1
|
Huang X, Wei P, Fang C, Yu M, Yang S, Qiu L, Wang Y, Xu A, Hoo RLC, Chang J. Compromised endothelial Wnt/β-catenin signaling mediates the blood-brain barrier disruption and leads to neuroinflammation in endotoxemia. J Neuroinflammation 2024; 21:265. [PMID: 39427196 PMCID: PMC11491032 DOI: 10.1186/s12974-024-03261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
The blood-brain barrier (BBB) is a critical interface that maintains the central nervous system homeostasis by controlling the exchange of substances between the blood and the brain. Disruption of the BBB plays a vital role in the development of neuroinflammation and neurological dysfunction in sepsis, but the mechanisms by which the BBB becomes disrupted during sepsis are not well understood. Here, we induced endotoxemia, a major type of sepsis, in mice by intraperitoneal injection of lipopolysaccharide (LPS). LPS acutely increased BBB permeability, activated microglia, and heightened inflammatory responses in brain endothelium and parenchyma. Concurrently, LPS or proinflammatory cytokines activated the NF-κB pathway, inhibiting Wnt/β-catenin signaling in brain endothelial cells in vitro and in vivo. Cell culture study revealed that NF-κB p65 directly interacted with β-catenin to suppress Wnt/β-catenin signaling. Pharmacological NF-κB pathway inhibition restored brain endothelial Wnt/β-catenin signaling activity and mitigated BBB disruption and neuroinflammation in septic mice. Furthermore, genetic or pharmacological activation of brain endothelial Wnt/β-catenin signaling substantially alleviated LPS-induced BBB leakage and neuroinflammation, while endothelial conditional ablation of the Wnt7a/7b co-receptor Gpr124 exacerbated the BBB leakage caused by LPS. Mechanistically, Wnt/β-catenin signaling activation rectified the reduced expression levels of tight junction protein ZO-1 and transcytosis suppressor Mfsd2a in brain endothelial cells of mice with endotoxemia, inhibiting both paracellular and transcellular permeability of the BBB. Our findings demonstrate that endotoxemia-associated systemic inflammation decreases endothelial Wnt/β-catenin signaling through activating NF-κB pathway, resulting in acute BBB disruption and neuroinflammation. Targeting the endothelial Wnt/β-catenin signaling may offer a promising therapeutic strategy for preserving BBB integrity and treating neurological dysfunction in sepsis.
Collapse
Affiliation(s)
- Xiaowen Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pengju Wei
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Linhui Qiu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ruby Lai Chong Hoo
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Iqbal M, Zaman M, Ojha N, Gau YTA, Young EI. The known and unknown of post-pump chorea: a case report on robust steroid responsiveness implicating occult neuroinflammation. Front Immunol 2024; 15:1458022. [PMID: 39318628 PMCID: PMC11419990 DOI: 10.3389/fimmu.2024.1458022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Post-pump chorea (PPC) is characterized by the development of choreiform movements following cardiopulmonary bypass (CPB) surgery. PPC occurs almost exclusively in children, and its pathophysiology remains unclear. Here we present an adult case of PPC after bovine aortic valve replacement (AVR) which exhibited dramatic and reproducible response to steroid, suggesting the presence of occult neuroinflammation. This observation suggests a novel underlying mechanism in certain subgroups of PPC, which is likely a heterogeneous condition to start with. Further research into the pathomechanisms of PPC could offer insights into managing this otherwise symptomatic control-only condition.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Muizz Zaman
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Niranjan Ojha
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Yung-Tian A Gau
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eufrosina I Young
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
3
|
Duindam HB, Mengel D, Kox M, Göpfert JC, Kessels RPC, Synofzik M, Pickkers P, Abdo WF. Systemic inflammation relates to neuroaxonal damage associated with long-term cognitive dysfunction in COVID-19 patients. Brain Behav Immun 2024; 117:510-520. [PMID: 38336025 DOI: 10.1016/j.bbi.