1
|
Expression of Concern: Modeling the Interaction between Quinolinate and the Receptor for Advanced Glycation End Products (RAGE): Relevance for Early Neuropathological Processes. PLoS One 2023; 18:e0281905. [PMID: 36787334 PMCID: PMC9928092 DOI: 10.1371/journal.pone.0281905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
|
2
|
Mustafa AM, Rabie MA, Zaki HF, Shaheen AM. Inhibition of Brain GTP Cyclohydrolase I Attenuates 3-Nitropropionic Acid-Induced Striatal Toxicity: Involvement of Mas Receptor/PI3k/Akt/CREB/ BDNF Axis. Front Pharmacol 2022; 12:740966. [PMID: 35002694 PMCID: PMC8727546 DOI: 10.3389/fphar.2021.740966] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
GTP cyclohydrolase I (GTPCH I) is the rate-limiting enzyme for tetrahydrobiopterin (BH4) biosynthesis; the latter is an essential factor for iNOS activation that contributes neuronal loss in Huntington’s disease (HD). The aim of the study was to investigate the neuroprotective effect of 2,4-diamino-6-hydroxypyrimidine (DAHP), GTPCH I enzyme inhibitor, against neuronal loss in 3-nitropropinic acid (3-NP)-induced HD in rats and to reveal the possible involved mechanisms mediated through PI3K/Akt axis and its correlation to Mas receptor (MasR). Rats received 3-NP (10 mg/kg/day; i.p.) with or without administration of DAHP (0.5 g/kg/day; i.p.) or wortmannin (WM), a PI3K inhibitor, (15 μg/kg/day; i.v.) for 14 days. DAHP improved cognitive, memory, and motor abnormalities induced by 3-NP, as confirmed by striatal histopathological specimens and immunohistochemical examination of GFAP. Moreover, DAHP treatment inhibited GTPCH I activity, resulting in decreased BH4 levels and iNOS activation. Also, DAHP upregulated the protein expression of survival protein; p85/p55 (pY458/199)-PI3K and pS473-Akt that, in turn, boosted the activation of striatal neurotrophic factors and receptor, pS133-CREB, BDNF and pY515-TrKB, which positively affect MasR protein expression and improve mitochondrial dysfunction, as indicated by enhancing both SDH and PGC-1α levels. Indeed, DAHP attenuates oxidative stress by increasing SOD activity and Nrf2 expression in addition to reducing neuro-inflammatory status by inhibiting NF-κB p65 and TNF-α expression. Interestingly, all the previous effects were blocked by co-administration of WM with DAHP. In conclusion, DAHP exerts neuroprotective effect against neuronal loss induced by 3-NP administration via inhibition of GTPCH I and iNOS activity and activation of MasR/PI3K/Akt/CREB/BDNF/TrKB axis besides its antioxidant and anti-inflammatory effect.
Collapse
Affiliation(s)
- Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aya M Shaheen
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
3
|
Rana I, Rieswijk L, Steinmaus C, Zhang L. Formaldehyde and Brain Disorders: A Meta-Analysis and Bioinformatics Approach. Neurotox Res 2021; 39:924-948. [PMID: 33400181 PMCID: PMC8102312 DOI: 10.1007/s12640-020-00320-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
While there is significant investigation and investment in brain and neurodegenerative disease research, current understanding of the etiologies of illnesses like Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and brain cancer remains limited. Environmental exposure to the pollutant formaldehyde, an emerging neurotoxin widely used in industry, is suspected to play a critical role in mediating these disorders, although findings are limited and inconsistent. Focusing on highly exposed groups, we performed a meta-analysis of human epidemiological studies of formaldehyde and neurodegenerative disease (N = 19) or brain tumors (N = 12). To assess the biological plausibility of observed associations, we then conducted a bioinformatics analysis using WikiPathways and the Comparative Toxicogenomics Database and identified candidate genes and pathways that may be related to these interactions. We reported the meta-relative risk (meta-RR) of ALS following high exposures to formaldehyde was increased by 78% (meta-RR = 1.78, 95% confidence interval, CI 1.20-2.65). Similarly, the meta-RR for brain cancer was increased by 71% (meta-RR = 1.71; 95% CI 1.07-2.73) among highly exposed individuals. Multiple sensitivity analyses did not reveal sources of heterogeneity or bias. Our bioinformatics analysis revealed that the oxidative stress genes superoxide dismutase (SOD1, SOD2) and the pro-inflammatory marker tumor necrosis factor (TNF) were identified as the top relevant genes, and the folate metabolism, vitamin B12 metabolism, and the ALS pathways were highly affected by formaldehyde and related to the most brain diseases of interest. Further inquiry revealed the two metabolic pathways are also intimately tied with the formaldehyde cycle. Overall, our bioinformatics analysis supports the link of formaldehyde exposure to ALS or brain tumor reported from our meta-analysis. This new multifactorial approach enabled us to both interrogate the robustness of the epidemiological data and identify genes and pathways that may be involved in these interactions, ultimately lending strong evidence and potential biological plausibility for the association between formaldehyde exposure and brain disease.
