1
|
Ho MFS, Farkas O, Faria AV, Plemel JR, Kerr BJ. A recent history of immune cell sex differences in the peripheral nervous system in persistent pain states. Brain Behav Immun 2025; 128:766-775. [PMID: 40345628 DOI: 10.1016/j.bbi.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025] Open
Abstract
Pain is entwined with inflammation, and biological sex often influences mechanisms of the immune system. Due to possible differences in inflammatory mechanisms, women are predisposed to autoimmune diseases and chronic pain. Despite sex as a critical variable in clinical cases of autoimmune conditions and its pain comorbidities, fundamental investigations have long underrepresented female subjects in their studies. Fundamental research in the 2010s, however, identified a binary sex specific mechanism for pain in rodents: male pain is microglia-driven while female pain is T cell-driven. Since then, studies have expanded in neuro-immunology to indicate that the sex differences and immune cells involved in these processes take on more elaborate roles when expanded to other causal modalities and anatomical levels of neuropathic and inflammatory pain. In this mini-review, we highlight updated roles for macrophages, T cells, and B cells in the peripheral nervous system during persistent pain conditions: neuropathic pain and inflammatory pain. We discuss sex similarities and sex differences in these cell types. By parsing out the sex specific roles of immune cells in persistent pain states, we may be better positioned to find immune-based therapies that can effectively target chronic pain in sex-biased autoimmune conditions.
Collapse
Affiliation(s)
- Madelene Faye S Ho
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Olivia Farkas
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andre Vilela Faria
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Physiology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
2
|
Awad-Igbaria Y, Abu-Ata S, Sakas R, Bang S, Fishboom T, Shamir A, Bornstein J, Lowenstein L, Palzur E. The Involvement of Glutamate-mGluR5 Signaling in the Development of Vulvar Hypersensitivity. Int J Mol Sci 2025; 26:523. [PMID: 39859236 PMCID: PMC11765200 DOI: 10.3390/ijms26020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Provoked vulvodynia (PV) is the leading cause of vulvar pain and dyspareunia. The etiology of PV is multifactorial and remains poorly understood. PV is associated with a history of repeated vulvar inflammation and is often accompanied by sensory neuromodulation as a result of activation of the metabotropic glutamate receptor 5 (mGluR5) in the sensory nerve terminals. Therefore, this study aims to examine the role of glutamate-mGluR5 signaling during the initial inflammatory phase in chronic vulvar pain development in an animal model of PV.Thermal and mechanical vulvar sensitivity was assessed for three weeks following zymosan vulvar challenges. Anxiety-like behavior and locomotor activity were assessed at the end of the experiment. To investigate the role of glutamate mGluR5, the MTEP (mGluR5 antagonist) was injected into the vulva during vulvar inflammation. On the other hand, glutamate or CHPG (mGluR5 agonist) were injected in order to examine the effects of mGluR5 activation. RT-PCR was performed to assess changes in the transcription of genes related to neuroinflammation, neuromodulation, and neuroplasticity in the spinal cord (L6-S3). Zymosan-induced inflammation resulted in a significant thermal and mechanical vulvar hypersensitivity that persisted for over a month after the zymosan injection. However, local treatment with MTEP enhanced the vulvar mechanical and thermal hypersensitivity. On the other hand, activation of the mGluR5 via injection of glutamate or CHPG into the vulva leads to long-lasting vulvar mechanical and thermal hypersensitivity. The activation of the glutamate pathway was found to be accompanied by an increase in the transcription level of genes related to neuroinflammation and neuroplasticity in the sacral spine region. The present findings indicate that vulvar hypersensitivity is mediated by mGluR5 activation during inflammation. Hence, modulation of the mGluR5 pathway during the critical period of inflammation contributes to preventing chronic vulvar pain development. Conversely, activation of the mGluR5 pathway leads to long-lasting mechanical and thermal hypersensitivity.
