nitric oxide, pro-inflammatory cytokine release and proportion of amoeboid activated microglia). The results generated from this study suggest that rotation of the glia alone did not cause activation - in future work we will investigate the effect of neuronal contributions in activating glia.
Collapse
Affiliation(s)
- Christopher T Tsui
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada.
| | - Samantha R MacGillivray
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Savannah M Weber
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Lowell McAllister
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Matthew A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Christopher R Dennison
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Kathryn G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada.
| |
Collapse
|
34
|
Csaba Z, Vitalis T, Charriaut-Marlangue C, Margaill I, Coqueran B, Leger PL, Parente I, Jacquens A, Titomanlio L, Constans C, Demene C, Santin MD, Lehericy S, Perrière N, Glacial F, Auvin S, Tanter M, Ghersi-Egea JF, Adle-Biassette H, Aubry JF, Gressens P, Dournaud P. A simple novel approach for detecting blood-brain barrier permeability using GPCR internalization. Neuropathol Appl Neurobiol 2020; 47:297-315. [PMID: 32898926 PMCID: PMC7891648 DOI: 10.1111/nan.12665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 01/01/2023]
Abstract
Aims Impairment of blood–brain barrier (BBB) is involved in numerous neurological diseases from developmental to aging stages. Reliable imaging of increased BBB permeability is therefore crucial for basic research and preclinical studies. Today, the analysis of extravasation of exogenous dyes is the principal method to study BBB leakage. However, these procedures are challenging to apply in pups and embryos and may appear difficult to interpret. Here we introduce a novel approach based on agonist‐induced internalization of a neuronal G protein‐coupled receptor widely distributed in the mammalian brain, the somatostatin receptor type 2 (SST2). Methods The clinically approved SST2 agonist octreotide (1 kDa), when injected intraperitoneally does not cross an intact BBB. At sites of BBB permeability, however, OCT extravasates and induces SST2 internalization from the neuronal membrane into perinuclear compartments. This allows an unambiguous localization of increased BBB permeability by classical immunohistochemical procedures using specific antibodies against the receptor. Results We first validated our approach in sensory circumventricular organs which display permissive vascular permeability. Through SST2 internalization, we next monitored BBB opening induced by magnetic resonance imaging‐guided focused ultrasound in murine cerebral cortex. Finally, we proved that after intraperitoneal agonist injection in pregnant mice, SST2 receptor internalization permits analysis of BBB integrity in embryos during brain development. Conclusions This approach provides an alternative and simple manner to assess BBB dysfunction and development in different physiological and pathological conditions.
Collapse
Affiliation(s)
- Z Csaba
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - T Vitalis
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | | | - I Margaill
- Research Team "Pharmacology of Cerebral Circulation" EA4475, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - B Coqueran
- Research Team "Pharmacology of Cerebral Circulation" EA4475, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - P-L Leger
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - I Parente
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - A Jacquens
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - L Titomanlio
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - C Constans
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR7587, Inserm U979, Inserm Technology Research Accelerator in Biomedical Ultrasound, Université de Paris, Paris, France
| | - C Demene
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR7587, Inserm U979, Inserm Technology Research Accelerator in Biomedical Ultrasound, Université de Paris, Paris, France
| | - M D Santin
- Brain and Spine Institute-ICM, Center for NeuroImaging Research - CENIR, Sorbonne Paris Cité, UPMC Université Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France
| | - S Lehericy
- Brain and Spine Institute-ICM, Center for NeuroImaging Research - CENIR, Sorbonne Paris Cité, UPMC Université Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France
| | - N Perrière
- BrainPlotting, Brain and Spine Institute-ICM, Paris, France
| | - F Glacial
- BrainPlotting, Brain and Spine Institute-ICM, Paris, France
| | - S Auvin
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - M Tanter
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR7587, Inserm U979, Inserm Technology Research Accelerator in Biomedical Ultrasound, Université de Paris, Paris, France
| | - J-F Ghersi-Egea
- Fluid Team, Lyon Neurosciences Research Center, Inserm U1028, CNRS, UMR5292, University Lyon-1, Villeurbanne, France
| | - H Adle-Biassette
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France.,Service d'Anatomie et de Cytologie Pathologiques, Hôpital Lariboisière, APHP, Paris, France
| | - J-F Aubry
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR7587, Inserm U979, Inserm Technology Research Accelerator in Biomedical Ultrasound, Université de Paris, Paris, France
| | - P Gressens
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - P Dournaud
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| |
Collapse
|
35
|
Padilla-Zambrano HS, Deora H, Arnout M, Mendoza-Florez R, Cardenas-Chavez WE, Herrera-Martinez MP, Ortega-Sierra MG, Agrawal A, Moscote-Salazar LR. The Role of Microglia in Cerebral Traumatic Injury and its Therapeutic Implications. INDIAN JOURNAL OF NEUROTRAUMA 2020. [DOI: 10.1055/s-0040-1713078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractMicroglia have a variety of functions in the brain such as synaptic remodeling, damage repair of the central nervous system (CNS), and CNS’ inflammatory response to peripheral infections. The response depends on the type of insult and infection and includes a range of variety of activation states, the duration of which will decide the outcome. In response to traumatic brain injury (TBI), early activation can lead to early restoration of function, while prolonged and continuous activation can cause neurodegeneration states. Current evidence, however, states that this may not be the case. In this article, we discuss this seldom understood topic of microglia response to TBI, and analyze their distribution, function and possible sites of manipulation. Animal studies have allowed genetic and pharmacological manipulations of microglia activation, in order to define their role. Microglia activation can be remote to the site of injury, and thus their manipulation may play a significant role in the response to any trauma.
