1
|
Kupjetz M, Wences Chirino TY, Joisten N, Zimmer P. Kynurenine pathway dysregulation as a mechanistic link between cognitive impairment and brain damage: Implications for multiple sclerosis. Brain Res 2025; 1853:149415. [PMID: 39710050 DOI: 10.1016/j.brainres.2024.149415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Cognitive impairment is a core symptom of multiple sclerosis (MS), resulting from inflammation-related brain damage and brain network dysfunction. Inflammation also causes dysregulation of the kynurenine pathway, which is the primary route of tryptophan metabolism. Kynurenine pathway dysregulation is characterised by a shift in concentrations of tryptophan catabolites, also referred to as kynurenines. Some kynurenines have neurotoxic effects that partly resemble the molecular mechanisms of MS pathophysiology underpinning brain damage and brain network dysfunction. The kynurenine pathway may therefore qualify as a mechanistic link between systemic inflammation, brain damage, and cognitive impairment in MS. This perspective article (1) provides an overview of inflammation-related kynurenine pathway dysregulation and MS-relevant neuroimmune properties of kynurenines and (2) summarises the current evidence on associations between systemic kynurenines, imaging metrics of brain structure or related markers, and cognitive performance in populations that present with kynurenine pathway dysregulation and are prone to cognitive impairment. These findings are used to (3) set a research agenda for future studies aimed at clarifying the role of the kynurenine pathway in brain damage and cognitive impairment in MS.
Collapse
Affiliation(s)
- Marie Kupjetz
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany.
| | - Tiffany Y Wences Chirino
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany.
| | - Niklas Joisten
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany; Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, Sprangerweg 2, Göttingen, 37075, Germany.
| | - Philipp Zimmer
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany.
| |
Collapse
|
2
|
Li XY, Rao Y, Li GH, He L, Wang Y, He W, Fang P, Pei C, Xi L, Xie H, Lu YR. Single-nucleus RNA sequencing uncovers metabolic dysregulation in the prefrontal cortex of major depressive disorder patients. Sci Rep 2025; 15:7418. [PMID: 40033004 PMCID: PMC11876315 DOI: 10.1038/s41598-025-92030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
Major depressive disorder (MDD) is a widespread psychiatric condition, recognized as the third leading cause of global disease burden in 2008. In the context of MDD, alterations in synaptic transmission within the prefrontal cortex (PFC) are associated with PFC hypoactivation, a key factor in cognitive function and mood regulation. Given the high energy demands of the central nervous system, these synaptic changes suggest a metabolic imbalance within the PFC of MDD patients. However, the cellular mechanisms underlying this metabolic dysregulation remain not fully elucidated. This study employs single-nucleus RNA sequencing (snRNA-seq) data to predict metabolic alterations in the dorsolateral PFC (DLPFC) of MDD patients. Our analysis revealed cell type-specific metabolic patterns, notably the disruption of oxidative phosphorylation and carbohydrate metabolism in the DLPFC of MDD patients. Gene set enrichment analysis based on human phenotype ontology predicted alterations in serum lactate levels in MDD patients, corroborated by the observed decrease in lactate levels in MDD patients compared to 47 age-matched healthy controls (HCs). This transcriptional analysis offers novel insights into the metabolic disturbances associated with MDD and the energy dynamics underlying DLPFC hypoactivation. These findings are instrumental for comprehending the pathophysiology of MDD and may guide the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xiang-Yao Li
- Department of Psychiatry, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Yingbo Rao
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Guo-Hao Li
- Department of Psychiatry, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Luxi He
- Department of Psychiatry, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yaohan Wang
- Department of Psychiatry, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wenli He
- Department of Psychiatry, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Ping Fang
- Department of Psychiatry, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Chenyu Pei
- Department of Psychiatry, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Lun Xi
- Department of Psychiatry, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Haiyan Xie
- Department of Psychiatry, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yun-Rong Lu
- Department of Psychiatry, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Department of Psychiatry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
3
|
Stone TW, Darlington LG, Badawy AAB, Williams RO. The Complex World of Kynurenic Acid: Reflections on Biological Issues and Therapeutic Strategy. Int J Mol Sci 2024; 25:9040. [PMID: 39201726 PMCID: PMC11354734 DOI: 10.3390/ijms25169040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
