1
|
Findeisen K, Guymer E, Littlejohn G. Neuroinflammatory and Immunological Aspects of Fibromyalgia. Brain Sci 2025; 15:206. [PMID: 40002538 PMCID: PMC11852494 DOI: 10.3390/brainsci15020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Fibromyalgia is a common, high-impact condition of chronic widespread pain and sensory dysfunction associated with altered central and peripheral sensory processing. A growing body of evidence supports the role of neuroinflammation and immune changes in fibromyalgia, and a narrative review of this literature was undertaken. Published data suggest that the interactions between the neural pain networks and the immune system in fibromyalgia appear to be bidirectional and operate both centrally and peripherally. There is a growing focus on processes occurring in the dorsal root ganglia and the role of maladaptive microglial cell activation. Ongoing insight into neuroinflammatory mechanisms in fibromyalgia opens potential avenues for the development of mechanism-based therapies in what is, at present, a challenging-to-manage condition.
Collapse
Affiliation(s)
- Kate Findeisen
- Department of Rheumatology, Monash Health, Melbourne, VIC 3168, Australia; (K.F.); (G.L.)
| | - Emma Guymer
- Department of Rheumatology, Monash Health, Melbourne, VIC 3168, Australia; (K.F.); (G.L.)
- Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
| | - Geoffrey Littlejohn
- Department of Rheumatology, Monash Health, Melbourne, VIC 3168, Australia; (K.F.); (G.L.)
- Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
2
|
Vinker-Shuster M, Magen E, Green I, Merzon E, Golan-Cohen A, Israel A. Increased Rates of Infectious Diseases in Fibromyalgia Patients: A Population-Based Case-Control Study. Biomedicines 2024; 12:2821. [PMID: 39767727 PMCID: PMC11673471 DOI: 10.3390/biomedicines12122821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction: Fibromyalgia (FM) patients are known to have medical comorbidities. This study characterized the rates of infectious diseases in FM patients compared to the general population. Methods: A nationwide population-based case-control study was conducted, including all patients diagnosed with FM by a rheumatologist compared to a matched 5:1 control group within a large health maintenance organization in Israel (January 2002 to December 2023). Demographic, anthropometric, and health habit data were extracted from medical records as well as the ICD-9 codes of diagnoses related to infectious diseases in 9232 FM patients and 46,160 controls. Infection rates in the FM patients were compared to the controls over a mean follow-up of 6.7 years. Results: The FM patients had a significantly higher incidence of viral, bacterial, fungal, and parasitic diseases compared to the controls. The FM patients had significantly higher odds ratios (ORs) for respiratory/sinopulmonary infections, including upper respiratory tract infections (OR = 1.49), influenza (OR = 1.80), tonsillitis (OR = 1.40), sinusitis (OR = 1.98), otitis media (OR = 1.84), otitis externa (OR = 1.48), and pneumonia (OR = 1.60), all p < 0.01. They also experienced more gastrointestinal infections, including gastroenteritis (OR = 1.40), Helicobacter pylori (OR = 2.05), candidal esophagitis (OR = 7.88), and giardiasis (OR = 3.41), all p < 0.01. They had a higher prevalence of genitourinary infections, including urinary tract infections (OR = 1.79) and pelvic inflammatory disease (OR = 3.17), p < 0.01 as well as skin infections such as abscess (OR = 1.74) and cellulitis (OR = 1.64) and systemic infections such as symptomatic COVID-19 (OR = 1.76) and Cytomegalovirus (CMV) (OR = 1.85), all p < 0.01. Conclusions: The FM patients had a significantly higher incidence of infectious diseases than the general population. Further research is needed to better understand the underlying mechanisms and develop targeted interventions to address infection risks in FM patients.
Collapse
Affiliation(s)
- Michal Vinker-Shuster
- Department of Pediatrics, Assuta Ashdod University Medical Center, Ashdod 7747629, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| | - Eli Magen
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- Leumit Health Services, Tel Aviv-Yafo 6473817, Israel; (I.G.); (E.M.); (A.G.-C.); (A.I.)