Collapse
Affiliation(s)
- Huber S. Padilla-Zambrano
- Biomedical Research Center (CIB), Cartagena Neurotrauma Research Group Research Line, Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | - Harsh Deora
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Romario Mendoza-Florez
- Biomedical Research Center (CIB), Cartagena Neurotrauma Research Group Research Line, Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | - Wiston Eduardo Cardenas-Chavez
- Biomedical Research Center (CIB), Cartagena Neurotrauma Research Group Research Line, Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | - Monica Patricia Herrera-Martinez
- Biomedical Research Center (CIB), Cartagena Neurotrauma Research Group Research Line, Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | | | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Luis Rafael Moscote-Salazar
- Biomedical Research Center (CIB), Cartagena Neurotrauma Research Group Research Line, Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
36
|
Mukherjee S, Arisi GM, Mims K, Hollingsworth G, O'Neil K, Shapiro LA. Neuroinflammatory mechanisms of post-traumatic epilepsy. J Neuroinflammation 2020; 17:193. [PMID: 32552898 PMCID: PMC7301453 DOI: 10.1186/s12974-020-01854-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/25/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) occurs in as many as 64-74 million people worldwide each year and often results in one or more post-traumatic syndromes, including depression, cognitive, emotional, and behavioral deficits. TBI can also increase seizure susceptibility, as well as increase the incidence of epilepsy, a phenomenon known as post-traumatic epilepsy (PTE). Injury type and severity appear to partially predict PTE susceptibility. However, a complete mechanistic understanding of risk factors for PTE is incomplete. MAIN BODY From the earliest days of modern neuroscience, to the present day, accumulating evidence supports a significant role for neuroinflammation in the post-traumatic epileptogenic progression. Notably, substantial evidence indicates a role for astrocytes, microglia, chemokines, and cytokines in PTE progression. Although each of these mechanistic components is discussed in separate sections, it is highly likely that it is the totality of cellular and neuroinflammatory interactions that ultimately contribute to the epileptogenic progression following TBI. CONCLUSION This comprehensive review focuses on the neuroinflammatory milieu and explores putative mechanisms involved in the epileptogenic progression from TBI to increased seizure-susceptibility and the development of PTE.
Collapse
Affiliation(s)
- Sanjib Mukherjee
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Gabriel M Arisi
- Department of Physiology, Federal University of Sao Paulo - Escola Paulista de Medicina, Sao Paulo, Brazil.
| | - Kaley Mims
- Texas A&M University, College Station, TX, USA
| | | | | | - Lee A Shapiro
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.
| |
Collapse
|
37
|
Macchi M, Magalon K, Zimmer C, Peeva E, El Waly B, Brousse B, Jaekel S, Grobe K, Kiefer F, Williams A, Cayre M, Durbec P. Mature oligodendrocytes bordering lesions limit demyelination and favor myelin repair via heparan sulfate production. eLife 2020; 9:51735. [PMID: 32515730 PMCID: PMC7308090 DOI: 10.7554/elife.51735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Myelin destruction is followed by resident glia activation and mobilization of endogenous progenitors (OPC) which participate in myelin repair. Here we show that in response to demyelination, mature oligodendrocytes (OLG) bordering the lesion express Ndst1, a key enzyme for heparan sulfates (HS) synthesis. Ndst1+ OLG form a belt that demarcates lesioned from intact white matter. Mice with selective inactivation of Ndst1 in the OLG lineage display increased lesion size, sustained microglia and OPC reactivity. HS production around the lesion allows Sonic hedgehog (Shh) binding and favors the local enrichment of this morphogen involved in myelin regeneration. In MS patients, Ndst1 is also found overexpressed in oligodendroglia and the number of Ndst1-expressing oligodendroglia is inversely correlated with lesion size and positively correlated with remyelination potential. Our study suggests that mature OLG surrounding demyelinated lesions are not passive witnesses but contribute to protection and regeneration by producing HS.
