1
|
Wang H, Song X, Shen H, Liu W, Wang Y, Zhang M, Yang T, Mou Y, Ren C, Song X. Cancer neuroscience in head and neck: interactions, modulation, and therapeutic strategies. Mol Cancer 2025; 24:101. [PMID: 40165230 PMCID: PMC11956203 DOI: 10.1186/s12943-025-02299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Head and neck cancer (HNC) is an aggressive malignancy with significant effects on the innervation. Not only is it at the top of the cancer spectrum with a dismal prognosis, but it also imposes considerable stress on patients and society owing to frequent neurological symptoms. With progress in cancer neuroscience, the interactions between HNC and the nervous system, as well as the underlying mechanisms, have become increasingly clear. Compelling evidence suggests communication of information between cancer and nerve cells and devastation of the neurological system with tumor growth. However, the thorough grasp of HNC in cancer neuroscience has been severely constrained by the intricacy of HNC and fragmented research. This review comprehensively organizes and summarizes the latest research on the crosstalk between HNC and the nervous system. It aims to clarify various aspects of the neurological system in HNC, including the physiology, progression, and treatment of cancer. Furthermore, the opportunities and challenges of cancer neuroscience in HNC are discussed, which offers fresh perspectives on the neurological aspects of HNC diagnosis and management.
Collapse
Affiliation(s)
- Hanrui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiaoyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Hui Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Wanchen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Mingjun Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ting Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| |
Collapse
|
2
|
Dantzer R, Chelette B, Vichaya EG, West AP, Grossberg A. The metabolic basis of cancer-related fatigue. Neurosci Biobehav Rev 2025; 169:106035. [PMID: 39892436 PMCID: PMC11866516 DOI: 10.1016/j.neubiorev.2025.106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Although we are all familiar with the sensation of fatigue, there are still profound divergences on what it represents and its mechanisms. Fatigue can take various forms depending on the condition in which it develops. Cancer-related fatigue is considered a symptom of exhaustion that is often present at the time of diagnosis, increases in intensity during cancer therapy, and does not always recede after completion of treatment. It is usually attributed to the inflammation induced by damage-associated molecular patterns released by tumor cells during cancer progression and in response to its treatment. In this review, we argue that it is necessary to go beyond the symptoms of fatigue to understand its nature and mechanisms. We propose to consider fatigue as a psychobiological process that regulates the behavioral activities an organism engages in to satisfy its needs, according to its physical ability to do so and to the capacity of its intermediary metabolism to exploit the resources procured by these activities. This last aspect is critical as it implies that these metabolic aspects need to be considered to understand fatigue. Based on the findings we have accumulated over several years of studying fatigue in diverse murine models of cancer, we show that energy metabolism plays a key role in the development and persistence of this condition. Cancer-related fatigue is dependent on the energy requirements of the tumor and the negative impact of cancer therapy on the mitochondrial function of the host. When inflammation is present, it adds to the organism's energy expenses. The organism needs to adjust its metabolism to the different forms of cellular stress it experiences thanks to specialized communication factors known as mitokines that act locally and at a distance from the cells in which they are produced. They induce the subjective, behavioral, and metabolic components of fatigue by acting in the brain. Therefore, the targeting of mitokines and their brain receptors offers a window of opportunity to treat fatigue when it is no longer adaptive but an obstacle to the quality of life of cancer survivors.
Collapse
Affiliation(s)
- Robert Dantzer
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Brandon Chelette
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elisabeth G Vichaya
- Department of Psychology & Neuroscience, Baylor University, Waco, TX 76798, USA
| | | | - Aaron Grossberg
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Phan TT, Scott KS, Chelette B, Phillip West A, Dantzer R. The fatigue-inducing effects of cancer and its therapy are characterized by decreased physical activity in the absence of any motivational deficit. Brain Behav Immun 2024; 117:205-214. [PMID: 38244945 PMCID: PMC11633841 DOI: 10.1016/j.bbi.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024] Open
Abstract
Although cancer and its therapy are well known to be associated with fatigue, the exact nature of cancer-related fatigue remains ill-defined. We previously reported that fatigue-like behavior induced independently by tumor growth and by the chemotherapeutic agent cisplatin is characterized by reduced voluntary wheel running and an intact motivation to expand effort for food rewards. The present set of experiments was initiated to characterize the functional consequences of fatigue induced by chemoradiotherapy in tumor-bearing mice and relate them to changes in the expression of genes coding for inflammation, mitochondria dynamics and metabolism. Two syngeneic murine models of cancer were selected for this purpose, a model of human papilloma virus-related head and neck cancer and a model of lung cancer. In both models, tumor-bearing mice were submitted to chemoradiotherapy to limit tumor progression. Two dimensions of fatigue were assessed, the physical dimension by changes in physical activity in mice trained to run in wheels and the motivational dimension by changes in the performance of mice trained to nose poke to obtain a food reward in a progressive ratio schedule of food reinforcement. Chemoradiotherapy reliably decreased wheel running activity but had no effect on performance in the progressive ratio in both murine models of cancer. These effects were the same for the two murine models of cancer and did not differ according to sex. Livers and brains were collected at the end of the experiments for qRT-PCR analysis of expression of genes coding for inflammation, mitochondria dynamics, and metabolism. The observed changes were mainly apparent in the liver and typical of activation of type I interferon and NF-κB-dependent signaling, with alterations in mitochondrial dynamics and a shift toward glycolysis. Although the importance of these alterations for the pathophysiology of cancer-related fatigue remains to be explored, the present findings indicate that fatigue brought on by cancer therapy in tumor-bearing mice is more physical than motivational.
Collapse
Affiliation(s)
- Thien T Phan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Current address: Department of Medical Physiology, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Kiersten S Scott
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Present address: Department of Neurology, McGovern School of Medicine, UT Health Houston, TX 77030, USA
| | - Brandon Chelette
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77087, USA; Present address: The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Robert Dantzer
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|