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cognitive deficits are increasingly recognized as a long-term sequela of severe COVID-19. The underlying processes and molecular signatures associated with these long-term neurological sequalae of COVID-19 remain largely unclear, but may be related to systemic inflammation-induced effects on the brain. We studied the systemic inflammation-brain interplay and its relation to development of long-term cognitive impairment in patients who survived severe COVID-19. Trajectories of systemic inflammation and neuroaxonal damage blood biomarkers during ICU admission were analyzed and related to long-term cognitive outcomes. METHODS Prospective longitudinal cohort study of patients with severe COVID-19 surviving ICU admission. During admission, blood was sampled consecutively to assess levels of inflammatory cytokines and neurofilament light chain (NfL) using an ultrasensitive multiplex Luminex assay and single molecule array technique (Simoa). Cognitive functioning was evaluated using a comprehensive neuropsychological assessment six months after ICU-discharge. RESULTS Ninety-six patients (median [IQR] age 61 [55-69] years) were enrolled from March 2020 to June 2021 and divided into two cohorts: those who received no COVID-19-related immunotherapy (n = 28) and those treated with either dexamethasone or dexamethasone and tocilizumab (n = 68). Plasma NfL concentrations increased in 95 % of patients during their ICU stay, from median [IQR] 23 [18-38] pg/mL at admission to 250 [160-271] pg/mL after 28 days, p < 0.001. Besides age, glomerular filtration rate, immunomodulatory treatment, and C-reactive protein, more specific markers of systemic inflammation at day 14 (i.e., interleukin (IL)-8, tumour necrosis factor, and IL-1 receptor antagonist) were significant predictors of blood NfL levels at day 14 of ICU admission (R2 = 44 %, p < 0.001), illustrating the association between sustained systemic inflammation and neuroaxonal damage. Twenty-six patients (27 %) exhibited cognitive impairment six months after discharge from the ICU. NfL concentrations showed a more pronounced increase in patients that developed cognitive impairment (p = 0.03). Higher NfL predicted poorer outcome in information processing speed (Trail Making Test A, r = -0.26, p = 0.01; Letter Digit Substitution Test, r = -0.24, p = 0.02). DISCUSSION Prolonged systemic inflammation in critically ill COVID-19 patients is related to neuroaxonal damage and subsequent long-term cognitive impairment. Moreover, our findings suggest that plasma NfL concentrations during ICU stay may possess prognostic value in predicting future long-term cognitive impairment in patients that survived severe COVID-19.
Collapse
Affiliation(s)
- H B Duindam
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - D Mengel
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - M Kox
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - J C Göpfert
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - R P C Kessels
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Radboud University Medical Center, Department of Medical Psychology and Radboudumc Alzheimer Center, Nijmegen, the Netherlands; Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands
| | - M Synofzik
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - P Pickkers
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - W F Abdo
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Turkheimer FE, Veronese M, Mondelli V, Cash D, Pariante CM. Sickness behaviour and depression: An updated model of peripheral-central immunity interactions. Brain Behav Immun 2023; 111:202-210. [PMID: 37076054 DOI: 10.1016/j.bbi.2023.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023] Open
Abstract
Current research into mood disorders indicates that circulating immune mediators participating in the pathophysiology of chronic somatic disorders have potent influences on brain function. This paradigm has brought to the fore the use of anti-inflammatory therapies as adjunctive to standard antidepressant therapy to improve treatment efficacy, particularly in subjects that do not respond to standard medication. Such new practice requires biomarkers to tailor these new therapies to those most likely to benefit but also validated mechanisms of action describing the interaction between peripheral immunity and brain function to optimize target intervention. These mechanisms are generally studied in preclinical models that try to recapitulate the human disease, MDD, through peripherally induced sickness behaviour. In this proposal paper, after an appraisal of the data in rodent models and their adherence to the data in clinical cohorts, we put forward a modified model of periphery-brain interactions that goes beyond the currently established view of microglia cells as the drivers of depression. Instead, we suggest that, for most patients with mild levels of peripheral inflammation, brain barriers are the primary actors in the pathophysiology of the disease and in treatment resistance. We then highlight data gaps in this proposal and suggest novel lines of research.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Information Engineering, University of Padova, Padova, Italy
