1
|
Toor AA, Horton M, Khalid H, Krieger E, Lai TP, Spellman SR, Levine JE, Saber W, Aviv A, Stewart V, Gadalla SM. Understanding Telomere Biology in Hematopoietic Cell Transplantation: A Dynamical Systems Perspective. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.20.24319630. [PMID: 39974130 PMCID: PMC11838954 DOI: 10.1101/2025.01.20.24319630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background T cell proliferation and repertoire reconstitution is a hallmark of successful hematopoietic cell transplantation (HCT). This process may be modeled as a dynamical system and in such a system, precise telomere length (TL) measurement may reflect the proliferative capacity of donor T cells. TL for different chromosomes span a few orders of magnitude, and different T cell clones will display variable TL; these differences across the population are not represented when examining average TL. This study aims to develop a method that integrates the entire spectrum of TL observed within a sample to better understand the influence on clinical outcomes following HCT. Methods To better reflect the entire span of TL, we used data generated using the TeLSA PCR technique that provided discrete measurments of individual telomeres for each DNA sample for 72 stem cell transplant (SCT) donor-recipient pairs. Donor and recipient TeSLA TL measurements was performed on samples taken before and 90 days post HCT, respectively. Set correspondence mathematical techniques and area under the curve (AUC) calculations were used to measured donor-recipient TL differences (delta-TL) incorporating the full distribution of measured TL from each sample. Results Telomere band lengths ranged from 350 basepairs (BP) to 16.7 kilobases with a logarithmically declining distribution in all samples when arrayed in a descending order. Set correspondence methods yielded TL averages which were highly correlated with AUC calculations (r >0.9, p<0.001 for all). The AUC delta-TL method predicted patient overall survival (P-log rank <0.0001). HCT recipients with intermediate degrees of telomere attrition (25th-75th percentile) post-HCT experienced the best outcomes (2 years overall survival; OS=92%), whilst donors with the least (<25th percentile; 2 years OS=33%; adjusted HR vs. intermediate shortening=9.3, p=0.001) and the greatest (>75th percentile; 2 years OS=59%; adjusted HR=6.0, p=0.01) shortening had worse outcomes. By contrast, using the traditional method based on donor-recipient difference in TeSLA mean telomere length did not demonstrate survival association in this small sample set (p log-rank=0.95). Conclusion The findings described herein suggest that the degree of donor telomere attrition may reflect T cell proliferation and alloreactivity following transplant. Accounting for the entire span of telomere lengths, could better identify post-transplant risk groups.
Collapse
Affiliation(s)
- Amir A. Toor
- Harold C. Simmons Cancer Center, University of Texas Southwestern, Dallas, TX
| | | | | | - Elizabeth Krieger
- Childrens Hospital of Richmond at Virginia CommonWealth University, Richmond, VA
| | - Tsung-Po Lai
- Center of Human Development and Aging, New Jersey Medical School, Rutgers, NJ
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, NMDP, Minneapolis, MN
| | - John E. Levine
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wael Saber
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Abraham Aviv
- Center of Human Development and Aging, New Jersey Medical School, Rutgers, NJ
| | - Valerie Stewart
- Center for International Blood and Marrow Transplant Research, NMDP, Minneapolis, MN
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| |
Collapse
|
2
|
Ehx G, Ritacco C, Baron F. Pathophysiology and preclinical relevance of experimental graft-versus-host disease in humanized mice. Biomark Res 2024; 12:139. [PMID: 39543777 PMCID: PMC11566168 DOI: 10.1186/s40364-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantations (allo-HCT) used for the treatment of hematological malignancies and other blood-related disorders. Until recently, the discovery of actionable molecular targets to treat GVHD and their preclinical testing was almost exclusively based on modeling allo-HCT in mice by transplanting bone marrow and splenocytes from donor mice into MHC-mismatched recipient animals. However, due to fundamental differences between human and mouse immunology, the translation of these molecular targets into the clinic can be limited. Therefore, humanized mouse models of GVHD were developed to circumvent this limitation. In these models, following the transplantation of human peripheral blood mononuclear cells (PBMCs) into immunodeficient mice, T cells recognize and attack mouse organs, inducing GVHD. Thereby, humanized mice provide a platform for the evaluation of the effects of candidate therapies on GVHD mediated by human immune cells in vivo. Understanding the pathophysiology of this xenogeneic GVHD is therefore crucial for the design and interpretation of experiments performed with this model. In this article, we comprehensively review the cellular and molecular mechanisms governing GVHD in the most commonly used model of xenogeneic GVHD: PBMC-engrafted NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice. By re-analyzing public sequencing data, we also show that the clonal expansion and the transcriptional program of T cells in humanized mice closely reflect those in humans. Finally, we highlight the strengths and limitations of this model, as well as arguments in favor of its biological relevance for studying T-cell reactions against healthy tissues or cancer cells.
