1
|
Dehghan F, Metanat Y, Askarizadeh M, Ahmadi E, Moradi V. Novel gene manipulation approaches to unlock the existing bottlenecks of CAR-NK cell therapy. Front Cell Dev Biol 2025; 12:1511931. [PMID: 40007761 PMCID: PMC11850336 DOI: 10.3389/fcell.2024.1511931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/10/2024] [Indexed: 02/27/2025] Open
Abstract
Currently, CAR-T cell therapy is known as an efficacious treatment for patients with relapsed/refractory hematologic malignancies. Nonetheless, this method faces several bottlenecks, including low efficacy for solid tumors, lethal adverse effects, high cost of autologous products, and the risk of GvHD in allogeneic settings. As a potential alternative, CAR-NK cell therapy can overcome most of the limitations of CAR-T cell therapy and provide an off-the-shelf, safer, and more affordable product. Although published results from preclinical and clinical studies with CAR-NK cells are promising, several bottlenecks must be unlocked to maximize the effectiveness of CAR-NK cell therapy. These bottlenecks include low in vivo persistence, low trafficking into tumor sites, modest efficacy in solid tumors, and sensitivity to immunosuppressive tumor microenvironment. In recent years, advances in gene manipulation tools and strategies have laid the groundwork to overcome the current bottlenecks of CAR-NK cell therapy. This review will introduce the existing gene manipulation tools and discuss their advantages and disadvantages. We will also explore how these tools can enhance CAR-NK cell therapy's safety and efficacy.
Collapse
Affiliation(s)
- Fatemeh Dehghan
- Department of Anatomy and Molecular Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yekta Metanat
- Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Sistan and Baluchestan Province, Iran
| | - Mandana Askarizadeh
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| | - Ehsan Ahmadi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Moradi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Adewuyi E, Chorya H, Muili A, Moradeyo A, Kayode A, Naik A, Odedele T, Opabode M. Chemotherapy, immunotherapy, and targeted therapy for osteosarcoma: Recent advancements. Crit Rev Oncol Hematol 2025; 206:104575. [PMID: 39581243 DOI: 10.1016/j.critrevonc.2024.104575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/22/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024] Open
Abstract
Recent advancements in the treatment of osteosarcoma, a rare and aggressive form of bone cancer, have seen significant progress with chemotherapy, immunotherapy, and targeted therapy. Chemotherapy, the conventional approach, has witnessed refined drug regimens and novel agents tailored to enhance efficacy while minimizing adverse effects. This evolution aims to strike a balance between eradicating cancer cells and preserving patients' overall well-being. Immunotherapy has emerged as a promising avenue, leveraging the body's immune system to recognize and combat cancer cells. Innovative immunotherapeutic strategies, including immune checkpoint inhibitors, adoptive T cell therapy, and chimeric antigen receptor (CAR)-T cell therapy, exhibit the potential to enhance immune responses against osteosarcoma. Moreover, targeted therapy, designed to disrupt specific molecular pathways crucial for cancer growth, has gained traction in the treatment of osteosarcoma. Precision medicine approaches, such as identifying biomarkers and employing targeted agents, aim to tailor therapies to individual patients, maximizing effectiveness while minimizing collateral damage to healthy tissues. This article analyzes the current state of these three treatment modalities while comparing the efficacies of current chemotherapy, immunotherapy and targeted therapy agents.
Collapse
Affiliation(s)
- Esther Adewuyi
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria.