Collapse
Affiliation(s)
- Iemaan Rana
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Linda Rieswijk
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Institute of Data Science, Maastricht University, Maastricht, Netherlands
| | - Craig Steinmaus
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
4
|
Colle D, Santos DB, de Souza V, Lopes MW, Leal RB, de Souza Brocardo P, Farina M. Sodium selenite protects from 3-nitropropionic acid-induced oxidative stress in cultured primary cortical neurons. Mol Biol Rep 2018; 46:751-762. [PMID: 30511305 DOI: 10.1007/s11033-018-4531-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022]
Abstract
Selenium (Se) is an essential trace element for humans; its intake is needed to allow the proper synthesis of 25 different selenoproteins that are necessary to the normal functioning of several organs, including the brain. Accordingly, decreased Se levels have been associated with neurological disorders. In the present study, we investigated the potential beneficial effects of Se, as sodium selenite, against 3-nitropropionic acid (3-NP)-induced oxidative stress in primary cultures of mouse cortical neurons. 3-NP treatment caused a significant decrease in cellular viability, which was accompanied by decreases in mitochondrial complex II activity and reduced glutathione (GSH) content, as well as increases in reactive oxygen species (ROS) generation and oxidized glutathione (GSSG) levels. Sodium selenite pretreatment (6 days) attenuated 3-NP-induced decrease in cell viability. In addition, sodium selenite pretreatment significantly protected against 3-NP-induced increase in ROS generation and decrease in GSH/GSSG ratio. Of note, sodium selenite pretreatment did not change 3-NP-induced decrease of mitochondrial complex II activity, suggesting that Se modulates secondary events resultant from 3-NP-induced mitochondrial dyshomeostasis. In addition, sodium selenite pretreatment significantly increased glutathione peroxidase (GPx) activity. Our data provide insights into the mechanism of protection by sodium selenite, which is related, at least in part, to GPx induction.
Collapse
Affiliation(s)
- Dirleise Colle
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Bloco C, Campus, Universitário Trindade, Florianópolis, Santa Catarina, CEP 88040-900, Brazil. .,Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, CEP 88040-900, Brazil.
| | - Danúbia Bonfanti Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Bloco C, Campus, Universitário Trindade, Florianópolis, Santa Catarina, CEP 88040-900, Brazil
| | - Viviane de Souza
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Bloco C, Campus, Universitário Trindade, Florianópolis, Santa Catarina, CEP 88040-900, Brazil
| | - Mark William Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Bloco C, Campus, Universitário Trindade, Florianópolis, Santa Catarina, CEP 88040-900, Brazil
| | - Rodrigo Bainy Leal
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Bloco C, Campus, Universitário Trindade, Florianópolis, Santa Catarina, CEP 88040-900, Brazil
| | - Patricia de Souza Brocardo
- Departamento de Ciências Morfológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Bloco C, Campus, Universitário Trindade, Florianópolis, Santa Catarina, CEP 88040-900, Brazil.
| |
Collapse
|
5
|
Hatami A, Zhu C, Relaño-Gines A, Elias C, Galstyan A, Jun M, Milne G, Cantor CR, Chesselet MF, Shchepinov MS. Deuterium-reinforced linoleic acid lowers lipid peroxidation and mitigates cognitive impairment in the Q140 knock in mouse model of Huntington's disease. FEBS J 2018; 285:3002-3012. [PMID: 29933522 DOI: 10.1111/febs.14590] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease which has no effective treatment and is characterized by psychiatric disorders, motor alterations, and dementia, with the cognitive deficits representing a devastating aspect of the disorder. Oxidative stress and elevated levels of lipid peroxidation (LPO) products are found in mouse models and patients with HD, suggesting that strategies to reduce LPO may be beneficial in HD. In contrast with traditional antioxidants, substituting hydrogen with deuterium at bis-allylic sites in polyunsaturated fatty acids (D-PUFA) decreases the rate-limiting initiation step of PUFA autoxidation, a strategy that has shown benefits in other neurodegenerative diseases. Here, we investigated the effect of D-PUFA treatment in a knock-in mouse model of HD (Q140) which presents motor deficits and neuropathology from a few months of age, and progressive cognitive decline. Q140 knock-in mice were fed a diet containing either D- or H-PUFAs for 5 months starting at 1 month of age. D-PUFA treatment significantly decreased F2 -isoprostanes in the striatum by approximately 80% as compared to H-PUFA treatment and improved performance in novel object recognition tests, without significantly changing motor deficits or huntingtin aggregation. Therefore, D-PUFA administration represents a promising new strategy to broadly reduce rates of LPO, and may be useful in improving a subset of the core deficits in HD.
