1
|
Liu D, Wu W, Wang T, Zhan G, Zhang Y, Gao J, Gong Q. Lithocarpus polystachyus Rehd. ameliorates cerebral ischemia/reperfusion injury through inhibiting PI3K/AKT/NF-κB pathway and regulating NLRP3-mediated pyroptosis. Front Pharmacol 2024; 15:1365642. [PMID: 39380903 PMCID: PMC11458458 DOI: 10.3389/fphar.2024.1365642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Ischemic stroke (IS) is a serious threat to human life and health, and cerebral ischemia/reperfusion injury (CIRI) exacerbates IS by enhancing neuroinflammation and oxidative stress. Sweet tea (ST) comprises several bioactive components, such as phlorizin, trilobatin, and phloretin, with diverse pharmacological activities. However, it remains uncertain whether ST can confer protection against CIRI. In this study, we aimed to investigate the impact and potential underlying mechanism of ST in the context of CIRI. Methods CIRI model were established in male sprague dawley (SD) rats. The neurobehavioral assessment, the volume of cerebral infarction and the morphology of neurons were measured to complete the preliminary pharmacodynamic study. The therapeutic targets and pathways of ST on IS were obtained by protein-protein interaction, molecular docking and Metascape database. The predicted results were further verified in vivo. Results Our results revealed that ST treatment significantly ameliorated brain damage in rats subjected to CIRI by mitigating mitochondrial oxidative stress and neuroinflammation. Additionally, we identified the PI3K/AKT/NF-κB pathway and the NLRP3-mediated pyroptosis axis as crucial processes, with molecular docking suggested direct interactions between the main compounds of ST and NLRP3. Conclusion ST safeguards against CIRI-induced neuronal loss, neuroinflammation and oxidative stress through the inhibition of the PI3K/AKT/NF-κB pathway and the regulation of NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Daifang Liu
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wendan Wu
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Tingting Wang
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Guiyu Zhan
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuandong Zhang
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Gao XF, Ji BY, Zhang JJ, Wang Z, Jiang S, Hu JN, Gong XJ, Zhang JT, Tsopmejio ISN, Li W. Ginsenoside Rg2 Attenuates Aging-Induced Liver Injury via Inhibiting Caspase 8-Mediated Pyroptosis, Apoptosis and Modulating Gut Microbiota. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1427-1449. [PMID: 39192676 DOI: 10.1142/s0192415x24500563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Aging is an irresistible natural law of the progressive decline of body molecules, organs, and overall function with the passage of time, resulting in eventual death. World Health Organization data show that aging is correlated with a wide range of common chronic diseases in the elderly, and is an essential driver of many diseases. Panax Ginseng C.A Meyer is an ancient herbal medicine, which has an effect of "long service, light weight, and longevity" recorded in the ancient Chinese medicine book "Compendium of Materia Medica." Ginsenoside Rg2, the main active ingredient of ginseng, also exerts a marked effect on the treatment of liver injury. However, it remains unclear whether Rg2 has the potential to ameliorate aging-induced liver injury. Hence, exploring the hepatoprotective properties of Rg2 and its possible molecular mechanism by Senescence Accelerate Mouse Prone 8 (SAMP8) and gut microbiota. Our study demonstrated that Rg2 can inhibit pyroptosis and apoptosis through caspase 8, and regulate the gut-liver axis to alleviate liver inflammation by changing the composition of gut microbiota, thus improving aging-induced liver injury. These findings provide theoretical support for the pharmacological effects of ginsenosides in delaying aging-induced liver injury.
