1
|
Liu YJ, Lee CW, Liao YC, Huang JJT, Kuo HC, Jih KY, Lee YC, Chern Y. The role of adiponectin-AMPK axis in TDP-43 mislocalization and disease severity in ALS. Neurobiol Dis 2024; 202:106715. [PMID: 39490684 DOI: 10.1016/j.nbd.2024.106715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Hypermetabolism is a prominent characteristic of ALS patients. Aberrant activation of AMPK, an energy sensor regulated by adiponectin, is known to cause TDP-43 mislocalization, an early event in ALS pathogenesis. This study aims to evaluate the association between key energy mediators and clinical severity in ALS patients. We found that plasma adiponectin levels were significantly higher in ALS patients with ALSFRS-R scores below 38 compared to controls (p = 0.047). Additionally, adiponectin concentration was inversely correlated with ALSFRS-R scores (p = 0.021). Immunofluorescence staining of PBMCs revealed negative associations between AMPK activation, TDP-43 mislocalization, and ALSFRS-R scores. We then examined the hypothesis that adiponectin may activate the AMPK-TDP-43 axis in motor neurons. Our results demonstrated that adiponectin treatment of NSC34 cells and HiPSC-MNs induced AMPK activation and TDP-43 mislocalization in an adiponectin receptor-dependent manner. Collectively, these findings suggest that elevated plasma adiponectin may enhance AMPK activation, leading to TDP-43 mislocalization in both PBMCs and motor neurons of ALS patients. This highlights the potential involvement of the adiponectin-AMPK-TDP-43 axis in the dysregulated energy balance observed in ALS.
Collapse
Affiliation(s)
- Yu-Ju Liu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Lee
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, and Department of Neurology and Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Kang-Yang Jih
- Department of Neurology, Taipei Veterans General Hospital, and Department of Neurology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, and Department of Neurology and Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Weng HR. Emerging Molecular and Synaptic Targets for the Management of Chronic Pain Caused by Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:3602. [PMID: 38612414 PMCID: PMC11011483 DOI: 10.3390/ijms25073602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1β, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1β, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1β and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| |
Collapse
|
3
|
Akhilesh, Uniyal A, Mehta A, Tiwari V. Combination chemotherapy in rodents: a model for chemotherapy-induced neuropathic pain and pharmacological screening. Metab Brain Dis 2024; 39:43-65. [PMID: 37991674 DOI: 10.1007/s11011-023-01315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/09/2023] [Indexed: 11/23/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) remains a therapeutic challenge, with no US-FDA approved drugs or effective treatments available. Despite significant progress in unravelling the pathophysiology of CINP, the clinical translation of this knowledge into tangible outcome remains elusive. Here, we employed behavioural and pharmacological approaches to establish and validate a novel combination-based chemotherapeutic model of peripheral neuropathy. Male Sprague Dawley rats were subjected to chemotherapy administration followed by assessment of pain behaviour at different time-points post-chemotherapy. Paclitaxel-treated animals displayed an enhanced thermal and mechanical hypersensitivity from day four onwards which continued till day thirty-five post last paclitaxel injection. Notably, rats subjected to combination chemotherapy, displayed prolonged hypersensitivity that emerged on day four and persisted until day fifty-six. RT-PCR analysis revealed significant upregulation in DRG and spinal mRNA expressions of TRP channels (TRPA1, TRPV1, & TRPM8), pro-inflammatory cytokines (TNF-α & IL-1β) and neuropeptides, Substance P and CGRP in both the pain models. Interestingly, the combination chemotherapy model demonstrated a significant increase in DRG and spinal NR2B expressions compared to rats solely treated with paclitaxel. Pharmacological investigations revealed that gabapentin treatment substantially mitigates pain hypersensitivity in both the combined chemotherapy and paclitaxel-administered groups, with the simultaneous reversal of cellular and molecular changes observed in the lumbar DRG and spinal cord of rats. The findings from this study suggests that combination chemotherapy model exhibits heightened and prolonged hypersensitivity in comparison to the conventional paclitaxel-induced neuropathic pain model. This model not only recapitulates clinical biomarkers of neuropathy but also presents a potential alternative platform for screening analgesic drugs targeted at CINP.