Collapse
Affiliation(s)
| | | | | | - Elitsa Peeva
- MRC Centre for Regenerative Medicine, Multiple Sclerosis Society Centre for Translational Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Sarah Jaekel
- MRC Centre for Regenerative Medicine, Multiple Sclerosis Society Centre for Translational Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | | | - Anna Williams
- MRC Centre for Regenerative Medicine, Multiple Sclerosis Society Centre for Translational Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Myriam Cayre
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | |
Collapse
|
38
|
Van Steenwinckel J, Schang AL, Krishnan ML, Degos V, Delahaye-Duriez A, Bokobza C, Csaba Z, Verdonk F, Montané A, Sigaut S, Hennebert O, Lebon S, Schwendimann L, Le Charpentier T, Hassan-Abdi R, Ball G, Aljabar P, Saxena A, Holloway RK, Birchmeier W, Baud O, Rowitch D, Miron V, Chretien F, Leconte C, Besson VC, Petretto EG, Edwards AD, Hagberg H, Soussi-Yanicostas N, Fleiss B, Gressens P. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain 2020; 142:3806-3833. [PMID: 31665242 DOI: 10.1093/brain/awz319] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Microglia of the developing brain have unique functional properties but how their activation states are regulated is poorly understood. Inflammatory activation of microglia in the still-developing brain of preterm-born infants is associated with permanent neurological sequelae in 9 million infants every year. Investigating the regulators of microglial activation in the developing brain across models of neuroinflammation-mediated injury (mouse, zebrafish) and primary human and mouse microglia we found using analysis of genes and proteins that a reduction in Wnt/β-catenin signalling is necessary and sufficient to drive a microglial phenotype causing hypomyelination. We validated in a cohort of preterm-born infants that genomic variation in the Wnt pathway is associated with the levels of connectivity found in their brains. Using a Wnt agonist delivered by a blood-brain barrier penetrant microglia-specific targeting nanocarrier we prevented in our animal model the pro-inflammatory microglial activation, white matter injury and behavioural deficits. Collectively, these data validate that the Wnt pathway regulates microglial activation, is critical in the evolution of an important form of human brain injury and is a viable therapeutic target.
Collapse
Affiliation(s)
| | - Anne-Laure Schang
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,UMR CNRS 8638-Chimie Toxicologie Analytique et Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 4 Avenue de l'Observatoire, F-75006 Paris, France
| | - Michelle L Krishnan
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Vincent Degos
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Department of Anesthesia and Intensive Care, Pitié Salpétrière Hospital, F-75013 Paris France
| | - Andrée Delahaye-Duriez
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France
| | - Cindy Bokobza
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Zsolt Csaba
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Franck Verdonk
- Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, F-75006 Paris, France
| | - Amélie Montané
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Stéphanie Sigaut
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Olivier Hennebert
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Conservatoire national des arts et métiers, F-75003 Paris, France
| | - Sophie Lebon
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Leslie Schwendimann
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Tifenn Le Charpentier
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Rahma Hassan-Abdi
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Paul Aljabar
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Alka Saxena
- Genomics Core Facility, NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Rebecca K Holloway
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrueck Center for Molecular Medicine in the Helmholtz Society, Berlin-Buch, Germany
| | - Olivier Baud
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - David Rowitch
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Veronique Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Fabrice Chretien
- UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France.,Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Laboratoire de Neuropathologie, Centre Hospitalier Sainte Anne, F-75014 Paris, France
| | - Claire Leconte
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Valérie C Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | | | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Henrik Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,Perinatal Center, Institute of Clinical Sciences and Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, 41390 Gothenburg, Sweden
| | - Nadia Soussi-Yanicostas
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Bobbi Fleiss
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
39
|
Sanchis P, Fernández‐Gayol O, Vizueta J, Comes G, Canal C, Escrig A, Molinero A, Giralt M, Hidalgo J. Microglial cell‐derived interleukin‐6 influences behavior and inflammatory response in the brain following traumatic brain injury. Glia 2019; 68:999-1016. [DOI: 10.1002/glia.23758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Paula Sanchis
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| | - Olaya Fernández‐Gayol