Collapse
Affiliation(s)
- Grégory Ehx
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium.
| | - Caroline Ritacco
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
- Department of Medicine, Division of Hematology, CHU of Liege, University of Liege, Liege, Belgium
| |
Collapse
|
3
|
Zelikson V, Sabo R, Serrano M, Aqeel Y, Ward S, Al Juhaishi T, Aziz M, Krieger E, Simmons G, Roberts C, Reed J, Buck G, Toor A. Allogeneic haematopoietic cell transplants as dynamical systems: influence of early-term immune milieu on long-term T-cell recovery. Clin Transl Immunology 2023; 12:e1458. [PMID: 37457614 PMCID: PMC10345185 DOI: 10.1002/cti2.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/11/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Objectives Immune recovery following haematopoietic cell transplantation (HCT) functions as a dynamical system. Reducing the duration of intense immune suppression and augmenting antigen presentation has the potential to optimise T-cell reconstitution, potentially influencing long-term outcomes. Methods Based on donor-derived T-cell recovery, 26 patients were adaptively randomised between mycophenolate mofetil (MMF) administered for 30-day post-transplant with filgrastim for cytokine support (MMF30 arm, N = 11), or MMF given for 15 days with sargramostim (MMF15 arm, N = 15). All patients underwent in vivo T-cell depletion with 5.1 mg kg-1 antithymocyte globulin (administered over 3 days, Day -9 through to Day -7) and received reduced intensity 450 cGy total body irradiation (3 fractions on Day -1 and Day 0). Patients underwent HLA-matched related and unrelated donor haematopoietic cell transplantation (HCT). Results Clinical outcomes were equivalent between the two groups. The MMF15 arm demonstrated superior T-cell, as well as T-cell subset recovery and a trend towards superior T-cell receptor (TCR) diversity in the first month with this difference persisting through the first year. T-cell repertoire recovery was more rapid and sustained, as well as more diverse in the MMF15 arm. Conclusion The long-term superior immune recovery in the MMF15 arm, administered GMCSF, is consistent with a disproportionate impact of early interventions in HCT. Modifying the 'immune-milieu' following allogeneic HCT is feasible and may influence long-term T-cell recovery.
Collapse
Affiliation(s)
- Viktoriya Zelikson
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Roy Sabo
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVAUSA
| | - Myrna Serrano
- Department of Microbiology and ImmunologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Younus Aqeel
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Savannah Ward
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Taha Al Juhaishi
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - May Aziz
- Department of PharmacyVirginia Commonwealth UniversityRichmondVAUSA
| | - Elizabeth Krieger
- Department of PediatricsVirginia Commonwealth UniversityRichmondVAUSA
| | - Gary Simmons
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Catherine Roberts
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Jason Reed
- Department of PhysicsVirginia Commonwealth UniversityRichmondVAUSA
| | - Gregory Buck
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVAUSA
| | - Amir Toor
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVAUSA
- Lehigh Valley Topper Cancer InstituteAllentownPAUSA
| |
Collapse
|
4
|
Zelikson V, Simmons G, Raman N, Krieger E, Rebiero A, Hawks K, Aziz M, Roberts C, Chesney A, Reed J, Gress R, Toor A. Dynamical Systems Modeling of Early-Term Immune Reconstitution with Different Antithymocyte Globulin Administration Schedules in Allogeneic Stem Cell Transplantation. Transplant Cell Ther 2022; 28:85.e1-85.e9. [PMID: 34688968 PMCID: PMC8820845 DOI: 10.1016/j.jtct.2021.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 02/03/2023]
Abstract
Alloreactivity forms the basis of allogeneic hematopoietic cell transplantation (HCT), with donor-derived T cell response to recipient antigens mediating clinical responses either in part or entirely. These encompass the different manifestations of graft-versus-host disease (GVHD), infection risk, and disease response. While the latter is contingent on disease biology and thus may be less predictable, the former 2 manifestations are more likely to be directly proportional to the magnitude of donor-derived T cell recovery. Herein we explore the quantitative aspects of immune cell recovery following allogeneic HCT and clinical outcomes in 2 cohorts of HLA-matched allograft recipients who received rabbit antithymocyte globulin (ATG) on different schedules (days -9 to -7 versus days -3 to -1). Monocyte as well as donor-derived T cell (ddCD3) recovery was superior in those given ATG early in the course of disease (days -9/-7). This difference was related to a more rapid rate of ddCD3 recovery, driven largely by CD3+/CD8+ cells in the first month post-transplantation. Early monocyte recovery was associated with later T cell recovery and improved survival. In contrast, rapid and early ddCD3 expansion out of proportion to monocyte recovery was associated with a high likelihood of acute GVHD and poor survival. This analytic methodology demonstrates that modeling "early-term immune reconstitution" following HCT yields insights that may be useful in the management of post-transplantation immunosuppression and adaptive cellular therapy to optimize clinical outcomes. © 2021 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Viktoriya Zelikson