Collapse
Affiliation(s)
- Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Anuj Mehta
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
4
|
Hu L, Yang J, Liu T, Zhang J, Huang X, Yu H. Hotspots and Trends in Research on Treating Pain with Electroacupuncture: A Bibliometric and Visualization Analysis from 1994 to 2022. J Pain Res 2023; 16:3673-3691. [PMID: 37942222 PMCID: PMC10629439 DOI: 10.2147/jpr.s422614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Purpose Electroacupuncture is widely used to pain management. A bibliometric analysis was conducted to identify the hotspots and trends in research on electroacupuncture for pain. Methods We retrieved studies published from 1994-2022 on the topic of pain relief by electroacupuncture from the Web of Science Core Collection database. We comprehensively analysed the data with VOSviewer, CiteSpace, and bibliometrix. Seven aspects of the data were analysed separately: annual publication outputs, countries, institutions, authors, journals, keywords and references. Results A total of 2030 papers were analysed, and the number of worldwide publications continuously increased over the period of interest. The most productive country and institution in this field were China and KyungHee University. Evidence-Based Complementary and Alternative Medicine was the most productive journal, and Pain was the most co-cited journal. Han Jisheng, Fang Jianqiao, and Lao Lixing were the most representative authors. Based on keywords and references, three active areas of research on EA for pain were mechanisms, randomized controlled trials, and perioperative applications. Three emerging trends were functional magnetic resonance imaging (fMRI), systematic reviews, and knee osteoarthritis. Conclusion This study comprehensively analysed the research published over the past 28 years on electroacupuncture for pain treatment, using bibliometrics and science mapping analysis. This work presents the current status and landscape of the field and may serve as a valuable resource for researchers. Chronic pain, fMRI-based mechanistic research, and the perioperative application of electroacupuncture are among the likely foci of future research in this area.
Collapse
Affiliation(s)
- Liyu Hu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Jikang Yang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Ting Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Jinhuan Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Xingxian Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Haibo Yu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| |
Collapse
|
5
|
Leone GE, Shields DC, Haque A, Banik NL. Rehabilitation: Neurogenic Bone Loss after Spinal Cord Injury. Biomedicines 2023; 11:2581. [PMID: 37761022 PMCID: PMC10526516 DOI: 10.3390/biomedicines11092581] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Osteoporosis is a common skeletal disorder which can severely limit one's ability to complete daily tasks due to the increased risk of bone fractures, reducing quality of life. Spinal cord injury (SCI) can also result in osteoporosis and sarcopenia. Most individuals experience sarcopenia and osteoporosis due to advancing age; however, individuals with SCI experience more rapid and debilitating levels of muscle and bone loss due to neurogenic factors, musculoskeletal disuse, and cellular/molecular events. Thus, preserving and maintaining bone mass after SCI is crucial to decreasing the risk of fragility and fracture in vulnerable SCI populations. Recent studies have provided an improved understanding of the pathophysiology and risk factors related to musculoskeletal loss after SCI. Pharmacological and non-pharmacological therapies have also provided for the reduction in or elimination of neurogenic bone loss after SCI. This review article will discuss the pathophysiology and risk factors of muscle and bone loss after SCI, including the mechanisms that may lead to muscle and bone loss after SCI. This review will also focus on current and future pharmacological and non-pharmacological therapies for reducing or eliminating neurogenic bone loss following SCI.