| | - Harshal Chorya
- Department of Medicine and Surgery, Baroda Medical College, India
| | - Abdulbasit Muili
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| | - Abdulrahmon Moradeyo
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| | - Ayomide Kayode
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| | - Aastha Naik
- Department of Medicine and Surgery, Parul Institute of Medical Sciences and Research, Parul University, India
| | - Temitayo Odedele
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| | - Muntaqim Opabode
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| |
Collapse
|
3
|
Huang Y, Liao H, Luo J, Wei H, Li A, Lu Y, Xiang B. Reversing NK cell exhaustion: a novel strategy combining immune checkpoint blockade with drug sensitivity enhancement in the treatment of hepatocellular carcinoma. Front Oncol 2025; 14:1502270. [PMID: 39906665 PMCID: PMC11790413 DOI: 10.3389/fonc.2024.1502270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common lethal cancers worldwide. Natural killer cells (NK cells) play a key role in liver immunosurveillance, but in the tumor microenvironment, NK cells are readily depleted, as evidenced by down-regulation of activating receptors, reduced cytokine secretion, and attenuated killing function. The up-regulation of inhibitory receptors, such as PD-1, TIM-3, and LAG-3, further exacerbates the depletion of NK cells. Combined blockade strategies targeting these immunosuppressive mechanisms, such as the combination of PD-1 inhibitors with other inhibitory pathways (eg. TIM-3 and LAG-3), have shown potential to reverse NK cell exhaustion in preclinical studies. This article explores the promise of these innovative strategies in HCC immunotherapy, providing new therapeutic directions for optimizing NK cell function and improving drug sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
4
|
Dokhanchi M, Javaherdehi AP, Raad M, Khalilollah S, Mahdavi P, Razizadeh MH, Zafarani A. Natural Killer Cells in Cancers of Respiratory System and Their Applications in Therapeutic Approaches. Immun Inflamm Dis 2024; 12:e70079. [PMID: 39588940 PMCID: PMC11590036 DOI: 10.1002/iid3.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Cancer is still regarded as a major worldwide health issue due to its high health and socioeconomic burden. Currently, lung cancer is the most common cause of cancer-related fatalities globally. Additionally, mesotheliomas and other cancers of the respiratory system, including those of the trachea, larynx, and bronchi, are also posing a significant health threat. Natural killer (NK) cells are lymphocytes of the innate immune system involved in response against cancer. OBJECTIVE This review discussed recent findings in the context of NK cell activity in the immune surveillance of respiratory system cancers and NK cell-based treatments to combat those malignancies. RESULTS The presence of natural killer cells in the tumor microenvironment is shown to be associated with a higher survival rate in patients with various malignancies. However, cancerous cells benefit from several mechanisms to evade natural killer cell-mediated cytotoxicity, including reduced major histocompatibility complex I expression, shedding of ligands, upregulation of inhibitory receptors, and release of soluble factors. Using NK cells to design therapeutic approaches may enhance antitumor immunity and improve clinical outcomes. Clinical trials investigating the use of natural killer cells in combination with cytokine stimulation or immune checkpoint inhibitors have exhibited promising results in various respiratory system malignancies. CONCLUSION Respiratory system cancers present significant health challenges worldwide, and while NK cells play a crucial role in tumor surveillance, tumors often evade NK cell responses through various mechanisms. Advances in NK cell-based therapies, including CAR-NK cells, immune checkpoint inhibitors, and cytokine stimulation, have shown promising outcomes in tackling these tactics. However, challenges such as the immunosuppressive tumor microenvironment persist. Ongoing research is crucial to improve NK cell therapies by targeting autophagy, modulating miRNAs, and developing combinatorial approaches to enhance treatment efficacy for respiratory cancers.
Collapse
Affiliation(s)
- Maryam Dokhanchi
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Mohammad Raad
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
| | - Shayan Khalilollah
- School of Medicine, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Pooya Mahdavi
- College of Public HealthUniversity of South FloridaTampaFloridaUSA
| | - Mohammad Hossein Razizadeh
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious DiseasesIran University of Medical SciencesTehranIran
| | - Alireza Zafarani
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Hematology & Blood Banking, School of Allied MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Deng M, Tang F, Chang X, Liu P, Ji X, Hao M, Wang Y, Yang R, Ma Q, Zhang Y, Miao J. Immunotherapy for Ovarian Cancer: Disappointing or Promising? Mol Pharm 2024; 21:454-466. [PMID: 38232985 DOI: 10.1021/acs.molpharmaceut.3c00986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Ovarian cancer, one of the deadliest malignancies, lacks effective treatment, despite advancements in surgical techniques and chemotherapy. Thus, new therapeutic approaches are imperative to improving treatment outcomes. Immunotherapy, which has demonstrated considerable success in managing various cancers, has already found its place in clinical practice. This review aims to provide an overview of ovarian tumor immunotherapy, including its basics, key strategies, and clinical research data supporting its potential. In particular, this discussion highlights promising strategies such as checkpoint inhibitors, vaccines, and pericyte transfer, both individually and in combination. However, the advancement of new immunotherapies necessitates large controlled randomized trials, which will undoubtedly shape the future of ovarian cancer treatment.