- Medicine A Department, Assuta Ashdod University Medical Center, Ashdod 7747629, Israel
| | - Ilan Green
- Leumit Health Services, Tel Aviv-Yafo 6473817, Israel; (I.G.); (E.M.); (A.G.-C.); (A.I.)
- Department of Family Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Eugene Merzon
- Leumit Health Services, Tel Aviv-Yafo 6473817, Israel; (I.G.); (E.M.); (A.G.-C.); (A.I.)
- Adelson School of Medicine, Ariel University, Ariel 4070000, Israel
| | - Avivit Golan-Cohen
- Leumit Health Services, Tel Aviv-Yafo 6473817, Israel; (I.G.); (E.M.); (A.G.-C.); (A.I.)
- Department of Family Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ariel Israel
- Leumit Health Services, Tel Aviv-Yafo 6473817, Israel; (I.G.); (E.M.); (A.G.-C.); (A.I.)
- Department of Family Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| |
Collapse
|
3
|
Rodríguez-Palma EJ, Huerta de la Cruz S, Islas-Espinoza AM, Castañeda-Corral G, Granados-Soto V, Khanna R. Nociplastic pain mechanisms and toll-like receptors as promising targets for its management. Pain 2024; 165:2150-2164. [PMID: 38595206 DOI: 10.1097/j.pain.0000000000003238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/29/2024] [Indexed: 04/11/2024]
Abstract
ABSTRACT Nociplastic pain, characterized by abnormal pain processing without an identifiable organic cause, affects a significant portion of the global population. Unfortunately, current pharmacological treatments for this condition often prove ineffective, prompting the need to explore new potential targets for inducing analgesic effects in patients with nociplastic pain. In this context, toll-like receptors (TLRs), known for their role in the immune response to infections, represent promising opportunities for pharmacological intervention because they play a relevant role in both the development and maintenance of pain. Although TLRs have been extensively studied in neuropathic and inflammatory pain, their specific contributions to nociplastic pain remain less clear, demanding further investigation. This review consolidates current evidence on the connection between TLRs and nociplastic pain, with a specific focus on prevalent conditions like fibromyalgia, stress-induced pain, sleep deprivation-related pain, and irritable bowel syndrome. In addition, we explore the association between nociplastic pain and psychiatric comorbidities, proposing that modulating TLRs can potentially alleviate both pain syndromes and related psychiatric disorders. Finally, we discuss the potential sex differences in TLR signaling, considering the higher prevalence of nociplastic pain among women. Altogether, this review aims to shed light on nociplastic pain, its underlying mechanisms, and its intriguing relationship with TLR signaling pathways, ultimately framing the potential therapeutic role of TLRs in addressing this challenging condition.
Collapse
Affiliation(s)
- Erick J Rodríguez-Palma
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | - Ana M Islas-Espinoza
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Paroli M, Gioia C, Accapezzato D, Caccavale R. Inflammation, Autoimmunity, and Infection in Fibromyalgia: A Narrative Review. Int J Mol Sci 2024; 25:5922. [PMID: 38892110 PMCID: PMC11172859 DOI: 10.3390/ijms25115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Fibromyalgia (FM) is a chronic disease characterized by widespread musculoskeletal pain of unknown etiology. The condition is commonly associated with other symptoms, including fatigue, sleep disturbances, cognitive impairment, and depression. For this reason, FM is also referred to as FM syndrome. The nature of the pain is defined as nociplastic according to the latest international classification and is characterized by altered nervous sensitization both centrally and peripherally. Psychosocial conditions have traditionally been considered critical in the genesis of FM. However, recent studies in animal models and humans have provided new evidence in favor of an inflammatory and/or autoimmune pathogenesis. In support of this hypothesis are epidemiological data of an increased female prevalence, similar to that of autoimmune diseases, and the frequent association with immune-mediated inflammatory disorders. In addition, the observation of an increased incidence of this condition during long COVID revived the hypothesis of an infectious pathogenesis. This narrative review will, therefore, discuss the evidence supporting the immune-mediated pathogenesis of FM in light of the most current data available in the literature.