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Gary Simmons
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Natasha Raman
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Elizabeth Krieger
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia
| | - Anatevka Rebiero
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Kelly Hawks
- Massey Cancer Center, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - May Aziz
- Massey Cancer Center, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Catherine Roberts
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia
| | - Alden Chesney
- Department of Physics, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Jason Reed
- Experimental Transplant and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - Amir Toor
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
5
|
Hu X, Kueppers ST, Kooreman NG, Gravina A, Wang D, Tediashvili G, Schlickeiser S, Frentsch M, Nikolaou C, Thiel A, Marcus S, Fuchs S, Velden J, Reichenspurner H, Volk HD, Deuse T, Schrepfer S. The H-Y Antigen in Embryonic Stem Cells Causes Rejection in Syngeneic Female Recipients. Stem Cells Dev 2020; 29:1179-1189. [PMID: 32723003 DOI: 10.1089/scd.2019.0299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pluripotent stem cells are promising candidates for cell-based regenerative therapies. To avoid rejection of transplanted cells, several approaches are being pursued to reduce immunogenicity of the cells or modulate the recipient's immune response. These include gene editing to reduce the antigenicity of cell products, immunosuppression of the host, or using major histocompatibility complex-matched cells from cell banks. In this context, we have investigated the antigenicity of H-Y antigens, a class of minor histocompatibility antigens encoded by the Y chromosome, to assess whether the gender of the donor affects the cell's antigenicity. In a murine transplant model, we show that the H-Y antigen in undifferentiated embryonic stem cells (ESCs), as well as ESC-derived endothelial cells, provokes T- and B cell responses in female recipients.
Collapse
Affiliation(s)
- Xiaomeng Hu
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Simon T Kueppers
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Nigel G Kooreman
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA.,Department of Medicine, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Alessia Gravina
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Dong Wang
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Grigol Tediashvili
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Stephan Schlickeiser
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Marco Frentsch
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christos Nikolaou
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany
| | - Andreas Thiel
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany
| | - Sivan Marcus
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA
| | - Sigrid Fuchs
- Institute of Human Genetics, University Medical Center Hamburg, Hamburg, Germany
| | - Joachim Velden
- Evotec AG, Histopathology and In Vivo Pharmacology, Hamburg, Germany
| | - Hermann Reichenspurner
- Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Hans-Dieter Volk
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Tobias Deuse
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA
| | - Sonja Schrepfer
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Krieger E, Toor AA. Can Graft vs. Leukemia Effect Be Uncoupled From Graft vs. Host Disease? An Examination of Proportions. Front Immunol 2020; 11:777. [PMID: 32425947 PMCID: PMC7212371 DOI: 10.3389/fimmu.2020.00777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/06/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Elizabeth Krieger
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, United States
| | - Amir Ahmed Toor
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
7
|