Collapse
Affiliation(s)
- Mengqi Deng
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Fan Tang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Xiangyu Chang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Penglin Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Xuechao Ji
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Menglin Hao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Yixiao Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Ruiye Yang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Qingqing Ma
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
- Nanyuan Hospital of Fengtai District, Beijing 100006, China
| | - Yubo Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Shandong 266011, China
| | - Jinwei Miao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| |
Collapse
|
6
|
Hossenipour Khodaei S, Sabetnam S, Nozad Charoudeh H, Dizaji Asl K, Rafat A, Mazloumi Z. The effect of mitochondria inhibition on natural killer cells cytotoxicity in triple-negative breast cancer cells. Eur J Pharmacol 2023; 960:176106. [PMID: 37839666 DOI: 10.1016/j.ejphar.2023.176106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Triple-Negative Breast Cancer (TNBC), the most common invasive breast cancer, depicts cancer poor response to conventional therapies. The clinical management of TNBC is a challenging issue. Natural killer (NK) cell therapy in the field of cancer treatment is rapidly growing however, regarding the immunogenicity of breast cancer cells, this type of therapy has shown limited efficacy. Recently, targeting tumor biomarkers has revolutionized the field of cancer therapy. Mitochondria affects apoptosis and innate immunity. Therefore, in this study, mitochondria were inhibited with Tigecycline in stimulating the cytotoxicity of NK cells against TNBC cell lines. MDA-MB-468 and MDA-MB-231 were cultured and treated with IC50 (the half-maximal inhibitory concentration) level of Tigecycline for 48 h and afterward co-cultured with peripheral blood NK cells for 5 h. Lastly, the inhibitory effects of mitochondria on the cytotoxicity of NK cells and apoptosis of TNBC cells were evaluated. Moreover, the expression of apoptotic-related genes was studied. The results showed that mitochondria inhibition increased NK cells cytotoxicity against TNBC cells. Moreover, NK cell/mitochondria inhibition in a combinative form improved apoptosis in TNBC cells by the upregulation of Bad and Bid expression. In conclusion, Tigecycline inhibited mitochondria and sensitized TNBC cells to NK cell therapy. Therefore, mitochondria inhibition could help NK cells function properly.
Collapse
Affiliation(s)
- Sepide Hossenipour Khodaei
- Department of Dentistry, Eastern Mediterranean University (EMU) Famagusta, North Cyprus Mersin 10, Turkey
| | - Shahbaz Sabetnam
- Department of Anatomy, Faculty of Medicine, University of Kyrenia, Mersin 10, Kyrenia, Turkey; Department of Histopathology and Anatomy, Faculty of Medicine Sciences, Tabriz Medical Sciences, Islamic Azad Tabriz University, Tabriz, Iran
| | | | - Khadijeh Dizaji Asl
- Department of Histopathology and Anatomy, Faculty of Medicine Sciences, Tabriz Medical Sciences, Islamic Azad Tabriz University, Tabriz, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Wang Y, Jin S, Zhuang Q, Liu N, Chen R, Adam SA, Jin J, Sun J. Chimeric antigen receptor natural killer cells: a promising antitumor immunotherapy. MedComm (Beijing) 2023; 4:e422. [PMID: 38045827 PMCID: PMC10691297 DOI: 10.1002/mco2.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells have been successfully used in adoptive cell therapy for malignancies. However, some obstacles, including side effects such as graft-versus-host disease and cytokine release syndrome, therapy resistance, limited sources, as well as high cost, limited the application of CAR T cells. Recently, CAR natural killer (NK) cells have been pursued as the effector cells for adoptive immunotherapy for their attractive merits of strong intrinsic antitumor activity and relatively mild side effects. Additionally, CAR NK cells can be available from various sources and do not require strict human leukocyte antigen matching, which suggests them as promising "off-the-shelf" products for clinical application. Although the use of CAR NK cells is restrained by the limited proliferation and impaired efficiency within the immunosuppressive tumor microenvironment, further investigation in optimizing CAR structure and combination therapies will overcome these challenges. This review will summarize the advancement of CAR NK cells, CAR NK cell manufacture, the clinical outcomes of CAR NK therapy, the challenges in the field, and prospective solutions. Besides, we will discuss the emerging application of other immune cells for CAR engineering. Collectively, this comprehensive review will provide a valuable and informative summary of current progress and evaluate challenges and future opportunities of CAR NK cells in tumor treatment.