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| | - Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de BiologiaUniversitat de Barcelona Barcelona Spain
| | - Gemma Comes
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| | - Carla Canal
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| | - Anna Escrig
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| | - Amalia Molinero
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| | - Mercedes Giralt
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| | - Juan Hidalgo
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| |
Collapse
|
40
|
Guan F, Huang T, Wang X, Xing Q, Gumpper K, Li P, Song J, Tan T, Yang GL, Zang X, Zhang J, Wang Y, Yang Y, Liu Y, Zhang Y, Yang B, Ma J, Ma S. The TRIM protein Mitsugumin 53 enhances survival and therapeutic efficacy of stem cells in murine traumatic brain injury. Stem Cell Res Ther 2019; 10:352. [PMID: 31779687 PMCID: PMC6883632 DOI: 10.1186/s13287-019-1433-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a common neurotrauma leading to brain dysfunction and death. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) hold promise in the treatment of TBI. However, their efficacy is modest due to low survival and differentiation under the harsh microenvironment of the injured brain. MG53, a member of TRIM family protein, plays a vital role in cell and tissue damage repair. The present study aims to test whether MG53 preserves hUC-MSCs against oxidative stress and enhances stem cell survival and efficacy in TBI treatment. Methods In this study, we performed a series of in vitro and in vivo experiments in hUC-MSCs and mice to define the function of MG53 enhancing survival, neurogenesis, and therapeutic efficacy of stem cells in murine traumatic brain injury. Results We found that recombinant human MG53 (rhMG53) protein protected hUC-MSCs against H2O2-induced oxidative damage and stimulated hUC-MSC proliferation and migration. In a mouse model of contusion-induced TBI, intravenous administration of MG53 protein preserved the survival of transplanted hUC-MSCs, mitigated brain edema, reduced neurological deficits, and relieved anxiety and depressive-like behaviors. Co-treatment of MG53 and hUC-MSCs enhanced neurogenesis by reducing apoptosis and improving PI3K/Akt-GSK3β signaling. Conclusion MG53 enhances the efficacy of hUC-MSCs in the recovery of TBI, indicating that such adjunctive therapy may provide a novel strategy to lessen damage and optimize recovery for brain injury.
Collapse
Affiliation(s)
- Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Tuanjie Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xinxin Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qu Xing
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kristyn Gumpper
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Peng Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jishi Song
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Xingxing Zang
- Department of Microbiology and Immunology, Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Jiewen Zhang
- Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Yuming Wang
- Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Yunlei Yang
- Department of Medicine and Neuroscience, Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Yashi Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
41
|
Zvejniece L, Stelfa G, Vavers E, Kupats E, Kuka J, Svalbe B, Zvejniece B, Albert-Weissenberger C, Sirén AL, Plesnila N, Dambrova M. Skull Fractures Induce Neuroinflammation and Worsen Outcomes after Closed Head Injury in Mice. J Neurotrauma 2019; 37:295-304. [PMID: 31441378 PMCID: PMC6964812 DOI: 10.1089/neu.2019.6524] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The weight-drop model is used widely to replicate closed-head injuries in mice; however, the histopathological and functional outcomes may vary significantly between laboratories. Because skull fractures are reported to occur in this model, we aimed to evaluate whether these breaks may influence the variability of the weight-drop (WD) model. Male Swiss Webster mice underwent WD injury with either a 2 or 5 mm cone tip, and behavior was assessed at 2 h and 24 h thereafter using the neurological severity score. The expression of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 genes was measured at 12 h and 1, 3, and 14 days after injury. Before the injury, micro-computed tomography (micro-CT) was performed to quantify skull thickness at the impact site. With a conventional tip diameter of 2 mm, 33% of mice showed fractures of the parietal bone; the 5 mm tip produced only 10% fractures. Compared with mice without fractures, mice with fractures had a severity-dependent worse functional outcome and a more pronounced upregulation of inflammatory genes in the brain. Older mice were associated with thicker parietal bones and were less prone to skull fractures. In addition, mice that underwent traumatic brain injury (TBI) with skull fracture had macroscopic brain damage because of skull depression. Skull fractures explain a considerable proportion of the variability observed in the WD model in mice—i.e., mice with skull fractures have a much stronger inflammatory response than do mice without fractures. Using older mice with thicker skull bones and an impact cone with a larger diameter reduces the rate of skull fractures and the variability in this very useful closed-head TBI model.