Collapse
Affiliation(s)
- Asa Hatami
- Department of Neurology, the David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Chunni Zhu
- Department of Neurology, the David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Aroa Relaño-Gines
- Department of Neurology, the David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Chris Elias
- Department of Neurology, the David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Arpine Galstyan
- Department of Neurology, the David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael Jun
- Department of Neurology, the David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ginger Milne
- Vanderbilt Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | - Marie-Francoise Chesselet
- Department of Neurology, the David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
6
|
Malik J, Karan M, Dogra R. Ameliorating effect of Celastrus paniculatus standardized extract and its fractions on 3-nitropropionic acid induced neuronal damage in rats: possible antioxidant mechanism. PHARMACEUTICAL BIOLOGY 2017; 55:980-990. [PMID: 28164735 PMCID: PMC6130694 DOI: 10.1080/13880209.2017.1285945] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/23/2016] [Accepted: 01/19/2017] [Indexed: 06/01/2023]
Abstract
CONTEXT Celastrus paniculatus Wild. (Celasteraceae) (CP) is a well-known Ayurvedic 'Medhya Rasayana' (nervine tonic), used extensively as a neuro-protective and memory enhancer, and in different central nervous system disorders. OBJECTIVE To evaluate the effect of CP against 3-nitropropionic acid (3-NP) induced Huntington's disease (HD) like symptoms in Wistar male rats. MATERIALS AND METHODS The ethanol extract of CP seeds (CPEE), prepared by maceration, was standardized on the basis of linoleic acid content (6.42%) using thin layer chromatography densitometric analysis. Protective effect of CPEE (100 and 200 mg/kg) and its various fractions, viz., petroleum ether (40 mg/kg), ethyl acetate (2.5 mg/kg), n-butanol (7 mg/kg) and aqueous (18 mg/kg), administered orally for 20 days, against 3-NP (10 mg/kg, i.p. for 14 days) was assessed by their effect on body weight, locomotor activity, grip strength, gait pattern and cognitive dysfunction and biochemical parameters for oxidative damage in the striatum and cortex regions of the brain. RESULTS CPEE (100 and 200 mg/kg) treated animals exhibited a significant (p < 0.05) improvement in behavioural and oxidative stress parameters in comparison to only 3-NP treated animals. Amongst various tested fractions of CPEE, aqueous fraction (AF) at 18 mg/kg exhibited maximum reversal of 3-NP induced behavioural and biochemical alterations, and was therefore also tested at 9 and 36 mg/kg. CPEE (100 mg/kg) and AF (36 mg/kg) exhibited maximum and significant (p < 0.05) attenuation of 3-NP induced alterations in comparison to 3-NP treated rats. CONCLUSIONS CPEE has a protective action against 3-NP induced HD like symptoms due to its strong antioxidant effect.
Collapse
Affiliation(s)
- Jai Malik
- University Institute of Pharmaceutical Sciences – Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Maninder Karan
- University Institute of Pharmaceutical Sciences – Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Rachna Dogra
- University Institute of Pharmaceutical Sciences – Centre of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
7
|
Xiao M, Zhong H, Xia L, Tao Y, Yin H. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radic Biol Med 2017; 111:316-327. [PMID: 28456642 DOI: 10.1016/j.freeradbiomed.2017.04.363] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023]
Abstract
Mitochondrial lipids are essential for maintaining the integrity of mitochondrial membranes and the proper functions of mitochondria. As the "powerhouse" of a cell, mitochondria are also the major cellular source of reactive oxygen species (ROS). Oxidative stress occurs when the antioxidant system is overwhelmed by overproduction of ROS. Polyunsaturated fatty acids in mitochondrial membranes are primary targets for ROS attack, which may lead to lipid peroxidation (LPO) and generation of reactive lipids, such as 4-hydroxynonenal. When mitochondrial lipids are oxidized, the integrity and function of mitochondria may be compromised and this may eventually lead to mitochondrial dysfunction, which has been associated with many human diseases including cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases. How mitochondrial lipids are oxidized and the underlying molecular mechanisms and pathophysiological consequences associated with mitochondrial LPO remain poorly defined. Oxidation of the mitochondria-specific phospholipid cardiolipin and generation of bioactive lipids through mitochondrial LPO has been increasingly recognized as an important event orchestrating apoptosis, metabolic reprogramming of energy production, mitophagy, and immune responses. In this review, we focus on the current understanding of how mitochondrial LPO and generation of bioactive lipid mediators in mitochondria are involved in the modulation of mitochondrial functions in the context of relevant human diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Mengqing Xiao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huiqin Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Lin Xia
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Yongzhen Tao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China.
| |
Collapse
|
8
|
Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Prog Neurobiol 2017; 155:76-95. [DOI: 10.1016/j.pneurobio.2015.12.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
|
9
|
De Franceschi G, Fecchio C, Sharon R, Schapira AHV, Proukakis C, Bellotti V, de Laureto PP. α-Synuclein structural features inhibit harmful polyunsaturated fatty acid oxidation, suggesting roles in neuroprotection. J Biol Chem 2017; 292:6927-6937. [PMID: 28232489 PMCID: PMC5409462 DOI: 10.1074/jbc.m116.765149] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/22/2017] [Indexed: 01/23/2023] Open
Abstract
α-Synuclein (aS) is a protein abundant in presynaptic nerve terminals in Parkinson disease (PD) and is a major component of intracellular Lewy bodies, the pathological hallmark of neurodegenerative disorders such as PD. Accordingly, the relationships between aS structure, its interaction with lipids, and its involvement in neurodegeneration have attracted great interest. Previously, we reported on the interaction of aS with brain polyunsaturated fatty acids, in particular docosahexaenoic acid (DHA). aS acquires an α-helical secondary structure in the presence of DHA and, in turn, affects DHA structural and aggregative properties. Moreover, aS forms a covalent adduct with DHA. Here, we provide evidence that His-50 is the main site of this covalent modification. To better understand the role of His-50, we analyzed the effect of DHA on aS-derived species: a naturally occurring variant, H50Q; an oxidized aS in which all methionines are sulfoxides (aS4ox); a fully lysine-alkylated aS (acetyl-aS); and aS fibrils, testing their ability to be chemically modified by DHA. We show, by mass spectrometry and spectroscopic techniques, that H50Q and aS4ox are modified by DHA, whereas acetyl-aS is not. We correlated this modification with aS structural features, and we suggest a possible functional role of aS in sequestering the early peroxidation products of fatty acids, thereby reducing the level of highly reactive lipid species. Finally, we show that fibrillar aS loses almost 80% of its scavenging activity, thus lacking a potentially protective function. Our findings linking aS scavenging activity with brain lipid composition suggest a possible etiological mechanism in some neurodegenerative disorders.