Collapse
Affiliation(s)
- Yan Wang
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Shengjie Jin
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Qiqi Zhuang
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Na Liu
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Department of OncologyAffiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifangShandongChina
| | - Ruyi Chen
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Sofia Abdulkadir Adam
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Jie Jin
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
| | - Jie Sun
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
| |
Collapse
|
8
|
Leveraging Natural Killer Cell Innate Immunity against Hematologic Malignancies: From Stem Cell Transplant to Adoptive Transfer and Beyond. Int J Mol Sci 2022; 24:ijms24010204. [PMID: 36613644 PMCID: PMC9820370 DOI: 10.3390/ijms24010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Numerous recent advancements in T-cell based immunotherapies have revolutionized the treatment of hematologic malignancies. In the race towards the first approved allogeneic cellular therapy product, there is growing interest in utilizing natural killer (NK) cells as a platform for off-the-shelf cellular therapies due to their scalable manufacturing potential, potent anti-tumor efficacy, and superior safety profile. Allogeneic NK cell therapies are now being actively explored in the setting of hematopoietic stem cell transplantation and adoptive transfer. Increasingly sophisticated gene editing techniques have permitted the engineering of chimeric antigen receptors, ectopic cytokine expression, and tumor recognition signals to improve the overall cytotoxicity of NK cell therapies. Furthermore, the enhancement of antibody-dependent cellular cytotoxicity has been achieved through the use of NK cell engagers and combination regimens with monoclonal antibodies that act synergistically with CD16-expressing NK cells. Finally, a greater understanding of NK cell biology and the mechanisms of resistance have allowed the preclinical development of NK checkpoint blockade and methods to modulate the tumor microenvironment, which have been evaluated in early phase trials. This review will discuss the recent clinical advancements in NK cell therapies in hematologic malignancies as well as promising avenues of future research.
Collapse
|
9
|
Zhan M, Guo Y, Shen M, Shi X. Nanomaterial‐Boosted Tumor Immunotherapy Through Natural Killer Cells. ADVANCED NANOBIOMED RESEARCH 2022; 2. [DOI: 10.1002/anbr.202200096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Natural killer (NK)‐cell immunotherapy as an alternative to T‐cell immunotherapy has been widely used in clinical cell immunotherapy of various tumors. Despite the surprising findings, the widespread applications of NK cells are still limited by the insufficient expansion and short lifespan of adoptive NK cells in vivo, the poor penetration of NK cells in solid tumors, as well as the immunosuppressive tumor microenvironment that may cause the inactivation of NK cells. Fortunately, the emergence of nanomaterials provides many opportunities to address these vexing problems, thus overcoming the barriers faced by NK cells and promoting the tumor inhibitory efficacy of NK cells. Herein, the recent advances in the rational design of nanomaterials for boosting the NK cell‐based immunotherapy, mainly through enhancing NK cell engagement with tumors, boosting NK cell activation or expansion, as well as redirecting NK cells to tumor cells, are reviewed. Lastly, the design and preparation of next‐generation nanomaterials that aim to further boost the NK cell‐based immunotherapy are briefly discussed.
Collapse
Affiliation(s)
- Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P.R. China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P.R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P.R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P.R. China
| |
Collapse
|
10
|
Moscarelli J, Zahavi D, Maynard R, Weiner LM. The Next Generation of Cellular Immunotherapy: Chimeric Antigen Receptor-Natural Killer Cells. Transplant Cell Ther 2022; 28:650-656. [PMID: 35788086 PMCID: PMC9547868 DOI: 10.1016/j.jtct.2022.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
The advent of chimeric antigen receptor (CAR) engineering has led to the development of powerful cellular therapies for cancer. CAR T cell-based treatments have had notable clinical success, but logistical issues and associated toxicities are recognized limitations. There is emerging interest in using other immune effector cell types for CAR therapy. Natural killer (NK) cells are part of the innate immune system, and these lymphocytes play major roles in immunosurveillance and antitumor immune responses. Incorporating CARs into NK cells provides the opportunity to harness and enhance their innate cytotoxic potential toward malignancies. In this review, we discuss the production of CAR-engineered NK cells, highlight data on their preclinical and clinical efficacy, and examine the obstacles and strategies to overcome them.