Collapse
Affiliation(s)
- Liga Zvejniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Address correspondence to: Liga Zvejniece, MD, PhD, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Gundega Stelfa
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Edijs Vavers
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Einars Kupats
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | - Janis Kuka
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Baiba Svalbe
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Baiba Zvejniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- University of Latvia, Riga, Latvia
| | | | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Nikolaus Plesnila
- University of Munich, Institute for Stroke and Dementia Research, Munich, Germany
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| |
Collapse
|
42
|
Targeting high-mobility group box protein 1 (HMGB1) in pediatric traumatic brain injury: Chronic neuroinflammatory, behavioral, and epileptogenic consequences. Exp Neurol 2019; 320:112979. [DOI: 10.1016/j.expneurol.2019.112979] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022]
|
43
|
Giambrone AB, Logue OC, Shao Q, Bidwell GL, Warrington JP. Perinatal Micro-Bleeds and Neuroinflammation in E19 Rat Fetuses Exposed to Utero-Placental Ischemia. Int J Mol Sci 2019; 20:ijms20164051. [PMID: 31434191 PMCID: PMC6720786 DOI: 10.3390/ijms20164051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/24/2022] Open
Abstract
Offspring of preeclampsia patients have an increased risk of developing neurological deficits and cognitive impairment. While low placental perfusion, common in preeclampsia and growth restriction, has been linked to neurological deficits, a causative link is not fully established. The goal of this study was to test the hypothesis that placental ischemia induces neuroinflammation and micro-hemorrhages in utero. Timed-pregnant Sprague Dawley rats were weight-matched for sham surgery (abdominal incision only) or induced placental ischemia (surgical reduction of utero-placental perfusion (RUPP)); n = 5/group on gestational day 14. Fetal brains (n = 1–2/dam/endpoint) were collected at embryonic day (E19). Placental ischemia resulted in fewer live fetuses, increased fetal demise, increased hematocrit, and no difference in brain water content in exposed fetuses. Additionally, increased cerebral micro-bleeds (identified with H&E staining), pro-inflammatory cytokines: IL-1β, IL-6, and IL-18, eotaxin (CCL11), LIX (CXCL5), and MIP-2 (CXCL2) were observed in RUPP-exposed fetuses. Microglial density in the sub-ventricular zone decreased in RUPP-exposed fetuses, with no change in cortical thickness. Our findings support the hypothesis that exposure to placental ischemia contributes to microvascular dysfunction (increased micro-bleeds), fetal brain inflammation, and reduced microglial density in proliferative brain areas. Future studies will determine whether in utero abnormalities contribute to long-term behavioral deficits in preeclampsia offspring through impaired neurogenesis regulation.
Collapse
Affiliation(s)
- Ashtin B Giambrone
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Omar C Logue
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Qingmei Shao
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Junie P Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
44
|
Hajiaghamemar M, Seidi M, Oeur RA, Margulies SS. Toward development of clinically translatable diagnostic and prognostic metrics of traumatic brain injury using animal models: A review and a look forward. Exp Neurol 2019; 318:101-123. [PMID: 31055005 PMCID: PMC6612432 DOI: 10.1016/j.expneurol.2019.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. There is an increasing interest in both clinical and pre-clinical studies to discover biomarkers to accurately diagnose traumatic brain injury (TBI), predict its outcomes, and monitor its progression especially in the developing brain. In humans, the heterogeneity of TBI in terms of clinical presentation, injury causation, and mechanism has contributed to the many challenges associated with finding unifying diagnosis, treatment, and management practices. In addition, findings from adult human research may have little application to pediatric TBI, as age and maturation levels affect the injury biomechanics and neurophysiological consequences of injury. Animal models of TBI are vital to address the variability and heterogeneity of TBI seen in human by isolating the causation and mechanism of injury in reproducible manner. However, a gap between the pre-clinical findings and clinical applications remains in TBI research today. To take a step toward bridging this gap, we reviewed several potential TBI tools such as biofluid biomarkers, electroencephalography (EEG), actigraphy, eye responses, and balance that have been explored in both clinical and pre-clinical studies and have shown potential diagnostic, prognostic, or monitoring utility for TBI. Each of these tools measures specific deficits following TBI, is easily accessible, non/minimally invasive, and is potentially highly translatable between animals and human outcomes because they involve effort-independent and non-verbal tasks. Especially conspicuous is the fact that these biomarkers and techniques can be tailored for infants and toddlers. However, translation of preclinical outcomes to clinical applications of these tools necessitates addressing several challenges. Among the challenges are the heterogeneity of clinical TBI, age dependency of some of the biomarkers, different brain structure, life span, and possible variation between temporal profiles of biomarkers in human and animals. Conducting parallel clinical and pre-clinical research, in addition to the integration of findings across species from several pre-clinical models to generate a spectrum of TBI mechanisms and severities is a path toward overcoming some of these challenges. This effort is possible through large scale collaborative research and data sharing across multiple centers. In addition, TBI causes dynamic deficits in multiple domains, and thus, a panel of biomarkers combining these measures to consider different deficits is more promising than a single biomarker for TBI. In this review, each of these tools are presented along with the clinical and pre-clinical findings, advantages, challenges and prospects of translating the pre-clinical knowledge into the human clinical setting.