Collapse
Affiliation(s)
- Xu-Fei Gao
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Bao-Yu Ji
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jun-Jie Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xiao-Jie Gong
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, P. R. China
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Ivan Stève Nguepi Tsopmejio
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P. R. China
| |
Collapse
|
3
|
Alkanat M, Alkanat HÖ. D-Limonene reduces depression-like behaviour and enhances learning and memory through an anti-neuroinflammatory mechanism in male rats subjected to chronic restraint stress. Eur J Neurosci 2024; 60:4491-4502. [PMID: 38932560 DOI: 10.1111/ejn.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
D-limonene is a widely used flavouring additive in foods, beverages and fragrances due to its pleasant lemon-like odour. This study aimed to investigate the effects of D-limonene on the central nervous system when subjected to chronic restraint stress in rats for 21 days. Forty rats were randomly divided into five groups: i) control, ii) D-limonene, iii) restraint stress, iv) restraint stress+D-limonene and v) restraint stress+fluoxetine. Following the induction of restraint stress, the sucrose preference test, the open field test, the novel object recognition test and the forced swimming test were performed. The levels of BDNF, IL-1β, IL-6 and caspase-1 were measured from hippocampal tissue using the ELISA method. Sucrose preference test results showed an increase in consumption rate in the stress+D-limonene and a decrease in the stress group. The stress+D-limonene group reversed the increased defensive behaviour observed in the open-field test compared to the stress group. In the novel object recognition test, the discrimination index of the stress+D-limonene group increased compared to the stress group. BDNF levels increased in the stress+limonene group compared to the stress group. In contrast, IL-1β and caspase-1 levels increased in the stress group compared to the control and decreased in the stress+limonene group compared to the stress group. In this study, D-limonene has been found to have antidepressant-like properties, reducing anhedonic and defensive behaviours and the impairing effects of stress on learning and memory tests. It was observed that D-limonene showed these effects by alleviating neuroinflammation induced by chronic restraint stress in rats.
Collapse
Affiliation(s)
- Mehmet Alkanat
- Department of Physiology, Giresun University, Medical School, Giresun, Turkey
| | - Hafize Özdemir Alkanat
- Faculty of Health Science, Department of Internal Medicine Nursing, Giresun University, Giresun, Turkey
| |
Collapse
|
4
|
Frank MG, Baratta MV. Use of an immunocapture device to detect cytokine release in discrete brain regions. Neural Regen Res 2024; 19:703-704. [PMID: 37843193 PMCID: PMC10664115 DOI: 10.4103/1673-5374.382237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Matthew G. Frank
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Michael V. Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
5
|
Wu C, Weis SM, Cheresh DA. Upregulation of fibronectin and its integrin receptors - an adaptation to isolation stress that facilitates tumor initiation. J Cell Sci 2023; 136:jcs261483. [PMID: 37870164 PMCID: PMC10652044 DOI: 10.1242/jcs.261483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Tumor initiation at either primary or metastatic sites is an inefficient process in which tumor cells must fulfill a series of conditions. One critical condition involves the ability of individual tumor-initiating cells to overcome 'isolation stress', enabling them to survive within harsh isolating microenvironments that can feature nutrient stress, hypoxia, oxidative stress and the absence of a proper extracellular matrix (ECM). In response to isolation stress, tumor cells can exploit various adaptive strategies to develop stress tolerance and gain stemness features. In this Opinion, we discuss how strategies such as the induction of certain cell surface receptors and deposition of ECM proteins enable tumor cells to endure isolation stress, thereby gaining tumor-initiating potential. As examples, we highlight recent findings from our group demonstrating how exposure of tumor cells to isolation stress upregulates the G-protein-coupled receptor lysophosphatidic acid receptor 4 (LPAR4), its downstream target fibronectin and two fibronectin-binding integrins, α5β1 and αvβ3. These responses create a fibronectin-rich niche for tumor cells, ultimately driving stress tolerance, cancer stemness and tumor initiation. We suggest that approaches to prevent cancer cells from adapting to stress by suppressing LPAR4 induction, blocking its downstream signaling or disrupting fibronectin-integrin interactions hold promise as potential strategies for cancer treatment.