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Nguyen TH, Turek I, Meehan-Andrews T, Zacharias A, Irving HR. A systematic review and meta-analyses of interleukin-1 receptor associated kinase 3 (IRAK3) action on inflammation in in vivo models for the study of sepsis. PLoS One 2022; 17:e0263968. [PMID: 35167625 PMCID: PMC8846508 DOI: 10.1371/journal.pone.0263968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
Background Interleukin-1 receptor associated kinase 3 (IRAK3) is a critical modulator of inflammation and is associated with endotoxin tolerance and sepsis. Although IRAK3 is known as a negative regulator of inflammation, several studies have reported opposing functions, and the temporal actions of IRAK3 on inflammation remain unclear. A systematic review and meta-analyses were performed to investigate IRAK3 expression and its effects on inflammatory markers (TNF-α and IL-6) after one- or two-challenge interventions, which mimic the hyperinflammatory and immunosuppression phases of sepsis, respectively, using human or animal in vivo models. Methods This systematic review and meta-analyses has been registered in the Open Science Framework (OSF) (Registration DOI: 10.17605/OSF.IO/V39UR). A systematic search was performed to identify in vivo studies reporting outcome measures of expression of IRAK3 and inflammatory markers. Meta-analyses were performed where sufficient data was available. Results The search identified 7778 studies for screening. After screening titles, abstracts and full texts, a total of 49 studies were included in the systematic review. The review identified significant increase of IRAK3 mRNA and protein expression at different times in humans compared to rodents following one-challenge, whereas the increases of IL-6 and TNF-α protein expression in humans were similar to rodent in vivo models. Meta-analyses confirmed the inhibitory effect of IRAK3 on TNF-α mRNA and protein expression after two challenges. Conclusions A negative correlation between IRAK3 and TNF-α expression in rodents following two challenges demonstrates the association of IRAK3 in the immunosuppression phase of sepsis. Species differences in underlying biology affect the translatability of immune responses of animal models to human, as shown by the dissimilarity in patterns of IRAK3 mRNA and protein expression between humans and rodents following one challenge that are further influenced by variations in experimental procedures.
Collapse
Affiliation(s)
- Trang H. Nguyen
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
- * E-mail: (HRI); (THN)
| | - Ilona Turek
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Anita Zacharias
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Helen R. Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
- * E-mail: (HRI); (THN)
| |
Collapse
|
6
|
Diffusion-weighted MR spectroscopy (DW-MRS) is sensitive to LPS-induced changes in human glial morphometry: A preliminary study. Brain Behav Immun 2022; 99:256-265. [PMID: 34673176 DOI: 10.1016/j.bbi.2021.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low-dose lipopolysaccharide (LPS) is a well-established experimental method for inducing systemic inflammation and shown by microscopy to activate microglia in rodents. Currently, techniques for in-vivo imaging of glia in humans are limited to TSPO (Translocator protein) PET, which is expensive, methodologically challenging, and has poor cellular specificity. Diffusion-weighted magnetic resonance spectroscopy (DW-MRS) sensitizes MR spectra to diffusion of intracellular metabolites, potentially providing cell-specific information about cellular morphology. In this preliminary study, we applied DW-MRS to measure changes in the apparent diffusion coefficients (ADC) of glial and neuronal metabolites to healthy participants who underwent an LPS administration protocol. We hypothesized that the ADC of glial metabolites will be selectively modulated by LPS-induced glial activation. METHODS Seven healthy male volunteers, (mean 25.3 ± 5.9 years) were each tested in two separate sessions once after LPS (1 ng/Kg intravenously) and once after placebo (saline). Physiological responses were monitored during each session and serial blood samples and Profile of Mood States (POMS) completed to quantify white blood cell (WBC), cytokine and mood responses. DW-MRS data were acquired 5-5½ hours after injection from two brain regions: grey matter in the left thalamus, and frontal white matter. RESULTS Body temperature, heart rate, WBC and inflammatory cytokines were significantly higher in the LPS compared to the placebo condition (p < 0.001). The ADC of the glial metabolite choline (tCho) was also significantly increased after LPS administration compared to placebo (p = 0.008) in the thalamus which scaled with LPS-induced changes in POMS total and negative mood (Adj R2 = 0.83; p = 0.004). CONCLUSIONS DW-MRS may be a powerful new tool sensitive to glial cytomorphological changes in grey matter induced by systemic inflammation.