Collapse
Affiliation(s)
- Marzieh Hajiaghamemar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Morteza Seidi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - R Anna Oeur
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
45
|
Schober ME, Requena DF, Casper TC, Velhorst AK, Lolofie A, McFarlane KE, Otto TE, Terry C, Gensel JC. Docosahexaenoic acid decreased neuroinflammation in rat pups after controlled cortical impact. Exp Neurol 2019; 320:112971. [PMID: 31247195 DOI: 10.1016/j.expneurol.2019.112971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/27/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children, yet specific therapies to treat TBI are lacking. Therapies that decrease the inflammatory response and enhance a reparative immune action may decrease oxidative damage and improve outcomes after TBI. Docosahexaenoic acid (DHA) modulates the immune response to injury in many organs. DHA given in the diet before injury decreased rat pup cognitive impairment, oxidative stress and white matter injury in our developmental TBI model using controlled cortical impact (CCI). Little is known about DHA effects on neuroinflammation in the developing brain. Further, it is not known if DHA given after developmental TBI exerts neuroprotective effects. We hypothesized that acute DHA treatment would decrease oxidative stress and improve cognitive outcome, associated with decreased pro-inflammatory activation of microglia, the brain's resident macrophages. METHODS 17-day-old rat pups received intraperitoneal DHA or vehicle after CCI or SHAM surgery followed by DHA diet or continuation of REG diet to create DHACCI, REGCCI, SHAMDHA and SHAMREG groups. We measured brain nitrates/nitrites (NOx) at post injury day (PID) 1 to assess oxidative stress. We tested memory using Novel Object Recognition (NOR) at PID14. At PID 3 and 7, we measured reactivity of microglial activation markers Iba1, CD68 and CD206 and astrocyte marker GFAP in the injured cortex. At PID3, 7 and 30 we measured mRNA levels of inflammation-related genes and transcription factors in flow-sorted brain cells. RESULTS DHA decreased oxidative stress at PID1 and pro-inflammatory microglial activation at PID3. CCI increased mRNA levels of two interferon regulatory family transcription factors, blunted by DHA, particularly in microglia-enriched cell populations at PID7. CCI increased mRNA levels of genes associated with "pro- " and "anti-" inflammatory activity at PID3, 7 and 30. Most notably within the microglia-enriched population, DHA blunted increased mRNA levels of pro-inflammatory genes at PID 3 and 7 and of anti-inflammatory genes at PID 30. Particularly in microglia, we observed parallel activation of pro-inflammatory and anti-inflammatory genes. DHA improved performance on NOR at PID14 after CCI. CONCLUSIONS DHA decreased oxidative stress and histologic and mRNA markers of microglial pro-inflammatory activation in rat pup brain acutely after CCI associated with improved short term cognitive function. DHA administration after CCI has neuroprotective effects, which may result in part from modulation of microglial activation toward a less inflammatory profile in the first week after CCI. Future and ongoing studies will focus on phagocytic function and reactive oxygen species production in microglia and macrophages to test functional effects of DHA on neuroinflammation in our model. Given its favorable safety profile in children, DHA is a promising candidate therapy for pediatric TBI.
Collapse
Affiliation(s)
- Michelle E Schober
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States.
| | - Daniela F Requena
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States
| | - T Charles Casper
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States.
| | - Amy K Velhorst
- Department of Physiology and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Alyssa Lolofie
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States.
| | - Katelyn E McFarlane
- Department of Physiology and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| | - Taylor E Otto
- Department of Physiology and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Cynthia Terry
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States.