Collapse
Affiliation(s)
- Giorgia De Franceschi
- From the Department of Pharmaceutical Sciences, CRIBI, Biotechnology Centre, University of Padova, 35121 Padova, Italy
| | - Chiara Fecchio
- From the Department of Pharmaceutical Sciences, CRIBI, Biotechnology Centre, University of Padova, 35121 Padova, Italy
| | - Ronit Sharon
- the Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, 9112102 Jerusalem, Israel
| | - Anthony H V Schapira
- the Department of Clinical Neuroscience, Institute of Neurology, University College London, NW32PF London, United Kingdom
| | - Christos Proukakis
- the Department of Clinical Neuroscience, Institute of Neurology, University College London, NW32PF London, United Kingdom
| | - Vittorio Bellotti
- the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, United Kingdom, and.,the Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Patrizia Polverino de Laureto
- From the Department of Pharmaceutical Sciences, CRIBI, Biotechnology Centre, University of Padova, 35121 Padova, Italy,
| |
Collapse
|
10
|
Kaur M, Prakash A, Kalia AN. Neuroprotective potential of antioxidant potent fractions fromConvolvulus pluricaulisChois. in 3-nitropropionic acid challenged rats. Nutr Neurosci 2016; 19:70-8. [DOI: 10.1179/1476830515y.0000000022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Almeida S, Alves MG, Sousa M, Oliveira PF, Silva BM. Are Polyphenols Strong Dietary Agents Against Neurotoxicity and Neurodegeneration? Neurotox Res 2016; 30:345-66. [PMID: 26745969 DOI: 10.1007/s12640-015-9590-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/21/2022]
Abstract
Life expectancy of most human populations has greatly increased as a result of factors including better hygiene, medical practice, and nutrition. Unfortunately, as humans age, they become more prone to suffer from neurodegenerative diseases and neurotoxicity. Polyphenols can be cheaply and easily obtained as part of a healthy diet. They present a wide range of biological activities, many of which have relevance for human health. Compelling evidence has shown that dietary phytochemicals, particularly polyphenols, have properties that may suppress neuroinflammation and prevent toxic and degenerative effects in the brain. The mechanisms by which polyphenols exert their action are not fully understood, but it is clear that they have a direct effect through their antioxidant activities. They have also been shown to modulate intracellular signaling cascades, including the PI3K-Akt, MAPK, Nrf2, and MEK pathways. Polyphenols also interact with a range of neurotransmitters, illustrating that these compounds can promote their health benefits in the brain through a direct, indirect, or complex action. We discuss whether polyphenols obtained from diet or food supplements are an effective strategy to prevent or treat neurodegeneration. We also discuss the safety, mechanisms of action, and the current and future relevance of polyphenols in clinical treatment of neurodegenerative diseases. As populations age, it is important to discuss the dietary strategies to avoid or counteract the effects of incurable neurodegenerative disorders, which already represent an enormous financial and emotional burden for health care systems, patients, and their families.
Collapse
Affiliation(s)
- Susana Almeida
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Marco G Alves
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,I3S - Institute of Health Research and Innovation, University of Porto, Porto, Portugal
| | - Branca M Silva
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
12
|
Malik J, Choudhary S, Kumar P. Protective effect of Convolvulus pluricaulis standardized extract and its fractions against 3-nitropropionic acid-induced neurotoxicity in rats. PHARMACEUTICAL BIOLOGY 2015; 53:1448-1457. [PMID: 25853968 DOI: 10.3109/13880209.2014.984856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Convolvulus pluricaulis Chois. (Convolvulaceae), a well-known Ayurvedic "Medhya Rasayana" (nervine tonic), is extensively used for different central nervous system (CNS) disorders. OBJECTIVE The objective of this study was to evaluate the protective effect of standardized hydro-methanol extract of C. pluricaulis (CPE) and its fractions, namely ethyl acetate (EAE), butanol (BE), and aqueous (AE), against 3-nitropropionic acid (3-NP) induced neurotoxicity in rats. MATERIALS AND METHODS The extract of the whole plant was standardized on the basis of scopoletin content (0.014%) using thin layer chromatography densitometric analysis. CPE (100 and 200 mg/kg) and its fractions, namely EAE (15 and 30 mg/kg), BE (25 and 50 mg/kg), and AE (50 and 100 mg/kg) were administered orally for 20 d. Their protective effect against 3-NP (10 mg/kg, i.p. for 14 d) was assessed by the effect on various behavioral parameters, namely body weight, locomotor activity, grip strength, gait pattern, and the effect on cognitive dysfunction. Biochemical parameters for oxidative damage were also assessed in the striatum and cortex regions of the brain. RESULTS Administration of 3-NP induced HD-like symptoms that were indicated by reduced body weight, locomotor activity, memory, grip strength, and oxidative defense. CPE (200 mg/kg), EAE (30 mg/kg), and BE (50 mg/kg) significantly (p < 0.001) attenuated 3-NP induced reduction in locomotor activity, grip strength, memory, body weight, and oxidative defense in comparison with 3-NP-treated animals on 10 and 15 d. CONCLUSION The present study suggested that CPE has a protective action against 3-NP-induced neurotoxicity and can be further explored for its efficacy against Huntington's disease.