Krieger E, Sabo R, Moezzi S, Cain C, Roberts C, Kimball P, Chesney A, McCarty J, Keating A, Romee R, Wiedl C, Qayyum R, Toor A. Killer Immunoglobulin-Like Receptor-Ligand Interactions Predict Clinical Outcomes following Unrelated Donor Transplantations. Biol Blood Marrow Transplant 2019; 26:672-682. [PMID: 31676338 DOI: 10.1016/j.bbmt.2019.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/08/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023]
Abstract
Killer immunoglobulin-like receptor (KIR) and KIR ligand (KIRL) interactions play an important role in natural killer (NK) cell-mediated graft-versus-leukemia effect following hematopoietic cell transplantation (HCT). However, there is considerable heterogeneity in the KIR gene and KIRL content in individuals, making it difficult to estimate the full clinical impact of NK cell reconstitution following HCT. Here we present a novel adaptive mathematical model designed to quantify these interactions to better assess the influence of NK cell-mediated alloreactivity on transplant outcomes. Ninety-eight HLA- matched unrelated donor (URD) HCT recipients were studied retrospectively. The KIR-KIRL interactions were quantified using a system of matrix equations. Unit values were ascribed to each KIR-KIRL interaction, and the directionality of interactions was denoted by either a positive (activating) or negative (inhibition) symbol; these interactions were then summed. The absolute values of both the missing KIRL and inhibitory KIR-KIRL interactions were significantly associated with overall survival and relapse. These score components were initially used to develop a weighted score (w-KIR score) and subsequently a simplified, nonweighted KIR-KIRL interaction score (IM-KIR score). Increased w-KIR score and IM-KIR score were predictive of all-cause mortality and relapse (w-KIR score: hazard ratio [HR], .37 [P = .001] and .44 [P = .044], respectively; IM-KIR score: HR, .5 [P = .049] and .44 [P = .002], respectively). IM-KIR score was also associated with NK cell reconstitution post-HCT. KIR-KIRL interactions as reflected by the w-KIR and IM-KIR scores influence both relapse risk and survival in recipients of HLA-matched URD HCT with hematologic malignancies.
Collapse
Affiliation(s)
- Elizabeth Krieger
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Roy Sabo
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Sanauz Moezzi
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Caitlin Cain
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Catherine Roberts
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Pamela Kimball
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Alden Chesney
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - John McCarty
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Armand Keating
- Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada
| | - Rizwan Romee
- Dana-Farber Cancer Center, Harvard University, Boston, Massachusetts
| | - Christina Wiedl
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Rehan Qayyum
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Amir Toor
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
8
|
Chromosome Y-encoded antigens associate with acute graft-versus-host disease in sex-mismatched stem cell transplant. Blood Adv 2019; 2:2419-2429. [PMID: 30262602 DOI: 10.1182/bloodadvances.2018019513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a curative option for blood cancers, but the coupled effects of graft-versus-tumor and graft-versus-host disease (GVHD) limit its broader application. Outcomes improve with matching at HLAs, but other factors are required to explain residual risk of GVHD. In an effort to identify genetic associations outside the major histocompatibility complex, we conducted a genome-wide clinical outcomes study on 205 acute myeloid leukemia patients and their fully HLA-A-, HLA-B-, HLA-C-, HLA-DRB1-, and HLA-DQB1-matched (10/10) unrelated donors. HLA-DPB1 T-cell epitope permissibility mismatches were observed in less than half (45%) of acute GVHD cases, motivating a broader search for genetic factors affecting clinical outcomes. A novel bioinformatics workflow adapted from neoantigen discovery found no associations between acute GVHD and known, HLA-restricted minor histocompatibility antigens (MiHAs). These results were confirmed with microarray data from an additional 988 samples. On the other hand, Y-chromosome-encoded single-nucleotide polymorphisms in 4 genes (PCDH11Y, USP9Y, UTY, and NLGN4Y) did associate with acute GVHD in male patients with female donors. Males in this category with acute GVHD had more Y-encoded variant peptides per patient with higher predicted HLA-binding affinity than males without GVHD who matched X-paralogous alleles in their female donors. Methods and results described here have an immediate impact for allo-HCT, warranting further development and larger genomic studies where MiHAs are clinically relevant, including cancer immunotherapy, solid organ transplant, and pregnancy.