It has been unequivocally established that kynurenic acid has a number of actions in a variety of cells and tissues, raising, in principle, the possibility of targeting its generation, metabolism or sites of action to manipulate those effects to a beneficial therapeutic end. However, many basic aspects of the biology of kynurenic acid remain unclear, potentially leading to some confusion and misinterpretations of data. They include questions of the source, generation, targets, enzyme expression, endogenous concentrations and sites of action. This essay is intended to raise and discuss many of these aspects as a source of reference for more balanced discussion. Those issues are followed by examples of situations in which modulating and correcting kynurenic acid production or activity could bring significant therapeutic benefit, including neurological and psychiatric conditions, inflammatory diseases and cell protection. More information is required to obtain a clear overall view of the pharmacological environment relevant to kynurenic acid, especially with respect to the active concentrations of kynurenine metabolites in vivo and changed levels in disease. The data and ideas presented here should permit a greater confidence in appreciating the sites of action and interaction of kynurenic acid under different local conditions and pathologies, enhancing our understanding of kynurenic acid itself and the many clinical conditions in which manipulating its pharmacology could be of clinical value.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| | - L. Gail Darlington
- Worthing Hospital, University Hospitals Sussex NHS Foundation Trust, Worthing BN11 2DH, UK
| | - Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
4
|
Chojnacki C, Gąsiorowska A, Popławski T, Konrad P, Chojnacki M, Fila M, Blasiak J. Beneficial Effect of Increased Tryptophan Intake on Its Metabolism and Mental State of the Elderly. Nutrients 2023; 15:847. [PMID: 36839204 PMCID: PMC9961537 DOI: 10.3390/nu15040847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The elderly often suffer from sleep disorders and depression, which contribute to mood disorders. In our previous work, we showed that elderly individuals with mood disorders had a lower intake of TRP and recommended a TRP-based dietary intervention to improve the mental state of such individuals. In this work, we assessed the impact of a TRP-rich diet on the mental state of, and TRP metabolism in, elderly individuals with mood disorders. Forty elderly individuals with depression and sleep disorders and an equal number of elderly subjects without mood disorders were enrolled in this study. TRP intake was evaluated with the nutrition calculator. Patients with mood disorders had a lower TRP intake than their normal counterparts and received a TRP-rich diet with TRP content of 25 mg per kilogram of the body per day for 12 weeks. The mental state was assessed before and after this dietary intervention with the Hamilton Depression Rating Scale (HAM-D) and the Insomnia Severity Index (ISI). At those times, urinary levels of TRP and its metabolites 5-hydroxyindoleacetic acid (5-HIAA), L-kynurenine (KYN), kynurenic acid (KYNA), and quinolinic acid (QA) were determined by liquid chromatography with tandem mass spectrometry and related to creatinine level. After TRP-based dietary intervention, the score of ISI and HAM-D decreased by more than half. A correlation analysis reveals that TRP, 5-HIAA, and KYNA might have anti-depressive action, while KYN and QA-pro-depressive. The levels of TRP, 5-HIAA, and KYNA in urine of mood disorder patients increased, while the levels of KYN and QA decreased. In conclusion, dietary consumption of adequate amount of tryptophan has a beneficial effect on mental health of the elderly with mood disorders and improves metabolism of this amino acid. Therefore, a TRP-enriched diet may be considered as a component of the treatment of elderly individuals with mood disorders.
Collapse
Affiliation(s)
- Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Anita Gąsiorowska
- Department of Gastroenterology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Tomasz Popławski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Paulina Konrad
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Marcin Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
5
|
Mingoti MED, Bertollo AG, de Oliveira T, Ignácio ZM. Stress and Kynurenine-Inflammation Pathway in Major Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:163-190. [PMID: 36949310 DOI: 10.1007/978-981-19-7376-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Major depressive disorder (MDD) is one of the most prevalent disorders and causes severe damage to people's quality of life. Lifelong stress is one of the major villains in triggering MDD. Studies have shown that both stress and MDD, especially the more severe conditions of the disorder, are associated with inflammation and neuroinflammation and the relationship to an imbalance in tryptophan metabolism towards the kynurenine pathway (KP) through the enzymes indoleamine-2,3-dioxygenase (IDO), which is mainly stimulated by pro-inflammatory cytokines and tryptophan-2,3-dioxygenase (TDO) which is activated primarily by glucocorticoids. Considering that several pathophysiological mechanisms of MDD underlie or interact with biological processes from KP metabolites, this chapter addresses and discusses the function of these mechanisms. Activities triggered by stress and the hypothalamic-pituitary-adrenal (HPA) axis and immune and inflammatory processes, in addition to epigenetic phenomena and the gut-brain axis (GBA), are addressed. Finally, studies on the function and mechanisms of physical exercise in the KP metabolism and MDD are pointed out and discussed.