Collapse
Affiliation(s)
- Giovanna E. Leone
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Donald C. Shields
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, USA
| | - Narendra L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
6
|
Liang F, Du L, Rao X, Li Y, Long W, Tian J, Zhu X, Zou A, Lu W, Wan B. Effect of electroacupuncture at ST36 on the cerebral metabolic kinetics of rheumatoid arthritis rats. Brain Res Bull 2023; 201:110700. [PMID: 37414302 DOI: 10.1016/j.brainresbull.2023.110700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Electroacupuncture (EA) has been shown to enhance the recovery of symptoms in rheumatoid arthritis (RA); however, the underlying mechanism remains unclear. Both the pathogenesis of RA and the therapeutic effects of EA are closely associated with the metabolic activity of the brain. In this study, we investigated the effect of EA at the "Zusanli" acupoint (ST36) on a rat model of collagen-induced rheumatoid arthritis (CIA). The results demonstrated that EA effectively alleviated joint swelling, synovial hyperplasia, cartilage erosion, and bone destruction in CIA rats. Additionally, the metabolic kinetics study revealed a significant increase in the 13C enrichment of GABA2 and Glu4 in the midbrain of CIA rats treated with EA. Correlation network analysis showed that changes in Gln4 levels in the hippocampus were strongly associated with the severity of rheumatoid arthritis. Immunofluorescence staining of c-Fos in the midbrain's periaqueductal gray matter (PAG) and hippocampus demonstrated increased c-Fos expression in these regions following EA treatment. These findings suggest that GABAergic and glutamatergic neurons in the midbrain, along with astrocytes in the hippocampus, may play vital roles in the beneficial effects of EA on RA. Furthermore, the PAG and hippocampus brain regions hold potential as critical targets for future RA treatments. Overall, this study provides valuable insights into the specific mechanism of EA in treating RA by elucidating the perspective of cerebral metabolism.
Collapse
Affiliation(s)
- Fangyuan Liang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Du
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoping Rao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Ying Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Wei Long
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiaxuan Tian
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuanai Zhu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Aijia Zou
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Wei Lu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China.
| | - Bijiang Wan
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China.
| |
Collapse
|
7
|
Zhang Y, Wei Y, Zheng T, Tao Y, Sun Y, Jiang D, Tao J. Adiponectin receptor 1-mediated stimulation of Cav3.2 channels in trigeminal ganglion neurons induces nociceptive behaviors in mice. J Headache Pain 2023; 24:117. [PMID: 37620777 PMCID: PMC10463856 DOI: 10.1186/s10194-023-01658-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Adipokines, including adiponectin, are implicated in nociceptive pain; however, the underlying cellular and molecular mechanisms remain unknown. METHODS Using electrophysiological recording, immunostaining, molecular biological approaches and animal behaviour tests, we elucidated a pivotal role of adiponectin in regulating membrane excitability and pain sensitivity by manipulating Cav3.2 channels in trigeminal ganglion (TG) neurons. RESULTS Adiponectin enhanced T-type Ca2+ channel currents (IT) in TG neurons through the activation of adiponectin receptor 1 (adipoR1) but independently of heterotrimeric G protein-mediated signaling. Coimmunoprecipitation revealed a physical association between AdipoR1 and casein kinase II alpha-subunits (CK2α) in the TG, and inhibiting CK2 activity by chemical inhibitor or siRNA targeting CK2α prevented the adiponectin-induced IT response. Adiponectin significantly activated protein kinase C (PKC), and this effect was abrogated by CK2α knockdown. Adiponectin increased the membrane abundance of PKC beta1 (PKCβ1). Blocking PKCβ1 pharmacologically or genetically abrogated the adiponectin-induced IT increase. In heterologous expression systems, activation of adipoR1 induced a selective enhancement of Cav3.2 channel currents, dependent on PKCβ1 signaling. Functionally, adiponectin increased TG neuronal excitability and induced mechanical pain hypersensitivity, both attenuated by T-type channel blockade. In a trigeminal neuralgia model induced by chronic constriction injury of infraorbital nerve, blockade of adipoR1 signaling suppressed mechanical allodynia, which was prevented by silencing Cav3.2. CONCLUSION Our study elucidates a novel signaling cascade wherein adiponectin stimulates TG Cav3.2 channels via adipoR1 coupled to a novel CK2α-dependent PKCβ1. This process induces neuronal hyperexcitability and pain hypersensitivity. Insight into adipoR-Cav3.2 signaling in sensory neurons provides attractive targets for pain treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Clinical Research Center of Neurological Disease & Department of Geriatrics, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004 People’s Republic of China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123 People’s Republic of China
| | - Yuan Wei
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123 People’s Republic of China