Collapse
|
9
|
Meier JA, Haque M, Fawaz M, Abdeen H, Coffey D, Towlerton A, Abdeen A, Toor A, Warren E, Reed J, Kanakry CG, Keating A, Luznik L, Toor AA. T Cell Repertoire Evolution after Allogeneic Bone Marrow Transplantation: An Organizational Perspective. Biol Blood Marrow Transplant 2019; 25:868-882. [PMID: 30677510 DOI: 10.1016/j.bbmt.2019.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022]
Abstract
High-throughput sequencing (HTS) of human T cell receptors has revealed a high level of complexity in the T cell repertoire, which makes it difficult to correlate T cell reconstitution with clinical outcomes. The associations identified thus far are of a broadly statistical nature, precluding precise modeling of outcomes based on T cell repertoire development following bone marrow transplantation (BMT). Previous work has demonstrated an inherent, mathematically definable order observed in the T cells from a diverse group of donors, which is perturbed in recipients following BMT. In this study, T cell receptor (TCR)-β sequences from HLA-matched related donor and recipient pairs are analyzed to further develop this methodology. TCR-β sequencing from unsorted and sorted T cell subsets isolated from the peripheral blood samples of BMT donors and recipients show conservation and symmetry of VJ segment usage in the clonal frequencies, linked to the organization of the gene segments along the TCR locus. This TCR-β VJ segment translational symmetry is preserved post-transplantation and even in cases of acute graft-versus-host disease (aGVHD), suggesting that GVHD occurrence represents a polyclonal donor T cell response to recipient antigens. The complexity of the repertoire is significantly diminished after BMT, and the T cell clonal hierarchy is altered post-transplantation. Low-frequency donor clones tended to take on a higher rank in the recipients following BMT, especially in patients with aGVHD. Over time, the repertoire evolves to a more donor-like state in the recipients who did not develop GVHD as opposed to those who did. The results presented here support new methods of quantifying and characterizing post-transplantation T cell repertoire reconstitution.
Collapse
Affiliation(s)
- Jeremy A Meier
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mahdee Haque
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mohamed Fawaz
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Hamdi Abdeen
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - David Coffey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Andrea Towlerton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ahmed Abdeen
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Abdullah Toor
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Edus Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jason Reed
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia
| | - Christopher G Kanakry
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Armand Keating
- Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Leo Luznik
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amir A Toor
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
10
|
Salman A, Koparde V, Hall CE, Jameson-Lee M, Roberts C, Serrano M, AbdulRazzaq B, Meier J, Kennedy C, Manjili MH, Spellman SR, Wijesinghe D, Hashmi S, Buck G, Qayyum R, Neale M, Reed J, Toor AA. Determining the Quantitative Principles of T Cell Response to Antigenic Disparity in Stem Cell Transplantation. Front Immunol 2018; 9:2284. [PMID: 30364159 PMCID: PMC6193078 DOI: 10.3389/fimmu.2018.02284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/14/2018] [Indexed: 11/25/2022] Open
Abstract
Alloreactivity compromising clinical outcomes in stem cell transplantation is observed despite HLA matching of donors and recipients. This has its origin in the variation between the exomes of the two, which provides the basis for minor histocompatibility antigens (mHA). The mHA presented on the HLA class I and II molecules and the ensuing T cell response to these antigens results in graft vs. host disease. In this paper, results of a whole exome sequencing study are presented, with resulting alloreactive polymorphic peptides and their HLA class I and HLA class II (DRB1) binding affinity quantified. Large libraries of potentially alloreactive recipient peptides binding both sets of molecules were identified, with HLA-DRB1 generally presenting a greater number of peptides. These results are used to develop a quantitative framework to understand the immunobiology of transplantation. A tensor-based approach is used to derive the equations needed to determine the alloreactive donor T cell response from the mHA-HLA binding affinity and protein expression data. This approach may be used in future studies to simulate the magnitude of expected donor T cell response and determine the risk for alloreactive complications in HLA matched or mismatched hematopoietic cell and solid organ transplantation.
Collapse
Affiliation(s)
- Ali Salman
- Bone Marrow Transplant, Virginia Commonwealth University Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Vishal Koparde
- Virginia Commonwealth University Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, United States
| | - Charles E. Hall
- Bone Marrow Transplant, Virginia Commonwealth University Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Max Jameson-Lee
- Bone Marrow Transplant, Virginia Commonwealth University Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Catherine Roberts
- Bone Marrow Transplant, Virginia Commonwealth University Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Myrna Serrano
- Virginia Commonwealth University Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, United States
| | - Badar AbdulRazzaq
- Bone Marrow Transplant, Virginia Commonwealth University Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Jeremy Meier
- Bone Marrow Transplant, Virginia Commonwealth University Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Caleb Kennedy
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, United States
| | - Masoud H. Manjili
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, United States
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, United States
| | - Dayanjan Wijesinghe
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Shahrukh Hashmi
- Mayo Clinic, Rochester Minnesota and King Faisal Research Hospital, Riyadh, Saudi Arabia
| | - Greg Buck
- Virginia Commonwealth University Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, United States
| | - Rehan Qayyum
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Neale
- Department of Psychiatry & Statistical Genomics, Virginia Commonwealth University, Richmond, VA, United States
| | - Jason Reed
- Department of Physics, Virginia Commonwealth University, Richmond, VA, United States
| | - Amir A. Toor
- Bone Marrow Transplant, Virginia Commonwealth University Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
11
|
Toor AA, Chesney A, Zweit J, Reed J, Hashmi SK. A dynamical systems perspective on chimeric antigen receptor T-cell dosing. Bone Marrow Transplant 2018; 54:485-489. [PMID: 30171224 DOI: 10.1038/s41409-018-0329-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023]
Abstract
Chimeric antigen receptor T cells (CAR T cells) are dosed similarly to donor lymphocyte infusions following hematopoietic cell transplantation. However, the mechanism driving proliferation in CAR T cells is distinct from conventional T cells. As such there are quantitative differences in the antigen response of these engineered cells when compared with conventional T cells. In this perspective paper the logistic equation of growth is used to develop a mathematical basis for understanding the difference between CAR T cell and conventional T cell response to antigen burden.