Collapse
Affiliation(s)
- Jake Moscarelli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC
| | - David Zahavi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC
| | - Rachael Maynard
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC
| | - Louis M Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC.
| |
Collapse
|
11
|
Chiawpanit C, Panwong S, Sawasdee N, Yenchitsomanus PT, Panya A. Genistein Sensitizes Human Cholangiocarcinoma Cell Lines to Be Susceptible to Natural Killer Cells. BIOLOGY 2022; 11:biology11081098. [PMID: 35892954 PMCID: PMC9330512 DOI: 10.3390/biology11081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Cholangiocarcinoma (CCA) is a lethal bile duct cancer, which has poor treatment outcomes due to its high resistance to chemotherapy and cancer recurrence. Activation of aberrant anti-apoptotic signaling pathway has been reported to be a mechanism of chemoresistance and immune escape of CCA. Therefore, reversal of anti-apoptotic signaling pathway represents a feasible approach to potentiate effective treatments, especially for CCA with high chemoresistance. In this study, we demonstrated the effects of genistein on reactivation of apoptosis cascade and increase the susceptibility of CCA cells to natural killer (NK-92) cells. Genistein at 50 and 100 µM significantly activated extrinsic apoptotic pathway in CCA cells (KKU055, KKU100, and KKU213A), which was evident by reduction of procaspase-8 and -3 expression. Pretreatment of CCA cells with genistein at 50 µM, but not NK-92 cells, significantly increased NK-92 cell killing ability over the untreated control, suggesting the ability of genistein to sensitize CCA cells. Interestingly, genistein treatment could greatly lower the expression of cFLIP, an anti-apoptotic protein involved in the immune escape pathway, in addition to upregulation of death receptors, Fas- and TRAIL-receptors, in CCA cells, which might be the underlying molecular mechanism of genistein to sensitize CCA to be susceptible to NK-92 cells. Taken together, this finding revealed the benefit of genistein as a sensitizer to enhance the efficiency of NK cell immunotherapy for CCA.
Collapse
Affiliation(s)
- Chutipa Chiawpanit
- Doctoral Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Suthida Panwong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Doctoral Program in Applied Microbiology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nunghathai Sawasdee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (P.-t.Y.)
- Division of Molecular Medicine, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (P.-t.Y.)
- Division of Molecular Medicine, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-943346
| |
Collapse
|
12
|
Terrén I, Orrantia A, Astarloa-Pando G, Amarilla-Irusta A, Zenarruzabeitia O, Borrego F. Cytokine-Induced Memory-Like NK Cells: From the Basics to Clinical Applications. Front Immunol 2022; 13:884648. [PMID: 35603208 PMCID: PMC9114299 DOI: 10.3389/fimmu.2022.884648] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes with a key role in the defense against viral infections and tumor cells. Although NK cells are classified as innate lymphoid cells (ILCs), under certain circumstances they exhibit adaptive and memory-like features. The latter may be achieved, among others, by a brief stimulation with interleukin (IL)-12, IL-15 and IL-18. These cytokine-induced memory-like (CIML) NK cells resemble the trained immunity observed in myeloid cells. CIML NK cells undergo transcriptional, epigenetic and metabolic reprogramming that, along with changes in the expression of cell surface receptors and components of cytotoxic granules, are responsible for their enhanced effector functions after a resting period. In addition, these memory-like NK cells persist for a long time, which make them a good candidate for cancer immunotherapy. Currently, several clinical trials are testing CIML NK cells infusions to treat tumors, mostly hematological malignancies. In relapse/refractory acute myeloid leukemia (AML), the adoptive transfer of CIML NK cells is safe and complete clinical remissions have been observed. In our review, we sought to summarize the current knowledge about the generation and molecular basis of NK cell memory-like responses and the up-to-date results from clinical trials with CIML NK cells.