Collapse
Affiliation(s)
- Chengsheng Wu
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Sara M. Weis
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - David A. Cheresh
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Zhou Q, Lin L, Li H, Li Y, Liu N, Wang H, Jiang S, Li Q, Chen Z, Lin Y, Jin H, Deng Y. Intrahippocampal injection of IL-1β upregulates Siah1-mediated degradation of synaptophysin by activation of the ERK signaling in male rat. J Neurosci Res 2023; 101:930-951. [PMID: 36720002 DOI: 10.1002/jnr.25170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Interleukin-1β (IL-1β) has been described to exert important effect on synapses in the brain. Here, we explored if the synapses in the hippocampus would be adversely affected following intracerebral IL-1β injection and, if so, to clarify the underlying molecular mechanisms. Adult male Sprague-Dawley rats were divided into control, IL-1β, IL-1β + PD98059, and IL-1β + MG132 groups and then sacrificed for detection of synaptophysin (syn) protein level, synaptosome glutamate release, and synapse ultrastructure by western blotting, glutamate kit and electron microscopy, respectively. These rats were tested by Morris water maze for learning and memory ability. It was determined by western blotting whether IL-1β exerted the effect of on syn and siah1 expression in primary neurons via extracellular regulated protein kinases (ERK) signaling pathway. Intrahippocampal injection of IL-1β in male rats and sacrificed at 8d resulted in a significant decrease in syn protein, damage of synapse structure, and abnormal release of neurotransmitters glutamate. ERK inhibitor and proteosome inhibitor treatment reversed the above changes induced by IL-1β both in vivo and in vitro. In primary cultured neurons incubated with IL-1β, the expression level of synaptophysin was significantly downregulated coupled with abnormal glutamate release. Furthermore, use of PD98059 had confirmed that ERK signaling pathway was implicated in synaptic disorders caused by IL-1β treatment. The present results suggest that exogenous IL-1β can suppress syn protein level and glutamate release. A possible mechanism for this is that IL-1β induces syn degradation that is regulated by the E3 ligase siah1 via the ERK signaling pathway.
Collapse
Affiliation(s)
- Qiuping Zhou
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lanfen Lin
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Haiyan Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yichen Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Nan Liu
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Huifang Wang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shuqi Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qian Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.,Southern Medical University, Guangzhou, China
| | - Zhuo Chen
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yiyan Lin
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.,Southern Medical University, Guangzhou, China
| | - Hui Jin
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yiyu Deng
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
O’Brien C, Vemireddy R, Mohammed U, Barker DJ. Stress reveals a specific behavioral phenotype for opioid abuse susceptibility. J Exp Anal Behav 2022; 117:518-531. [PMID: 35119105 PMCID: PMC9090955 DOI: 10.1002/jeab.738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/07/2022]
Abstract
Susceptibility to stress has long been considered important for the development of substance use disorders. Nonetheless, behavioral and physiological responses to stress are highly variable, making it difficult to identify the individuals who are most likely to abuse drugs. In the present study, we employed a comprehensive battery of tests for negative valence behaviors and nociception to identify individuals predisposed to opioid seeking following oral opioid self-administration. Furthermore, we examined how this profile was affected by a history of stress. We observed that mice receiving foot shock stress failed to exhibit a preference for sucrose, showed increased immobility in the forced swim task, and exhibited mechanical hypersensitivity when compared to controls. When considering these behaviors in light of future fentanyl-seeking responses, we observed that heightened mechanical sensitivity corresponded to higher opioid preference in mice with a history of stress, but not controls. Moreover, we were surprised to discover that paradoxically high sucrose preferences predicted fentanyl preference in shock mice, while signs of anhedonia predicted fentanyl preference in controls. Taken together, these results indicate that stress can act as a physiological modulator, shifting profiles of opioid abuse susceptibility depending on an individual's history.