Collapse
Affiliation(s)
- Jai Malik
- University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh , India
| | | | | |
Collapse
|
13
|
Gao Y, Chu SF, Li JP, Zhang Z, Yan JQ, Wen ZL, Xia CY, Mou Z, Wang ZZ, He WB, Guo XF, Wei GN, Chen NH. Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of Huntington's disease. Acta Pharmacol Sin 2015; 36:311-22. [PMID: 25640478 DOI: 10.1038/aps.2014.107] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/28/2014] [Indexed: 02/07/2023]
Abstract
AIM Protopanaxtriol (Ppt) is extracted from Panax ginseng Mayer. In the present study, we investigated whether Ppt could protect against 3-nitropropionic acid (3-NP)-induced oxidative stress in a rat model of Huntington's disease (HD) and explored the mechanisms of action. METHODS Male SD rats were treated with 3-NP (20 mg/kg on d 1, and 15 mg/kg on d 2-5, ip). The rats received Ppt (5, 10, and 20 mg/kg, po) daily prior to 3-NP administration. Nimodipine (12 mg/kg, po) or N-acetyl cysteine (NAC, 100 mg/kg, po) was used as positive control drugs. The body weight and behavior were monitored within 5 d. Then the animals were sacrificed, neuronal damage in striatum was estimated using Nissl staining. Hsp70 expression was detected with immunohistochemistry. Reactive oxygen species (ROS) generation was measured using dihydroethidium (DHE) staining. The levels of components in the Nrf2 pathway were measured with immunohistochemistry and Western blotting. RESULTS 3-NP resulted in a marked reduction in the body weight and locomotion activity accompanied by progressive striatal dysfunction. In striatum, 3-NP caused ROS generation mainly in neurons rather than in astrocytes and induced Hsp70 expression. Administration of Ppt significantly alleviated 3-NP-induced changes of body weight and behavior, decreased ROS production and restored antioxidant enzymes activities in striatum. Moreover, Ppt directly scavenged free radicals, increased Nrf2 entering nucleus, and the expression of its downstream products heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidase 1 (NQO1) in striatum. Similar effects were obtained with the positive control drugs nimodipine or NAC. CONCLUSION Ppt exerts a protective action against 3-NP-induced oxidative stress in the rat model of HD, which is associated with its anti-oxidant activity.
Collapse
|
14
|
Muller M, Leavitt BR. Iron dysregulation in Huntington's disease. J Neurochem 2014; 130:328-50. [PMID: 24717009 DOI: 10.1111/jnc.12739] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is one of many neurodegenerative diseases with reported alterations in brain iron homeostasis that may contribute to neuropathogenesis. Iron accumulation in the specific brain areas of neurodegeneration in HD has been proposed based on observations in post-mortem tissue and magnetic resonance imaging studies. Altered magnetic resonance imaging signal within specific brain regions undergoing neurodegeneration has been consistently reported and interpreted as altered levels of brain iron. Biochemical studies using various techniques to measure iron species in human samples, mouse tissue, or in vitro has generated equivocal data to support such an association. Whether elevated brain iron occurs in HD, plays a significant contributing role in HD pathogenesis, or is a secondary effect remains currently unclear.