Collapse
Affiliation(s)
- Amir A Toor
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Alden Chesney
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jamal Zweit
- Department of Radiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Reed
- Department of Physics, Virginia Commonwealth University, Richmond, VA, USA
| | - Shahrukh K Hashmi
- Division of Hematology, Dept. of Medicine, Mayo Clinic, Rochester, MN, USA.,Dept. Of Stem Cell Transplant, Oncology Center, KFSHRC, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Kobulnicky DJ, Sabo RT, Sharma S, Shubar Ali AS, Kobulnicky KM, Roberts CH, Clark WB, Chung HM, McCarty JM, Toor AA. The influence of lymphoid reconstitution kinetics on clinical outcomes in allogeneic stem cell transplantation. Leuk Lymphoma 2018; 59:2973-2981. [PMID: 29616870 DOI: 10.1080/10428194.2018.1452216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Lymphoid recovery following myeloablative stem cell transplantation (SCT) displays a logistic pattern of exponential growth followed by a plateau. Within this logistic framework, lymphoid recovery is characterized by the parameters R (slope of ascent), a (time of maximal rate of ascent) and K (plateau), the 'steady-state' lymphocyte count. A retrospective analysis of allogeneic SCT performed from 2008 to 2013 was undertaken to compare lymphoid recovery and clinical outcomes in 131 patients with acute myelogenous leukemia, acute lymphocytic leukemia, and myelodysplastic syndromes. Using Prism software, a logistic curve was successfully fit to the absolute lymphocyte count recovery in all patients. Patients were classified according to the magnitude and rate of lymphoid recovery; pattern A achieved an absolute lymphocyte counts (ALC) of >1000/μL by day 45, pattern B an ALC 500 < x < 1000/μL, and pattern C an ALC <500/μL. Pattern A was characterized by a higher mean K (p < .0001) compared with patterns B and C. Patients with patterns B and C were more likely to have mixed T cell chimerism at 90 d following SCT (p = .01). There was a trend towards improved survival (and relapse-free survival) in those with pattern A and B at 1 year compared to pattern C (p = .073). There was no difference in cGVHD (p = .42) or relapse (p = .45) between pattern types. Cytomegalovirus (CMV), aGVHD, and all relapse were heralded by deviation from logistic behavior. Pattern C patients were more likely to require donor lymphocyte infusion (DLI) (p = .017). Weaning of tacrolimus post-transplant was associated with a second, separate logistic expansion in some patients. This study demonstrated that lymphoid reconstitution follows a prototypical logistic recovery and that pattern observed correlates with T cell chimerism and need for DLI, and may influence survival.
Collapse
Affiliation(s)
- David J Kobulnicky
- a Bone Marrow Transplant Program, Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Roy T Sabo
- b Department of Biostatistics , Virginia Commonwealth University , Richmond , VA , USA
| | - Shashank Sharma
- a Bone Marrow Transplant Program, Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Ali S Shubar Ali
- a Bone Marrow Transplant Program, Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Kristen M Kobulnicky
- a Bone Marrow Transplant Program, Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Catherine H Roberts
- a Bone Marrow Transplant Program, Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - William B Clark
- a Bone Marrow Transplant Program, Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Harold M Chung
- a Bone Marrow Transplant Program, Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - John M McCarty
- a Bone Marrow Transplant Program, Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Amir A Toor
- a Bone Marrow Transplant Program, Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
13
|
Leslie KA, Rasheed M, Sabo RT, Roberts CC, Toor AA, Reed J. Reconstituting donor T cells increase their biomass following hematopoietic stem cell transplantation. Analyst 2018; 143:2479-2485. [DOI: 10.1039/c8an00148k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, we used a rapid, highly-sensitive, single-cell biomass measurement method, Live Cell Interferometry (LCI), to measure biomass in populations of CD3 + T cells isolated from hematopoietic stem cell transplant (SCT) patients at various times pre- and post-transplant (days 0–100).