| | - John C Gensel
- Department of Physiology and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| |
Collapse
|
46
|
Nasr IW, Chun Y, Kannan S. Neuroimmune responses in the developing brain following traumatic brain injury. Exp Neurol 2019; 320:112957. [PMID: 31108085 DOI: 10.1016/j.expneurol.2019.112957] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of both acute and long-term morbidity in the pediatric population, leading to a substantial, long-term socioeconomic burden. Despite the increase in the amount of pre-clinical and clinical research, treatment options for TBI rely heavily on supportive care with very limited targeted interventions that improve the acute and chronic sequelae of TBI. Other than injury prevention, not much can be done to limit the primary injury, which consists of tissue damage and cellular destruction. Secondary injury is the result of the ongoing complex inflammatory pathways that further exacerbate tissue damage, resulting in the devastating chronic outcomes of TBI. On the other hand, some level of inflammation is essential for neuronal regeneration and tissue repair. In this review article we discuss the various stages of the neuroimmune response in the immature, pediatric brain in the context of normal maturation and development of the immune system. The developing brain has unique features that distinguish it from the adult brain, and the immune system plays an integral role in CNS development. Those features could potentially make the developing brain more susceptible to worse outcomes, both acutely and in the long-term. The neuroinflammatory reaction which is triggered by TBI can be described as a highly intricate interaction between the cells of the innate and the adaptive immune systems. The innate immune system is triggered by non-specific danger signals that are released from damaged cells and tissues, which in turn leads to neutrophil infiltration, activation of microglia and astrocytes, complement release, as well as histamine release by mast cells. The adaptive immune response is subsequently activated leading to the more chronic effects of neuroinflammation. We will also discuss current attempts at modulating the TBI-induced neuroinflammatory response. A better understanding of the role of the immune system in normal brain development and how immune function changes with age is crucial for designing therapies to appropriately target the immune responses following TBI in order to enhance repair and plasticity.
Collapse
Affiliation(s)
- Isam W Nasr
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Young Chun
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America.
| |
Collapse
|
47
|
Timaru-Kast R, Gotthardt P, Luh C, Huang C, Hummel R, Schäfer MKE, Thal SC. Angiotensin II Receptor 1 Blockage Limits Brain Damage and Improves Functional Outcome After Brain Injury in Aged Animals Despite Age-Dependent Reduction in AT1 Expression. Front Aging Neurosci 2019; 11:63. [PMID: 31105549 PMCID: PMC6499023 DOI: 10.3389/fnagi.2019.00063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/06/2019] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a frequent pathology associated with poor neurological outcome in the aged population. We recently observed accelerated cerebral inflammation in aged mice in response to TBI. Candesartan is a potent specific inhibitor of angiotensin II receptor type 1 (AT1) which limits cerebral inflammation and brain damage in juvenile animals after experimental TBI. In the present study, we show significantly lower posttraumatic AT1 mRNA levels in aged (21 months) compared to young (2 months) mice. Despite low cerebral At1 expression, pharmacologic blockade by treatment with candesartan [daily, beginning 30 min after experimental TBI by controlled cortical impact (CCI)] was highly effective in both young and aged animals and reduced histological brain damage by -20% after 5 days. In young mice, neurological improvement was enhanced by AT1 inhibition 5 days after CCI. In older animals, candesartan treatment reduced functional impairment already on day 3 after TBI and post-traumatic body weight (BW) loss was attenuated. Candesartan reduced microglia activation (-40%) in young and aged animals, and neutrophil infiltration (-40% to 50%) in aged mice, whereas T-cell infiltration was not changed in either age group. In young animals, markers of anti-inflammatory microglia M2a polarization [arginase 1 (Arg1), chitinase3-like 3 (Ym1)] were increased by candesartan at days 1 and 5 after insult. In older mice 5 days after insult, expression of Arg1 was significantly higher independently of the treatment, whereas Ym1 gene expression was further enhanced by AT1 inhibition. Despite age-dependent posttraumatic differences in At1 expression levels, inhibition of AT1 was highly effective in a posttreatment paradigm. Targeting inflammation with candesartan is, therefore, a promising therapeutic strategy to limit secondary brain damage independent of the age.