Collapse
Affiliation(s)
- Michelle Muller
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and Children's and Women's Hospital, Vancouver, British Columbia, Canada
| | | |
Collapse
|
15
|
Pierozan P, Fernandes CG, Dutra MF, Pandolfo P, Ferreira F, de Lima BO, Porciúncula L, Wajner M, Pessoa-Pureur R. Biochemical, histopathological and behavioral alterations caused by intrastriatal administration of quinolic acid to young rats. FEBS J 2014; 281:2061-73. [DOI: 10.1111/febs.12762] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/03/2014] [Accepted: 02/19/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Paula Pierozan
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Carolina G. Fernandes
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Márcio F. Dutra
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
- Departamento de Biologia Celular, Embriologia e Genética; Centro Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC Brasil
| | - Pablo Pandolfo
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
- Departamento de Neurobiologia; Instituto de Biologia; Universidade Federal Fluminense; Niterói RJ Brasil
| | - Fernanda Ferreira
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Bárbara O. de Lima
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Lisiane Porciúncula
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Moacir Wajner
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| |
Collapse
|
16
|
Souza LC, Wilhelm EA, Bortolatto CF, Nogueira CW, Boeira SP, Jesse CR. Involvement of mGlu5 receptor in 3-nitropropionic acid-induced oxidative stress in rat striatum. Neurol Res 2014; 36:833-40. [PMID: 24588139 DOI: 10.1179/1743132814y.0000000334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The excitotoxin 3-nitropropionic acid (3-NP) induces a suitable experimental model of Huntington's disease (HD). This compound induces neurodegeneration via glutamatergic activation and oxidative stress, suggesting that the metabotropic glutamate receptor blockage and free radical scavenging are potential therapeutic targets in HD. In this study, we evaluated the role of 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl]-pyridine (MTEP), a selective mGlu5 receptor antagonist, in a 3-NP model of HD. METHODS We administered 3-NP (20 mg/kg, intraperitoneal) to rats for 4 days. MTEP at doses of 2·5 and 5 mg/kg was administered 30 min before 3-NP. Behavioral tests and biochemical experiments were performed to assess the effects of 3-NP and the ability of MTEP to ameliorate these changes. RESULTS 3-NP administration induced body weight loss, decreased locomotor activity, and inhibition of succinate dehydrogenase and Na(+)-K(+) adenosine triphosphate (ATP)ase activities in rat striatum. We also observed increases in reactive species (RS) levels and glutathione reductase activity, decreased non-protein thiol levels, and an inhibition of glutathione peroxidase activity in the striatum of rats treated with 3-NP. Notably, all of these effects were attenuated by MTEP treatment. DISCUSSION Our results demonstrate the neuroprotective effect of MTEP and reinforce the involvement of mGluR5 in 3-NP-induced oxidative stress in rat striatum.
Collapse
|
17
|
Quinolinic acid: an endogenous neurotoxin with multiple targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:104024. [PMID: 24089628 PMCID: PMC3780648 DOI: 10.1155/2013/104024] [Citation(s) in RCA: 425] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/23/2013] [Accepted: 08/01/2013] [Indexed: 11/21/2022]
Abstract
Quinolinic acid (QUIN), a neuroactive metabolite of the kynurenine pathway, is normally presented in nanomolar concentrations in human brain and cerebrospinal fluid (CSF) and is often implicated in the pathogenesis of a variety of human neurological diseases. QUIN is an agonist of N-methyl-D-aspartate (NMDA) receptor, and it has a high in vivo potency as an excitotoxin. In fact, although QUIN has an uptake system, its neuronal degradation enzyme is rapidly saturated, and the rest of extracellular QUIN can continue stimulating the NMDA receptor. However, its toxicity cannot be fully explained by its activation of NMDA receptors it is likely that additional mechanisms may also be involved. In this review we describe some of the most relevant targets of QUIN neurotoxicity which involves presynaptic receptors, energetic dysfunction, oxidative stress, transcription factors, cytoskeletal disruption, behavior alterations, and cell death.
Collapse
|
18
|
Tasset I, Pontes AJ, Hinojosa AJ, de la Torre R, Túnez I. Olive oil reduces oxidative damage in a 3-nitropropionic acid-induced Huntington's disease-like rat model. Nutr Neurosci 2013; 14:106-11. [DOI: 10.1179/1476830511y.0000000005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Kumar A, Sharma N, Mishra J, Kalonia H. Synergistical neuroprotection of rofecoxib and statins against malonic acid induced Huntington's disease like symptoms and related cognitive dysfunction in rats. Eur J Pharmacol 2013; 709:1-12. [DOI: 10.1016/j.ejphar.2013.03.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/17/2013] [Accepted: 03/24/2013] [Indexed: 01/13/2023]
|
20
|
Colle D, Santos DB, Hartwig JM, Godoi M, Braga AL, Farina M. Succinobucol versus probucol: Higher efficiency of succinobucol in mitigating 3-NP-induced brain mitochondrial dysfunction and oxidative stress in vitro. Mitochondrion 2013; 13:125-33. [DOI: 10.1016/j.mito.2013.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 02/07/2023]
|
21
|
Cavia-Saiz M, Muñiz P, De Santiago R, Herreros-Villanueva M, Garcia-Giron C, Lopez AS, Coma-Del Corral MJ. Changes in the levels of thioredoxin and indoleamine-2,3-dioxygenase activity in plasma of patients with colorectal cancer treated with chemotherapy. Biochem Cell Biol 2012; 90:173-8. [PMID: 22257103 DOI: 10.1139/o11-077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Increased oxidative stress and indoleamine-2,3-dioxygenase (IDO) activity have been reported in cancer, but their relationship with chemotherapy remains unknown. The aim of the present study was to examine wether the chemotherapy treatments used in colorectal cancer had an additional effect on oxidative stress and on IDO activity. Plasma samples were collected from 27 colorectal cancer patients on cytostatic treatment, 27 with cytostatic drugs plus monoclonal antibodies (cytostatic-Mabs) and 15 non-treated patients. All patients with colorectal cancer had high plasma malondialdehyde (MDA), thioredoxin (Trx) levels, and elevated IDO activity in plasma (IDOp) and in dendritic cells (IDOc). This study shows that treatment with cytostatics have an effect on oxidative stress by increasing MDA levels and by decreasing Trx levels and IDO activity. However, treatment with cytostatic-Mabs showed no effect on MDA levels but decreased Trx levels, and the IDO activity showed values similar to the healthy group. Significant correlations between plasma IDO activity and the levels of Trx (r = 0.2062, p < 0.05) and MDA (r = 0.2873, p < 0.005) were observed. Furthermore, our study suggests that IDO activity measured as kynurenine levels could be used as a marker of the response to the chemotherapy treatments, although further studies are necessary.