Collapse
Affiliation(s)
- Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | | | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
13
|
Chaudhry K, Dowlati E, Long MD, Geiger A, Lang H, Gomez EC, Muniraj N, Sanchez CE, Singh PK, Liu S, Bollard CM, Cruz CRY. Comparable transforming growth factor beta-mediated immune suppression in ex vivo-expanded natural killer cells from cord blood and peripheral blood: implications for adoptive immunotherapy. Cytotherapy 2022; 24:802-817. [PMID: 35589475 PMCID: PMC10258734 DOI: 10.1016/j.jcyt.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/27/2022]
Abstract
T cell-based therapies like genetically modified immune cells expressing chimeric antigen receptors have shown robust anti-cancer activity in vivo, especially in patients with blood cancers. However, extending this approach to an "off-the-shelf" setting can be challenging, as allogeneic T cells carry a significant risk of graft-versus-host disease (GVHD). By contrast, allogeneic natural killer (NK) cells recognize malignant cells without the need for prior antigen exposure and have been used safely in multiple cancer settings without the risk of GVHD. However, similar to T cells, NK cell function is negatively impacted by tumor-induced transforming growth factor beta (TGF-β) secretion, which is a ubiquitous and potent immunosuppressive mechanism employed by most malignancies. Allogeneic NK cells for adoptive immunotherapy can be sourced from peripheral blood (PB) or cord blood (CB), and the authors' group and others have previously shown that ex vivo expansion and gene engineering can overcome CB-derived NK cells' functional immaturity and poor cytolytic activity, including in the presence of exogenous TGF-β. However, a direct comparison of the effects of TGF-β-mediated immune suppression on ex vivo-expanded CB- versus PB-derived NK cell therapy products has not previously been performed. Here the authors show that PB- and CB-derived NK cells have distinctive gene signatures that can be overcome by ex vivo expansion. Additionally, exposure to exogenous TGF-β results in an upregulation of inhibitory receptors on NK cells, a novel immunosuppressive mechanism not previously described. Finally, the authors provide functional and genetic evidence that both PB- and CB-derived NK cells are equivalently susceptible to TGF-β-mediated immune suppression. The authors believe these results provide important mechanistic insights to consider when using ex vivo-expanded, TGF-β-resistant PB- or CB-derived NK cells as novel immunotherapy agents for cancer.
Collapse
Affiliation(s)
- Kajal Chaudhry
- Center for Cancer and Immunology Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA
| | - Ehsan Dowlati
- Department of Neurosurgery, Georgetown University Medical Center, Washington, DC, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ashley Geiger
- Center for Cancer and Immunology Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA
| | - Haili Lang
- Center for Cancer and Immunology Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA
| | - Eduardo C Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Nethaji Muniraj
- Center for Cancer and Immunology Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA
| | - Carlos E Sanchez
- Center for Cancer and Immunology Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA
| | - Prashant K Singh
- Genomics Shared Resource, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; George Washington University Cancer Center, George Washington University, Washington, DC, USA.
| | - Conrad Russell Y Cruz
- Center for Cancer and Immunology Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; George Washington University Cancer Center, George Washington University, Washington, DC, USA.
| |
Collapse
|
14
|
Parsonidis P, Papasotiriou I. Adoptive Cellular Transfer Immunotherapies for Cancer. Cancer Treat Res Commun 2022; 32:100575. [PMID: 35679756 DOI: 10.1016/j.ctarc.2022.100575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Patients with cancer require efficient treatment approaches as the mortality rate due to their disease is high. Conventional therapies, like chemotherapy and radiation, have severe side effects. Drug discovery is focusing on the development of alternative strategies that could have beneficial effects to the patients. Cellular therapies are potential therapeutics, and the generation of new products is growing fast. The concept involves the isolation of immune cells, ex vivo activation and reinfusion into the patient. The goal is to boost the immune cells to fight cancer cells. Different immune cells can be used, including dendritic cells, T cells, NK cells, macrophages and B lymphocytes. Some products have already gained FDA approval, while many more are currently in clinical trials. Research is focusing on the improvement of the function of the cells that may require genetic modification or combination with other therapies. Finally, it is crucial to develop novel technologies that could be used in monitoring of the immune profile of patients that have received a cellular therapy to assess the efficacy of the treatment.