Collapse
Affiliation(s)
- Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Tácio de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
6
|
Kilany A, Nashaat NH, Zeidan HM, Hashish AF, El-Saied MM, Abdelraouf ER. Kynurenine and oxidative stress in children having learning disorder with and without attention deficit hyperactivity disorder: possible role and involvement. BMC Neurol 2022; 22:356. [PMID: 36127656 PMCID: PMC9487051 DOI: 10.1186/s12883-022-02886-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
Background The etiological and pathophysiological factors of learning disorder (LD) and attention deficit hyperactivity disorder (ADHD) are currently not well understood. These disorders disrupt some cognitive abilities. Identifying biomarkers for these disorders is a cornerstone to their proper management. Kynurenine (KYN) and oxidative stress markers have been reported to influence some cognitive abilities. Therefore, the aim was to measure the level of KYN and some oxidative stress indicators in children with LD with and without ADHD and to investigate their correlations with the abilities of children with LD. Methods The study included 154 participants who were divided into 3 groups: one for children who have LD (N = 69); another for children with LD and ADHD (N = 31); and a group for neurotypical (NT) children (N = 54). IQ testing, reading, writing, and other ability performance evaluation was performed for children with LD. Measuring plasma levels of KYN, malondialdehyde, glutathione peroxidase, and superoxide dismutase by enzyme-linked immunosorbent assay was performed for all participants. Results Some IQ measures and learning skills differed between the first two groups. The biochemical measures differed between children with LD (with and without ADHD) and NT children (p < 0.001). However, the biochemical measures did not show a significant statistical difference between the first two groups. KYN and glutathione peroxidase levels were correlated with one-minute writing and at-risk quotient, respectively (p = 0.03;0.04). KYN and malondialdehyde showed the highest sensitivity and specificity values. Conclusion These biochemical measures could be involved or have a role in the abilities’ performance of children with specific learning disorder.
Collapse
Affiliation(s)
- Ayman Kilany
- Medical Research and Clinical Studies Institute, Children with Special Needs Research Department, National Research Centre, Elbuhouth Street, Cairo, 12622, Dokki, Egypt.,Pediatric Neurology Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Neveen Hassan Nashaat
- Medical Research and Clinical Studies Institute, Children with Special Needs Research Department, National Research Centre, Elbuhouth Street, Cairo, 12622, Dokki, Egypt. .,Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt.
| | - Hala M Zeidan
- Medical Research and Clinical Studies Institute, Children with Special Needs Research Department, National Research Centre, Elbuhouth Street, Cairo, 12622, Dokki, Egypt
| | - Adel F Hashish
- Medical Research and Clinical Studies Institute, Children with Special Needs Research Department, National Research Centre, Elbuhouth Street, Cairo, 12622, Dokki, Egypt
| | - Mostafa M El-Saied
- Medical Research and Clinical Studies Institute, Children with Special Needs Research Department, National Research Centre, Elbuhouth Street, Cairo, 12622, Dokki, Egypt.,Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Ehab Ragaa Abdelraouf
- Medical Research and Clinical Studies Institute, Children with Special Needs Research Department, National Research Centre, Elbuhouth Street, Cairo, 12622, Dokki, Egypt.,Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| |
Collapse
|
7
|
Lorkiewicz P, Waszkiewicz N. Biomarkers of Post-COVID Depression. J Clin Med 2021; 10:4142. [PMID: 34575258 PMCID: PMC8470902 DOI: 10.3390/jcm10184142] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic is spreading around the world and 187 million people have already been affected. One of its after-effects is post-COVID depression, which, according to the latest data, affects up to 40% of people who have had SARS-CoV-2 infection. A very important issue for the mental health of the general population is to look for the causes of this complication and its biomarkers. This will help in faster diagnosis and effective treatment of the affected patients. In our work, we focused on the search for major depressive disorder (MDD) biomarkers, which are also present in COVID-19 patients and may influence the development of post-COVID depression. For this purpose, we searched PubMed, Scopus and Google Scholar scientific literature databases using keywords such as 'COVID-19', 'SARS-CoV-2', 'depression', 'post-COVID', 'biomarkers' and others. Among the biomarkers found, the most important that were frequently described are increased levels of interleukin 6 (IL-6), soluble interleukin 6 receptor (sIL-6R), interleukin 1 β (IL-1β), tumor necrosis factor α (TNF-α), interferon gamma (IFN-γ), interleukin 10 (IL-10), interleukin 2 (IL-2), soluble interleukin 2 receptor (sIL-2R), C-reactive protein (CRP), Monocyte Chemoattractant Protein-1 (MCP-1), serum amyloid a (SAA1) and metabolites of the kynurenine pathway, as well as decreased brain derived neurotrophic factor (BDNF) and tryptophan (TRP). The biomarkers identified by us indicate the etiopathogenesis of post-COVID depression analogous to the leading inflammatory hypothesis of MDD.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Plac Brodowicza 1, 16-070 Choroszcz, Poland;
| | | |
Collapse
|