Collapse
Affiliation(s)
- Monica Cavia-Saiz
- Unidad de Investigación, Hospital General Yagüe, Avenida del Cid, 96, Burgos 09005, Spain.
| | | | | | | | | | | | | |
Collapse
|
22
|
Reddy PH, Shirendeb UP. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2011; 1822:101-10. [PMID: 22080977 DOI: 10.1016/j.bbadis.2011.10.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is a progressive, fatal neurodegenerative disease caused by expanded polyglutamine repeats in the HD gene. HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment and emotional disturbances. Research into mutant huntingtin (Htt) and mitochondria has found that mutant Htt interacts with the mitochondrial protein dynamin-related protein 1 (Drp1), enhances GTPase Drp1 enzymatic activity, and causes excessive mitochondrial fragmentation and abnormal distribution, leading to defective axonal transport of mitochondria and selective synaptic degeneration. This article summarizes latest developments in HD research and focuses on the role of abnormal mitochondrial dynamics and defective axonal transport in HD neurons. This article also discusses the therapeutic strategies that decrease mitochondrial fragmentation and neuronal damage in HD.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
23
|
Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 2011; 51:1302-19. [PMID: 21782935 DOI: 10.1016/j.freeradbiomed.2011.06.027] [Citation(s) in RCA: 452] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/17/2011] [Accepted: 06/22/2011] [Indexed: 11/27/2022]
Abstract
Lipid peroxidation is a complex process involving the interaction of oxygen-derived free radicals with polyunsaturated fatty acids, resulting in a variety of highly reactive electrophilic aldehydes. Since 1975, lipid peroxidation has been extensively studied in a variety of organisms. As neurodegenerative diseases became better understood, research establishing a link between this form of oxidative damage, neurodegeneration, and disease has provided a wealth of knowledge to the scientific community. With the advent of proteomics in 1995, the identification of biomarkers for neurodegenerative disorders became of paramount importance to better understand disease pathogenesis and develop potential therapeutic strategies. This review focuses on the relationship between lipid peroxidation and neurodegenerative diseases. It also demonstrates how findings in current research support the common themes of altered energy metabolism and mitochondrial dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- Tanea T Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA.
| |
Collapse
|
24
|
Stone TW, Forrest CM, Stoy N, Darlington LG. Involvement of kynurenines in Huntington's disease and stroke-induced brain damage. J Neural Transm (Vienna) 2011; 119:261-74. [PMID: 21695417 DOI: 10.1007/s00702-011-0676-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/08/2011] [Indexed: 01/13/2023]
Abstract
Several components of the kynurenine pathway of tryptophan metabolism are now recognised to have actions of profound biological importance. These include the ability to modulate the activation of glutamate and nicotinic receptors, to modify the responsiveness of the immune system to inflammation and infection, and to modify the generation and removal of reactive oxygen species. As each of these factors is being recognised increasingly as contributing to major disorders of the central nervous system (CNS), so the potentially fundamental role of the kynurenine pathway in those disorders is presenting a valuable target both for understanding the progress of those disorders and for developing potential drug treatments. This review will summarise some of the evidence for an important contribution of the kynurenines to Huntington's disease and to stroke damage in the CNS. Together with preliminary evidence from a study of kynurenine metabolites after major surgery, an important conclusion is that kynurenine pathway activation closely reflects cognitive function, and may play a significant role in cognitive ability.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Neuroscience and Psychology, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | | | | | |
Collapse
|
25
|
Attenuation of proinflammatory cytokines and apoptotic process by verapamil and diltiazem against quinolinic acid induced Huntington like alterations in rats. Brain Res 2011; 1372:115-26. [DOI: 10.1016/j.brainres.2010.11.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/15/2010] [Accepted: 11/18/2010] [Indexed: 01/22/2023]
|
26
|
Butterfield DA, Reed T, Sultana R. Roles of 3-nitrotyrosine- and 4-hydroxynonenal-modified brain proteins in the progression and pathogenesis of Alzheimer's disease. Free Radic Res 2011; 45:59-72. [PMID: 20942567 DOI: 10.3109/10715762.2010.520014] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Proteins play an important role in normal structure and function of the cells. Oxidative modification of proteins may greatly alter the structure and may subsequently lead to loss of normal physiological cell functions and may lead to abnormal function of cell and eventually to cell death. These modifications may be reversible or irreversible. Reversible protein modifications, such as phosphorylation, can be overcome by specific enzymes that cause a protein to 'revert' back to its original protein structure, while irreversible protein modifications cannot. Several important irreversible protein modifications include protein nitration and HNE modification, both which have been extensively investigated in research on the progression of Alzheimer's disease (AD). From the earliest stage of AD throughout the advancement of the disorder there is evidence of increased protein nitration and HNE modification. These protein modifications lead to decreased enzymatic activity, which correlates directly to protein efficacy and provides support for several common themes in AD pathology, namely altered energy metabolism, mitochondrial dysfunction and reduced cholinergic neurotransmission. The current review summarized some of the findings on protein oxidation related to different stages of Alzheimer's disease (AD) that will be helpful in understanding the role of protein oxidation in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA.