Collapse
Affiliation(s)
- Kevin A. Leslie
- Department of Physics
- Virginia Commonwealth University
- Richmond
- USA
| | - Mahmood Rasheed
- Department of Internal Medicine
- Virginia Commonwealth University
- Richmond
- USA
- Department of Biostatistics
| | - Roy T. Sabo
- Department of Biostatistics
- Virginia Commonwealth University
- Richmond
- USA
| | - Catherine C. Roberts
- Department of Internal Medicine
- Virginia Commonwealth University
- Richmond
- USA
- Department of Biostatistics
| | - Amir A. Toor
- Department of Internal Medicine
- Virginia Commonwealth University
- Richmond
- USA
- Department of Biostatistics
| | - Jason Reed
- Department of Physics
- Virginia Commonwealth University
- Richmond
- USA
- Massey Cancer Center
| |
Collapse
|
14
|
Koparde V, Abdul Razzaq B, Suntum T, Sabo R, Scalora A, Serrano M, Jameson-Lee M, Hall C, Kobulnicky D, Sheth N, Feltz J, Contaifer D, Wijesinghe D, Reed J, Roberts C, Qayyum R, Buck G, Neale M, Toor A. Dynamical system modeling to simulate donor T cell response to whole exome sequencing-derived recipient peptides: Understanding randomness in alloreactivity incidence following stem cell transplantation. PLoS One 2017; 12:e0187771. [PMID: 29194460 PMCID: PMC5711034 DOI: 10.1371/journal.pone.0187771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/25/2017] [Indexed: 12/01/2022] Open
Abstract
Quantitative relationship between the magnitude of variation in minor histocompatibility antigens (mHA) and graft versus host disease (GVHD) pathophysiology in stem cell transplant (SCT) donor-recipient pairs (DRP) is not established. In order to elucidate this relationship, whole exome sequencing (WES) was performed on 27 HLA matched related (MRD), & 50 unrelated donors (URD), to identify nonsynonymous single nucleotide polymorphisms (SNPs). An average 2,463 SNPs were identified in MRD, and 4,287 in URD DRP (p<0.01); resulting peptide antigens that may be presented on HLA class I molecules in each DRP were derived in silico (NetMHCpan ver2.0) and the tissue expression of proteins these were derived from determined (GTex). MRD DRP had an average 3,670 HLA-binding-alloreactive peptides, putative mHA (pmHA) with an IC50 of <500 nM, and URD, had 5,386 (p<0.01). To simulate an alloreactive donor cytotoxic T cell response, the array of pmHA in each patient was considered as an operator matrix modifying a hypothetical cytotoxic T cell clonal vector matrix; each responding T cell clone’s proliferation was determined by the logistic equation of growth, accounting for HLA binding affinity and tissue expression of each alloreactive peptide. The resulting simulated organ-specific alloreactive T cell clonal growth revealed marked variability, with the T cell count differences spanning orders of magnitude between different DRP. Despite an estimated, uniform set of constants used in the model for all DRP, and a heterogeneously treated group of patients, higher total and organ-specific T cell counts were associated with cumulative incidence of moderate to severe GVHD in recipients. In conclusion, exome wide sequence differences and the variable alloreactive peptide binding to HLA in each DRP yields a large range of possible alloreactive donor T cell responses. Our findings also help understand the apparent randomness observed in the development of alloimmune responses.