| | - Tingting Zheng
- Clinical Research Center of Neurological Disease & Department of Geriatrics, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004 People’s Republic of China
| | - Yu Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123 People’s Republic of China
| | - Yufang Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123 People’s Republic of China
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123 People’s Republic of China
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Jin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123 People’s Republic of China
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123 People’s Republic of China
| |
Collapse
|
8
|
Viatchenko-Karpinski V, Kong L, Weng HR. Deficient AMPK activity contributes to hyperexcitability in peripheral nociceptive sensory neurons and thermal hyperalgesia in lupus mice. PLoS One 2023; 18:e0288356. [PMID: 37440542 PMCID: PMC10343046 DOI: 10.1371/journal.pone.0288356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Patients with systemic lupus erythematosus (SLE) often suffer from chronic pain. Little is known about the peripheral mechanisms underlying the genesis of chronic pain induced by SLE. The aim of this study was to investigate whether and how membrane properties in nociceptive neurons in the dorsal root ganglions (DRGs) are altered by SLE. We found elevation of resting membrane potentials, smaller capacitances, lower action potential thresholds and rheobases in nociceptive neurons in the DRGs from MRL/lpr mice (an SLE mouse model) with thermal hyperalgesia. DRGs from MRL/lpr mice had increased protein expressions in TNFα, IL-1β, and phosphorylated ERK but suppressed AMPK activity, and no changes in sodium channel 1.7 protein expression. We showed that intraplantar injection of Compound C (an AMPK inhibitor) induced thermal hyperalgesia in normal mice while intraplantar injection of AICAR (an AMPK activator) reduced thermal hyperalgesia in MRL/Lpr mice. Upon inhibition of AMPK membrane properties in nociceptive neurons from normal control mice could be rapidly switched to those found in SLE mice with thermal hyperalgesia. Our study indicates that increased excitability in peripheral nociceptive sensory neurons contributes to the genesis of thermal hyperalgesia in mice with SLE, and AMPK regulates membrane properties in nociceptive sensory neurons as well as thermal hyperalgesia in mice with SLE. Our study provides a basis for targeting signaling pathways regulating membrane properties of peripheral nociceptive neurons as a means for conquering chronic pain caused by SLE.
Collapse
Affiliation(s)
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, United States of America
| | - Han-Rong Weng
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, United States of America
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, United States of America
| |
Collapse
|
9
|
Pei X, Li H, Yu H, Wang W, Mao D. APN Expression in Serum and Corpus Luteum: Regulation of Luteal Steroidogenesis Is Possibly Dependent on the AdipoR2/AMPK Pathway in Goats. Cells 2023; 12:1393. [PMID: 37408227 DOI: 10.3390/cells12101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Adiponectin (APN) is an essential adipokine for a variety of reproductive processes. To investigate the role of APN in goat corpora lutea (CLs), CLs and sera from different luteal phases were collected for analysis. The results showed that the APN structure and content had no significant divergence in different luteal phases both in CLs and sera; however, high molecular weight APN was dominant in serum, while low molecular weight APN was more present in CLs. The luteal expression of both AdipoR1/2 and T-cadherin (T-Ca) increased on D11 and 17. APN and its receptors (AdipoR1/2 and T-Ca) were mainly expressed in goat luteal steroidogenic cells. The steroidogenesis and APN structure in pregnant CLs had a similar model as in the mid-cycle CLs. To further explore the effects and mechanisms of APN in CLs, steroidogenic cells from pregnant CLs were isolated to detect the AMPK-mediated pathway by the activation of APN (AdipoRon) and knockdown of APN receptors. The results revealed that P-AMPK in goat luteal cells increased after incubation with APN (1 μg/mL) or AdipoRon (25 μM) for 1 h, and progesterone (P4) and steroidogenic proteins levels (STAR/CYP11A1/HSD3B) decreased after 24 h. APN did not affect the steroidogenic protein expression when cells were pretreated with Compound C or SiAMPK. APN increased P-AMPK and reduced the CYP11A1 expression and P4 levels when cells were pretreated with SiAdipoR1 or SiT-Ca, while APN failed to affect P-AMPK, the CYP11A1 expression or the P4 levels when pretreated with SiAdipoR2. Therefore, the different structural forms of APN in CLs and sera may possess distinct functions; APN might regulate luteal steroidogenesis through AdipoR2 which is most likely dependent on AMPK.
Collapse
Affiliation(s)
- Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haolin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Lin YW. Electroacupuncture reduces mice inflammatory pain through adiponectin in the peripheral circulation and the central spinal cord. Brain Behav Immun 2022; 100:8-9. [PMID: 34808286 DOI: 10.1016/j.bbi.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yi-Wen Lin
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|