Collapse
|
15
|
Goldenson BH, Hor P, Kaufman DS. iPSC-Derived Natural Killer Cell Therapies - Expansion and Targeting. Front Immunol 2022; 13:841107. [PMID: 35185932 PMCID: PMC8851389 DOI: 10.3389/fimmu.2022.841107] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
Treatment of cancer with allogeneic natural killer (NK) cell therapies has seen rapid development, especially use against hematologic malignancies. Clinical trials of NK cell-based adoptive transfer to treat relapsed or refractory malignancies have used peripheral blood, umbilical cord blood and pluripotent stem cell-derived NK cells, with each approach undergoing continued clinical development. Improving the potency of these therapies relies on genetic modifications to improve tumor targeting and to enhance expansion and persistence of the NK cells. Induced pluripotent stem cell (iPSC)-derived NK cells allow for routine targeted introduction of genetic modifications and expansion of the resulting NK cells derived from a clonal starting cell population. In this review, we discuss and summarize recent important advances in the development of new iPSC-derived NK cell therapies, with a focus on improved targeting of cancer. We then discuss improvements in methods to expand iPSC-derived NK cells and how persistence of iPSC-NK cells can be enhanced. Finally, we describe how these advances may combine in future NK cell-based therapy products for the treatment of both hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Benjamin H Goldenson
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Pooja Hor
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
16
|
Yang C, Ming Y, Zhou K, Hao Y, Hu D, Chu B, He X, Yang Y, Qian Z. Macrophage Membrane-Camouflaged shRNA and Doxorubicin: A pH-Dependent Release System for Melanoma Chemo-Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9768687. [PMID: 35233535 PMCID: PMC8851070 DOI: 10.34133/2022/9768687] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/12/2021] [Indexed: 02/05/2023]
Abstract
Improving the efficacy of melanoma treatment remains an important global challenge. Here, we combined chemotherapy with protein tyrosine phosphatase nonreceptor type 2(Ptpn2) based immunotherapy in an effort to address this challenge. Short-hairpin RNA (shRNA) targeting Ptpn2 was coencapsulated with doxorubicin (DOX) in the cell membrane of M1 macrophages (M1HD@RPR). The prepared nanoparticles (NPs) were effectively phagocytosed by B16F10 cells and M1 macrophages, but not by M0 macrophages. Hence, NP evasion from the reticuloendothelial system (RES) was improved and NP enrichment in tumor sites increased. M1HD@RPR can directly kill tumor cells and stimulate immunogenic cell death (ICD) by DOX and downregulate Ptpn2. It can promote M1 macrophage polarization and dendritic cell maturation and increase the proportion of CD8+ T cells. M1HD@RPR killed and inhibited the growth of primary melanoma and lung metastatic tumor cells without harming the surrounding tissue. These findings establish M1HD@RPR as a safe multifunctional nanoparticle capable of effectively combining chemotherapy and gene immunotherapies against melanoma.