Collapse
Affiliation(s)
- Yaseen Awad-Igbaria
- Azriele Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (S.A.-A.); (R.S.); (T.F.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
| | - Saher Abu-Ata
- Azriele Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (S.A.-A.); (R.S.); (T.F.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
| | - Reem Sakas
- Azriele Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (S.A.-A.); (R.S.); (T.F.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
| | - Sarina Bang
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel
| | - Tom Fishboom
- Azriele Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (S.A.-A.); (R.S.); (T.F.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko 2412001, Israel;
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3478403, Israel
| | - Jacob Bornstein
- Azriele Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (S.A.-A.); (R.S.); (T.F.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
| | - Lior Lowenstein
- Azriele Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (S.A.-A.); (R.S.); (T.F.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel
| | - Eilam Palzur
- Azriele Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (S.A.-A.); (R.S.); (T.F.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel
| |
Collapse
|
3
|
Pariyar R, Wang J, Hammond R, Koo H, Dalley N, La JH. TRPA1 Agonist-Responsive Afferents Contribute to Central Sensitization by Suppressing Spinal GABAergic Interneurons Through Somatostatin 2A Receptors. THE JOURNAL OF PAIN 2024; 25:104686. [PMID: 39321909 PMCID: PMC11560608 DOI: 10.1016/j.jpain.2024.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Altered nociception, a key feature of nociplastic pain, often involves central sensitization. We previously found that central sensitization underlying a nociplastic pain state in female mice depends on the ongoing activity of TRPA1 agonist-responsive afferents. Here, we investigated how the activity of these afferents induces and maintains central sensitization at the spinal level. We hypothesized that, in the superficial dorsal horn where somatostatin (SST) is expressed in excitatory interneurons and the SST2A receptor (SST2A-R) in GABAergic inhibitory interneurons (GABAn), TRPA1 agonist-responsive afferents stimulate SST-expressing excitatory interneurons (SSTn), leading to GABAn suppression through SST2A-R and resulting in altered nociception. We tested this hypothesis using ex vivo Ca2+ imaging of dorsal root-attached spinal cord slices expressing GCaMP6f in either SSTn or GABAn and in vivo assessment of mechanical hypersensitivity. The dorsal root was chemically (with allyl isothiocyanate [AITC]) and electrically stimulated to activate TRPA1-expressing nociceptors and all afferents, respectively. The stimulation of dorsal root with AITC excited SSTn. During activation of AITC-responsive afferents, a subset of SSTn showed potentiated responses to both low- and high-threshold afferent inputs, whereas a subset of GABAn showed suppressed responses to those afferents in an SST2A-R-dependent manner. Intrathecally administered SST2A-R antagonist inhibited the development of mechanical hypersensitivity by intraplantar AITC injection and alleviated persistent mechanical hypersensitivity in the murine model of nociplastic pain. These results suggest that the activity of TRPA1 agonist-responsive afferents induces and maintains central sensitization by activating dorsal horn SSTn and suppressing GABAn via SST2A-R, resulting in altered nociception that manifests as mechanical hypersensitivity. PERSPECTIVE: This article presents experimental evidence that TRPA1 agonist-responsive afferents induce and maintain central sensitization at the spinal level by activating SST-expressing excitatory interneurons and suppressing GABAergic inhibitory interneurons via SST2A-R. Spinal SST2A-R may represent a promising target for treating mechanical pain hypersensitivity due to central sensitization by TRPA1 agonist-responsive afferents.
Collapse
Affiliation(s)
- Ramesh Pariyar
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Jigong Wang
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Regan Hammond
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Ho Koo
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Nicholas Dalley
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Jun-Ho La
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
4
|
Mogil JS, Parisien M, Esfahani SJ, Diatchenko L. Sex differences in mechanisms of pain hypersensitivity. Neurosci Biobehav Rev 2024; 163:105749. [PMID: 38838876 DOI: 10.1016/j.neubiorev.2024.105749] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Sahel J Esfahani
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
5
|
Sun C, Deng J, Ma Y, Meng F, Cui X, Li M, Li J, Li J, Yin P, Kong L, Zhang L, Tang P. The dual role of microglia in neuropathic pain after spinal cord injury: Detrimental and protective effects. Exp Neurol 2023; 370:114570. [PMID: 37852469 DOI: 10.1016/j.expneurol.2023.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition that is frequently accompanied by neuropathic pain, resulting in significant physical and psychological harm to a vast number of individuals globally. Despite the high prevalence of neuropathic pain following SCI, the precise underlying mechanism remains incompletely understood. Microglia are a type of innate immune cell that are present in the central nervous system (CNS). They have been observed to have a significant impact on neuropathic pain following SCI. This article presents a comprehensive overview of recent advances in understanding the role of microglia in the development of neuropathic pain following SCI. Specifically, the article delves into the detrimental and protective effects of microglia on neuropathic pain following SCI, as well as the mechanisms underlying their interconversion. Furthermore, the article provides a thorough overview of potential avenues for future research in this area.