Collapse
|
7
|
Peters van Ton AM, Duindam HB, van Tuijl J, Li WW, Dieker HJ, Riksen NP, Meijer FA, Kessels RP, Kohn N, van der Hoeven JG, Pickkers P, Rijpkema M, Abdo WF. Neuroinflammation in cognitive decline post-cardiac surgery (the FOCUS study): an observational study protocol. BMJ Open 2021; 11:e044062. [PMID: 33980522 PMCID: PMC8118022 DOI: 10.1136/bmjopen-2020-044062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Postoperative cognitive dysfunction occurs frequently after coronary artery bypass grafting (CABG). The underlying mechanisms remain poorly understood, but neuroinflammation might play a pivotal role. We hypothesise that systemic inflammation induced by the surgical trauma could activate the innate immune (glial) cells of the brain. This could lead to an exaggerated neuroinflammatory cascade, resulting in neuronal dysfunction and loss of neuronal cells. Therefore, the aims of this study are to assess neuroinflammation in vivo presurgery and postsurgery in patients undergoing major cardiac surgery and investigate whether there is a relationship of neuroinflammation to cognitive outcomes, changes to brain structure and function, and systemic inflammation. METHODS AND ANALYSIS The FOCUS study is a prospective, single-centre observational study, including 30 patients undergoing elective on-pump CABG. Translocator protein (TSPO) positron emission tomography neuroimaging will be performed preoperatively and postoperatively using the second generation tracer 18F-DPA-714 to assess the neuroinflammatory response. In addition, a comprehensive cerebral MRI will be performed presurgery and postsurgery, in order to discover newly developed brain and vascular wall lesions. Up to 6 months postoperatively, serial extensive neurocognitive assessments will be performed and blood will be obtained to quantify systemic inflammatory responses and peripheral immune cell activation. ETHICS AND DISSEMINATION Patients do not benefit directly from engaging in the study, but imaging neuroinflammation is considered safe and no side effects are expected. The study protocol obtained ethical approval by the Medical Research Ethics Committee region Arnhem-Nijmegen. This work will be published in peer-reviewed international medical journals and presented at medical conferences. TRIAL REGISTRATION NUMBER NCT04520802.
Collapse
Affiliation(s)
- Annemieke M Peters van Ton
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Harmke B Duindam
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Julia van Tuijl
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Wilson Wl Li
- Department of Cardiothoracic Surgery, Radboud university medical center, Nijmegen, The Netherlands
| | - Hendrik-Jan Dieker
- Department of Cardiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Niels P Riksen
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Fj Anton Meijer
- Department of Medical Imaging, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Roy Pc Kessels
- Department of Medical Psychology, Radboud university medical center, Nijmegen, The Netherlands
- Donders Center for Cognition, Radboud University, Nijmegen, The Netherlands
| | - Nils Kohn
- Donders Institute for Brain, Cognition and Behaviour, Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Mark Rijpkema
- Department of Medical Imaging, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Wilson F Abdo
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|