Collapse
Affiliation(s)
- Marino Paroli
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University di Roma, 00185 Rome, Italy; (C.G.); (D.A.); (R.C.)
| | | | | | | |
Collapse
|
5
|
Jones C, Parkitny L, Strath L, Wagener BM, Barker A, Younger J. Altered response to Toll-like receptor 4 activation in fibromyalgia: A low-dose, human experimental endotoxemia pilot study. Brain Behav Immun Health 2023; 34:100707. [PMID: 38020479 PMCID: PMC10679487 DOI: 10.1016/j.bbih.2023.100707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
In this pilot study, a human intravenous injection of low-dose endotoxin (lipopolysaccharide, LPS) model was used to test if fibromyalgia is associated with altered immune responses to Toll-like receptor 4 (TLR4) activation. Eight women with moderately-severe fibromyalgia and eight healthy women were administered LPS at 0.1 ng/kg in session one and 0.4 ng/kg in session two. Blood draws were collected hourly to characterize the immune response. The primary analytes of interest, leptin and fractalkine, were assayed via commercial radioimmunoassay and enzyme-linked immunosorbent assay kits, respectively. Exploratory analyses were performed on 20 secreted cytokine assays by multiplex cytokine panels, collected hourly. Exploratory analyses were also performed on testosterone, estrogen, and cortisol levels, collected hourly. Additionally, standard clinical complete blood counts with differential (CBC-D) were collected before LPS administration and at the end of the session. The fibromyalgia group demonstrated enhanced leptin and suppressed fractalkine responses to LPS administration. In the exploratory analyses, the fibromyalgia group showed a lower release of IFN-γ, CXCL10, IL-17A, and IL-12 and higher release of IL-15, TARC, MDC, and eotaxin than the healthy group. The results of this study suggest that fibromyalgia may involve an altered immune response to TLR4 activation.
Collapse
Affiliation(s)
- Chloe Jones
- Department of Psychology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Luke Parkitny
- Departments of Neurology and Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Larissa Strath
- Pain Research and Intervention Center of Excellence, The University of Florida, Gainesville, FL, USA
- College of Medicine, Department of Health Outcomes and Biomedical Informatics, The University of Florida, Gainesville, FL, USA
| | - Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew Barker
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarred Younger
- Department of Psychology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| |
Collapse
|
6
|
Benson S, Karshikoff B. How Can Experimental Endotoxemia Contribute to Our Understanding of Pain? A Narrative Review. Neuroimmunomodulation 2023; 30:250-267. [PMID: 37797598 PMCID: PMC10619593 DOI: 10.1159/000534467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
The immune system and the central nervous system exchange information continuously. This communication is a prerequisite for adaptive responses to physiological and psychological stressors. While the implicate relationship between inflammation and pain is increasingly recognized in clinical cohorts, the underlying mechanisms and the possibilities for pharmacological and psychological approaches aimed at neuro-immune communication in pain are not fully understood yet. This calls for preclinical models which build a bridge from clinical research to laboratory research. Experimental models of systemic inflammation (experimental endotoxemia) in humans have been increasingly recognized as an approach to study the direct and causal effects of inflammation on pain perception. This narrative review provides an overview of what experimental endotoxemia studies on pain have been able to clarify so far. We report that experimental endotoxemia results in a reproducible increase in pain sensitivity, particularly for pressure and visceral pain (deep pain), which is reflected in responses of brain areas involved in pain processing. Increased levels of blood inflammatory cytokines are required for this effect, but cytokine levels do not always predict pain intensity. We address sex-dependent differences in immunological responses to endotoxin and discuss why these differences do not necessarily translate to differences in behavioral measures. We summarize psychological and cognitive factors that may moderate pain sensitization driven by immune activation. Together, studying the immune-driven changes in pain during endotoxemia offers a deeper mechanistic understanding of the role of inflammation in chronic pain. Experimental endotoxemia models can specifically help to tease out inflammatory mechanisms underlying individual differences, vulnerabilities, and comorbid psychological problems in pain syndromes. The model offers the opportunity to test the efficacy of interventions, increasing their translational applicability for personalized medical approaches.
Collapse
Affiliation(s)
- Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Medical Education, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bianka Karshikoff
- Department of Social Studies, University of Stavanger, Stavanger, Norway
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|