Collapse
Affiliation(s)
- Chris O’Brien
- Department of Psychology, Rutgers, The State University of New Jersey
| | - Roshni Vemireddy
- Department of Psychology, Rutgers, The State University of New Jersey
| | - Uzma Mohammed
- Department of Psychology, Rutgers, The State University of New Jersey
| | - David J. Barker
- Department of Psychology, Rutgers, The State University of New Jersey
- Brain Health Institute, Rutgers University, Piscataway, NJ
| |
Collapse
|
8
|
Dutta SS, Andonova AA, Wöllert T, Hewett SJ, Hewett JA. P2X7-dependent constitutive Interleukin-1β release from pyramidal neurons of the normal mouse hippocampus: Evidence for a role in maintenance of the innate seizure threshold. Neurobiol Dis 2022; 168:105689. [DOI: 10.1016/j.nbd.2022.105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
|
9
|
Liu C, Chu D, Kalantar‐Zadeh K, George J, Young HA, Liu G. Cytokines: From Clinical Significance to Quantification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004433. [PMID: 34114369 PMCID: PMC8336501 DOI: 10.1002/advs.202004433] [Citation(s) in RCA: 357] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/26/2021] [Indexed: 05/24/2023]
Abstract
Cytokines are critical mediators that oversee and regulate immune and inflammatory responses via complex networks and serve as biomarkers for many diseases. Quantification of cytokines has significant value in both clinical medicine and biology as the levels provide insights into physiological and pathological processes and can be used to aid diagnosis and treatment. Cytokines and their clinical significance are introduced from the perspective of their pro- and anti-inflammatory effects. Factors affecting cytokines quantification in biological fluids, native levels in different body fluids, sample processing and storage conditions, sensitivity to freeze-thaw, and soluble cytokine receptors are discussed. In addition, recent advances in in vitro and in vivo assays, biosensors based on different signal outputs and intracellular to extracellular protein expression are summarized. Various quantification platforms for high-sensitivity and reliable measurement of cytokines in different scenarios are discussed, and commercially available cytokine assays are compared. A discussion of challenges in the development and advancement of technologies for cytokine quantification that aim to achieve real-time multiplex cytokine analysis for point-of-care situations applicable for both biomedical research and clinical practice are discussed.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Dewei Chu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | | | - Jacob George
- Storr Liver CentreWestmead Institute of Medical ResearchUniversity of Sydney and Department of Gastroenterology and HepatologyWestmead HospitalWestmeadNSW2145Australia
| | - Howard A. Young
- Laboratory of Cancer ImmunometabolismCenter for Cancer ResearchNational Cancer Institute at FrederickFrederickMD21702USA
| | - Guozhen Liu
- School of Life and Health SciencesThe Chinese University of Hong KongShenzhen518172P. R. China
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
10
|
Liu G, Jiang C, Lin X, Yang Y. Point-of-care detection of cytokines in cytokine storm management and beyond: Significance and challenges. VIEW 2021; 2:20210003. [PMID: 34766163 PMCID: PMC8242812 DOI: 10.1002/viw.20210003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cytokines are signaling molecules between cells in immune system. Cytokine storm, due to the sudden acute increase in levels of pro-inflammatory circulating cytokines, can result in disease severity and major-organ damage. Thus, there is urgent need to develop rapid, sensitive, and specific methods for monitoring of cytokines in biology and medicine. Undoubtedly, point-of-care testing (POCT) will provide clinical significance in disease early diagnosis, management, and prevention. This review aims to summarize and discuss the latest technologies for detection of cytokines with a focus on POCT. The overview of diseases resulting from imbalanced cytokine levels, such as COVID-19, sepsis and other cytokine release syndromes are presented. The clinical cut-off levels of cytokine as biomarkers for different diseases are summarized. The challenges and perspectives on the development of cytokine POCT devices are also proposed and discussed. Cytokine POCT devices are expected to be the ongoing spotlight of disease management and prevention during COVID-19 pandemic and also the post COVID-19 pandemic era.
Collapse
Affiliation(s)
- Guozhen Liu
- School of Life and Health SciencesThe Chinese University of Hong KongShenzhen518172P.R. China
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Cheng Jiang
- Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalUniversity of OxfordOxfordOX3 9DUUnited Kingdom
| | - Xiaoting Lin
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Yang Yang
- School of Life and Health SciencesThe Chinese University of Hong KongShenzhen518172P.R. China
| |
Collapse
|