Collapse
Affiliation(s)
- Vishal Koparde
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Badar Abdul Razzaq
- Bone Marrow Transplant Program, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tara Suntum
- Bone Marrow Transplant Program, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Roy Sabo
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Allison Scalora
- Bone Marrow Transplant Program, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Myrna Serrano
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Max Jameson-Lee
- Bone Marrow Transplant Program, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Charles Hall
- Bone Marrow Transplant Program, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - David Kobulnicky
- Bone Marrow Transplant Program, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Nihar Sheth
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Juliana Feltz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Daniel Contaifer
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Dayanjan Wijesinghe
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jason Reed
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Catherine Roberts
- Bone Marrow Transplant Program, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rehan Qayyum
- Section of Hospital Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gregory Buck
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael Neale
- Departments of Psychiatry and Human & Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Amir Toor
- Bone Marrow Transplant Program, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Hall CE, Koparde VN, Jameson-Lee M, Elnasseh AG, Scalora AF, Kobulnicky DJ, Serrano MG, Roberts CH, Buck GA, Neale MC, Nixon DE, Toor AA. Sequence homology between HLA-bound cytomegalovirus and human peptides: A potential trigger for alloreactivity. PLoS One 2017; 12:e0178763. [PMID: 28800601 PMCID: PMC5553991 DOI: 10.1371/journal.pone.0178763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 05/18/2017] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (hCMV) reactivation may often coincide with the development of graft-versus-host-disease (GVHD) in stem cell transplantation (SCT). Seventy seven SCT donor-recipient pairs (DRP) (HLA matched unrelated donor (MUD), n = 50; matched related donor (MRD), n = 27) underwent whole exome sequencing to identify single nucleotide polymorphisms (SNPs) generating alloreactive peptide libraries for each DRP (9-mer peptide-HLA complexes); Human CMV CROSS (Cross-Reactive Open Source Sequence) database was compiled from NCBI; HLA class I binding affinity for each DRPs HLA was calculated by NetMHCpan 2.8 and hCMV- derived 9-mers algorithmically compared to the alloreactive peptide-HLA complex libraries. Short consecutive (≥6) amino acid (AA) sequence homology matching hCMV to recipient peptides was considered for HLA-bound-peptide (IC50<500nM) cross reactivity. Of the 70,686 hCMV 9-mers contained within the hCMV CROSS database, an average of 29,658 matched the MRD DRP alloreactive peptides and 52,910 matched MUD DRP peptides (p<0.001). In silico analysis revealed multiple high affinity, immunogenic CMV-Human peptide matches (IC50<500 nM) expressed in GVHD-affected tissue-specific manner. hCMV+GVHD was found in 18 patients, 13 developing hCMV viremia before GVHD onset. Analysis of patients with GVHD identified potential cross reactive peptide expression within affected organs. We propose that hCMV peptide sequence homology with human alloreactive peptides may contribute to the pathophysiology of GVHD.
Collapse
Affiliation(s)
- Charles E. Hall
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Vishal N. Koparde
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Maximilian Jameson-Lee
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Abdelrhman G. Elnasseh
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Allison F. Scalora
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - David J. Kobulnicky
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Myrna G. Serrano
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Catherine H. Roberts
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gregory A. Buck
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael C. Neale
- Departments of Psychiatry and Human & Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Daniel E. Nixon
- Division of Infectious Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Amir A. Toor
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Gam R, Shah P, Crossland RE, Norden J, Dickinson AM, Dressel R. Genetic Association of Hematopoietic Stem Cell Transplantation Outcome beyond Histocompatibility Genes. Front Immunol 2017; 8:380. [PMID: 28421078 PMCID: PMC5377073 DOI: 10.3389/fimmu.2017.00380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
The outcome of hematopoietic stem cell transplantation (HSCT) is controlled by genetic factors among which the leukocyte antigen human leukocyte antigen (HLA) matching is most important. In addition, minor histocompatibility antigens and non-HLA gene polymorphisms in genes controlling immune responses are known to contribute to the risks associated with HSCT. Besides single-nucleotide polymorphisms (SNPs) in protein coding genes, SNPs in regulatory elements such as microRNAs (miRNAs) contribute to these genetic risks. However, genetic risks require for their realization the expression of the respective gene or miRNA. Thus, gene and miRNA expression studies may help to identify genes and SNPs that indeed affect the outcome of HSCT. In this review, we summarize gene expression profiling studies that were performed in recent years in both patients and animal models to identify genes regulated during HSCT. We discuss SNP–mRNA–miRNA regulatory networks and their contribution to the risks associated with HSCT in specific examples, including forkheadbox protein 3 and regulatory T cells, the role of the miR-155 and miR-146a regulatory network for graft-versus-host disease, and the function of MICA and its receptor NKG2D for the outcome of HSCT. These examples demonstrate how SNPs affect expression or function of proteins that modulate the alloimmune response and influence the outcome of HSCT. Specific miRNAs targeting these genes and directly affecting expression of mRNAs are identified. It might be valuable in the future to determine SNPs and to analyze miRNA and mRNA expression in parallel in cohorts of HSCT patients to further elucidate genetic risks of HSCT.
Collapse
Affiliation(s)
- Rihab Gam
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Rachel E Crossland
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jean Norden
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Anne M Dickinson
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|