Collapse
Affiliation(s)
- Chengli Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China.,Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Yang Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Kai Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Danrong Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Bingyang Chu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Xinlong He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Yun Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| |
Collapse
|
17
|
Mazzio E, Almalki A, Darling-Reed SF, Soliman KFA. Effects of Wild Yam Root ( Dioscorea villosa) Extract on the Gene Expression Profile of Triple-negative Breast Cancer Cells. Cancer Genomics Proteomics 2021; 18:735-755. [PMID: 34697066 DOI: 10.21873/cgp.20294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/29/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/AIM Wild yam extract [Dioscorea villosa, (WYE)] is consistently lethal at low IC50s across diverse cancer-lines in vitro. Unlike traditional anti-cancer botanicals, WYE contains detergent saponins which reduce oil-water interfacial tensions causing disintegration of lipid membranes and causing cell lysis, creating an interfering variable. Here, we evaluate WYE at sub-lethal concentrations in MDA-MB-231 triple-negative breast cancer (TNBC) cells. MATERIALS AND METHODS Quantification of saponins, membrane potential, lytic death and sub-lethal WYE changes in whole transcriptomic (WT) mRNA, miRNAs and biological parameters were evaluated. RESULTS WYE caused 346 differentially expressed genes (DEGs) out of 48,226 transcripts tested; where up-regulated DEGS reflect immune stimulation, TNF signaling, COX2, cytokine release and cholesterol/steroid biosynthesis. Down-regulated DEGs reflect losses in cell division cycle (CDC), cyclins (CCN), cyclin-dependent kinases (CDKs), centromere proteins (CENP), kinesin family members (KIFs) and polo-like kinases (PLKs), which were in alignment with biological studies. CONCLUSION Sub-lethal concentrations of WYE appear to evoke pro-inflammatory, steroid biosynthetic and cytostatic effects in TNBC cells.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Abdulaziz Almalki
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Selina F Darling-Reed
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
18
|
Holstein SA, Bahlis N, Bergsagel PL, Bhutani M, Bolli N, Brownstein C, Demolis P, Foureau D, Gay F, Ghobrial IM, Gormley N, Hillengass J, Kaiser M, Maus MV, Melenhorst JJ, Merz M, Dwyer MO, Paiva B, Pasquini MC, Shah N, Wong SW, Usmani SZ, McCarthy PL. The 2020 BMT CTN Myeloma Intergroup Workshop on Immune Profiling and Minimal Residual Disease Testing in Multiple Myeloma. Transplant Cell Ther 2021; 27:807-816. [PMID: 34107340 PMCID: PMC8478786 DOI: 10.1016/j.jtct.2021.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023]
Abstract
The fifth annual Blood and Marrow Transplant Clinical Trials Network Myeloma Intergroup Workshop on Immune Profiling and Minimal Residual Disease Testing in Multiple Myeloma was conducted as one of the American Society of Hematology Annual Meeting Scientific Workshops on Thursday December 3, 2020. This workshop focused on four main topics: (1) integrating minimal residual disease into clinical trial design and practice; (2) the molecular and immunobiology of disease evolution and progression in myeloma; (3) adaptation of next-generation sequencing, next-generation flow cytometry, and cytometry by time of flight techniques; and (4) chimeric antigen receptor T-cell and other cellular therapies for myeloma. In this report, we provide a summary of the workshop presentations and discuss future directions in the field.
Collapse
Affiliation(s)
| | - Nizar Bahlis
- University of Calgary, Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
| | | | | | - Niccolo Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, and Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | - Francesca Gay
- University of Torino, Divisione di Ematologia 1, Myeloma Unit, Azienda Ospedaliera Citta della Salute e della Scienza, Torino, Italy
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nicole Gormley
- U.S. Food and Drug Administration, Silver Spring, Maryland
| | | | - Martin Kaiser
- Institute of Cancer Research, London, United Kingdom
| | | | | | - Maximilian Merz
- Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Medicine II, University Clinic Leipzig, Germany
| | | | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369, Pamplona, Spain
| | | | - Nina Shah
- University of California San Francisco, San Francisco, California
| | - Sandy W Wong
- University of California San Francisco, San Francisco, California
| | | | | |
Collapse
|
19
|
Luo X, Xu J, Yu J, Yi P. Shaping Immune Responses in the Tumor Microenvironment of Ovarian Cancer. Front Immunol 2021; 12:692360. [PMID: 34248988 PMCID: PMC8261131 DOI: 10.3389/fimmu.2021.692360] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Reciprocal signaling between immune cells and ovarian cancer cells in the tumor microenvironment can alter immune responses and regulate disease progression. These signaling events are regulated by multiple factors, including genetic and epigenetic alterations in both the ovarian cancer cells and immune cells, as well as cytokine pathways. Multiple immune cell types are recruited to the ovarian cancer tumor microenvironment, and new insights about the complexity of their interactions have emerged in recent years. The growing understanding of immune cell function in the ovarian cancer tumor microenvironment has important implications for biomarker discovery and therapeutic development. This review aims to describe the factors that shape the phenotypes of immune cells in the tumor microenvironment of ovarian cancer and how these changes impact disease progression and therapy.
Collapse
Affiliation(s)
- Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States.,Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|