Collapse
Affiliation(s)
- Chang Sun
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China; Department of Orthopedics, Air Force Medical Center, PLA, Beijing, China
| | - Junhao Deng
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yifei Ma
- School of Medicine, Nankai University, Tianjin, China
| | - Fanqi Meng
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Ming Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jiantao Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jia Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| |
Collapse
|
6
|
Bułdyś K, Górnicki T, Kałka D, Szuster E, Biernikiewicz M, Markuszewski L, Sobieszczańska M. What Do We Know about Nociplastic Pain? Healthcare (Basel) 2023; 11:1794. [PMID: 37372912 PMCID: PMC10298569 DOI: 10.3390/healthcare11121794] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Nociplastic pain is a recently distinguished type of pain, distinct from neuropathic and nociceptive pain, and is well described in the literature. It is often mistaken for central sensitization. Pathophysiology has not been clearly established with regard to alteration of the concentration of spinal fluid elements, the structure of the white and gray matter of the brain, and psychological aspects. Many different diagnostic tools, i.e., the painDETECT and Douleur Neuropathique 4 questionnaires, have been developed to diagnose neuropathic pain, but they can also be applied for nociplastic pain; however, more standardized instruments are still needed in order to assess its occurrence and clinical presentation. Numerous studies have shown that nociplastic pain is present in many different diseases such as fibromyalgia, complex regional pain syndrome type 1, and irritable bowel syndrome. Current pharmacological and nonpharmacological treatments for nociceptive and neuropathic pain are not entirely suitable for treating nociplastic pain. There is an ongoing effort to establish the most efficient way to manage it. The significance of this field has led to several clinical trials being carried out in a short time. The aim of this narrative review was to discuss the currently available evidence on pathophysiology, associated diseases, treatment possibilities, and clinical trials. It is important that physicians widely discuss and acknowledge this relatively new concept in order to provide optimized pain control for patients.
Collapse
Affiliation(s)
- Kacper Bułdyś
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities in Radom, 26-600 Radom, Poland
| | - Tomasz Górnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Dariusz Kałka
- Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
- Men’s Health Centre in Wrocław, 53-151 Wroclaw, Poland
| | - Ewa Szuster
- Cardiosexology Students Club, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | | | - Leszek Markuszewski
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities in Radom, 26-600 Radom, Poland
| | | |
Collapse
|
7
|
Yang S, Zhang B, Wang D, Hu S, Wang W, Liu C, Wu Z, Yang C. Role of GABAergic system in the comorbidity of pain and depression. Brain Res Bull 2023:110691. [PMID: 37331640 DOI: 10.1016/j.brainresbull.2023.110691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
Patients with chronic pain often suffer with depressive symptoms, and these two conditions can be aggravated by each other over time, leading to an increase in symptom intensity and duration. The comorbidity of pain and depression poses a significant challenge to human health and quality of life, as it is often difficult to diagnose early and treat effectively. Therefore, exploring the molecular mechanisms underlying the comorbidity of chronic pain and depression is crucial to identifying new therapeutic targets for treatment. However, understanding the pathogenesis of comorbidity requires examining interactions among multiple factors, which calls for an integrative perspective. While several studies have explored the role of the GABAergic system in pain and depression, fewer have examined its interactions with other systems involved in their comorbidity. Here, we review the evidence that the role of GABAergic system in the comorbidity of chronic pain and depression, as well as the interactions between the GABAergic system and other secondary systems involved in pain and depression comorbidity, providing a comprehensive understanding of their intricate interplay.
Collapse
Affiliation(s)
- Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Bingyuan Zhang
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, No. 399 Hailing South Road, Taizhou City, 225300, Jiangsu Province, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Wenli Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China.
| |
Collapse
|
8
|
Jin MY, Everett ES, Abd-Elsayed A. Microbiological and Physiological Effects of Pain. Curr Pain Headache Rep 2023; 27:165-173. [PMID: 37086365 PMCID: PMC10122082 DOI: 10.1007/s11916-023-01114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Pain is an important innate defense mechanism that can dramatically alter a person's quality of life. Understanding the microbiological and physiological effects of pain may be important in the pursuit of novel pain interventions. The three descriptors of pain recognized by the International Association for the Study of Pain are nociceptive, neuropathic, and nociplastic pain. Our review examined the current understanding of all three pain types, focusing on the key molecules involved in the manifestation of each type as well as physiological effects. Additionally, we compared the differences in painful and painless neuropathies and discussed the neuroimmune interaction involved in the manifestation of pain.
Collapse
Affiliation(s)
- Max Y Jin
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Erin S Everett
- Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|