Collapse
Affiliation(s)
- Ralph Timaru-Kast
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philipp Gotthardt
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Clara Luh
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Changsheng Huang
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Center for Molecular Surgical Research, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Center for Molecular Surgical Research, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
48
|
Glotfelty EJ, Delgado TE, Tovar-y-Romo LB, Luo Y, Hoffer BJ, Olson L, Karlsson TE, Mattson MP, Harvey BK, Tweedie D, Li Y, Greig NH. Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury. ACS Pharmacol Transl Sci 2019; 2:66-91. [PMID: 31396586 PMCID: PMC6687335 DOI: 10.1021/acsptsci.9b00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is becoming an increasing public health issue. With an annually estimated 1.7 million TBIs in the United States (U.S) and nearly 70 million worldwide, the injury, isolated or compounded with others, is a major cause of short- and long-term disability and mortality. This, along with no specific treatment, has made exploration of TBI therapies a priority of the health system. Age and sex differences create a spectrum of vulnerability to TBI, with highest prevalence among younger and older populations. Increased public interest in the long-term effects and prevention of TBI have recently reached peaks, with media attention bringing heightened awareness to sport and war related head injuries. Along with short-term issues, TBI can increase the likelihood for development of long-term neurodegenerative disorders. A growing body of literature supports the use of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptor (R) agonists, along with unimolecular combinations of these therapies, for their potent neurotrophic/neuroprotective activities across a variety of cellular and animal models of chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and acute cerebrovascular disorders (stroke). Mild or moderate TBI shares many of the hallmarks of these conditions; recent work provides evidence that use of these compounds is an effective strategy for its treatment. Safety and efficacy of many incretin-based therapies (GLP-1 and GIP) have been demonstrated in humans for the treatment of type 2 diabetes mellitus (T2DM), making these compounds ideal for rapid evaluation in clinical trials of mild and moderate TBI.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas E. Delgado
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Luis B. Tovar-y-Romo
- Division
of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yu Luo
- Department
of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Barry J. Hoffer
- Department
of Neurosurgery, Case Western Reserve University
School of Medicine, Cleveland, Ohio 44106, United States
| | - Lars Olson
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mark P. Mattson
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Brandon K. Harvey
- Molecular
Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience
Department, National Institute on Drug Abuse,
National Institutes of Health, Baltimore, Maryland 21224, United States
| | - David Tweedie
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Yazhou Li
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Nigel H. Greig
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
49
|
Hanlon LA, Raghupathi R, Huh JW. Depletion of microglia immediately following traumatic brain injury in the pediatric rat: Implications for cellular and behavioral pathology. Exp Neurol 2019; 316:39-51. [PMID: 30980832 DOI: 10.1016/j.expneurol.2019.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Accepted: 04/08/2019] [Indexed: 12/31/2022]
Abstract
The inflammatory response is a significant component of the pathophysiology of pediatric traumatic brain injury. High levels of inflammatory mediators have been found in the cerebrospinal fluid of brain-injured children which have been linked to poor prognosis. Targeting aspects of the inflammatory response in the hopes of finding a viable post-injury therapeutic option has gained attention. Microglia are largely responsible for perpetuating the injury-induced inflammatory response but in the developing brain they play beneficial roles in both normal and disease states. Following closed head injury in the neonate rat, depletion of microglia with intracerebral injections of liposomes containing clodronate was associated with an increase in neurodegeneration in the early post-injury period (3 days) relative to those injected with empty liposomes suggestive of a decrease in clearance of dying cells. In sham-injured animals, microglia repopulated the clodrosome-mediated depleted brain regions over a period of 2-4 weeks and exhibited morphology typical of a resting phenotype. In brain-injured animals, the repopulated microglia in clodrosome-injected animals exhibited rod-like and amoeboid morphologies. However, fluoro-Jade B reactivity in these brain regions was more extensive than in empty liposome-injected animals suggesting that the active microglia may be unable to clear dying neurons. This was accompanied by an induction of hyperexcitability in the local cortical circuitry. Depletion of microglia within the white matter tracts and the thalamus did not affect the extent of injury-induced traumatic axonal injury. Increased neurodegeneration in the dorsal subiculum was not accompanied by any changes to injury-induced deficits in spatial learning and memory. These data suggest that activation of microglia may be important for removal of dying neurons in the traumatically-injured immature brain.
Collapse
Affiliation(s)
- Lauren A Hanlon
- Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University, Philadelphia, PA, United States of America; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Ramesh Raghupathi
- Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University, Philadelphia, PA, United States of America; Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States of America.
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America.
| |
Collapse
|
50
|
Abstract
Despite notable advances in the care and survival of preterm infants, a significant proportion of preterm neonates will have life-long cognitive, behavioral, and motor deficits, and robustly effective neuroprotective strategies are still missing. These therapies must target the pathophysiologic mechanisms observed in contemporaneous infants and rely on modern epidemiology, imaging, and experimental models and assessment techniques. Two drugs, magnesium sulfate and caffeine, are already in use in several units, and although their targets are apnea of prematurity and myometrial contractility (respectively), they do offer improved odds of positive outcomes. Nevertheless, these drugs have limited efficacy, and NICU-to-NICU administration varies greatly. As such, there is an obvious need for additional specific neurotherapeutic strategies to further enhance the outcome of this very fragile population of neonates. The chapter reviews these issues, highlights bottlenecks that need to be solved for meaningful progress in the field, and proposes future innovative avenues for intervention, including delayed interventions.
Collapse
Affiliation(s)
- Bobbi Fleiss
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Pierre Gressens
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, United Kingdom.
| |
Collapse
|