| | | | | |
Collapse
|
27
|
Kalonia H, Kumar P, Kumar A, Nehru B. Protective effect of montelukast against quinolinic acid/malonic acid induced neurotoxicity: possible behavioral, biochemical, mitochondrial and tumor necrosis factor-α level alterations in rats. Neuroscience 2010; 171:284-99. [PMID: 20813166 DOI: 10.1016/j.neuroscience.2010.08.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 01/22/2023]
Abstract
The present study has been designed to explore the protective effect of montelukast (leukotriene receptor antagonist) against intrastriatal quinolinic acid (QA; 300 nmol) and malonic acid (MA; 6 μmol) induced Huntington's like symptoms in rats. Quinolinic acid has been reported to induce excitotoxicity by stimulating the N-methyl-D-aspartate receptor, causing calcium overload which in turn leads to the neurodegeneration. On the other hand, MA, being a reversible inhibitor of mitochondrial enzyme complex-II, leads to energy crisis and free radical generation. Recent studies have reported the therapeutic potential of leukotriene receptor antagonists in different neurodegenerative disorders. However, their exact role is yet to be established. The present study accordingly, is an attempt to investigate the effect of montelukast against QA and MA induced behavioral, biochemical and molecular alterations in rat striatum. Oxidative stress, mitochondrial enzyme complex and tumor necrosis factor-alpha (TNF-α) were evaluated on day 21st and 14th post intrastriatal QA and MA treatment, respectively. Findings of the present study demonstrate significant alteration in the locomotor activity and motor coordination as well as oxidative burden (increased lipid peroxidation, nitrite concentration and decreased endogenous antioxidants), mitochondrial enzyme complex (I, II and IV) activities and TNF-α level, in both intrastriatal QA and MA treated animals. Further, montelukast (0.4, 0.8 mg/kg p.o.) treatment for 21 and 14 days respectively, attenuated the behavioral alterations, oxidative stress, mitochondrial dysfunction and TNF-α level in these models of Huntington's disease in a significant manner. In conclusion, the present study emphasizes the neuroprotective potential of montelukast in the therapeutic management of Huntington like symptoms.
Collapse
Affiliation(s)
- H Kalonia
- Pharmacology Division, University Institute of Pharmaceutical Sciences, University Grants Commission-Centre of Advanced Study, Panjab University, Chandigarh-160014, India
| | | | | | | |
Collapse
|
28
|
Huntington’s disease and mitochondrial alterations: emphasis on experimental models. J Bioenerg Biomembr 2010; 42:207-15. [DOI: 10.1007/s10863-010-9289-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Kumar P, Kumar A. Protective effects of epigallocatechin gallate following 3-nitropropionic acid-induced brain damage: possible nitric oxide mechanisms. Psychopharmacology (Berl) 2009; 207:257-70. [PMID: 19763544 DOI: 10.1007/s00213-009-1652-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 08/18/2009] [Indexed: 01/27/2023]
Abstract
INTRODUCTION The role of oxidative stress has been well known in neurodegenerative disorders. 3-Nitropropionic acid (3-NP) is a plant-based mycotoxin that produces HD like symptoms in animals. Oxidative stress and nitric oxide mechanisms have been recently proposed in the 3-NP-induced neurotoxicity. Epigallocatechin gallate (EGCG) is one of the major components of green tea, known for its potent antioxidant activity. Besides, neuroprotective effect of EGCG has also been suggested in different experimental models. OBJECTIVES The present study has been designed to examine possible effect of EGCG against 3-NP induced behavioral, oxidative stress, mitochondrial dysfunction, and striatal damage in rats and its possible interaction with nitric oxide modulators. MATERIAL AND METHODS Systemic 3-NP (10 mg/kg) administration for 14 days significantly reduced locomotor activity, body weight, grip strength, oxidative defense (raised levels of lipid peroxidation, nitrite concentration, depletion of antioxidant enzyme), and mitochondrial enzymes activity in striatum, cortex, and hippocampal regions of the brain. RESULTS Fourteen days of EGCG pretreatment (10, 20, and 40 mg/kg) significantly attenuated behavioral alterations, oxidative damage, mitochondrial complex enzymes dysfunction, and striatal damage in 3-NP-treated animals. L-arginine (50 mg/kg) pretreatment with sub-effective dose of EGCG (20 mg/kg) significantly reversed the protective behavioral, biochemical, cellular, and histological effects of EGCG. However, L-NAME (10 mg/kg) pretreatment with EGCG (20 mg/kg) significantly potentiated the protective effect of EGCG which was significant as compared to their effect per se. CONCLUSION The present study shows that EGCG attenuate 3-NP-induced neurotoxicity, and nitric oxide modulation might be involved in its protective action.
Collapse
Affiliation(s)
- Puneet Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
30
|
Forrest CM, Mackay GM, Stoy N, Spiden SL, Taylor R, Stone TW, Darlington LG. Blood levels of kynurenines, interleukin-23 and soluble human leucocyte antigen-G at different stages of Huntington's disease. J Neurochem 2009; 112:112-22. [PMID: 19845828 DOI: 10.1111/j.1471-4159.2009.06442.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is substantial evidence that abnormal concentrations of oxidised tryptophan metabolites, produced via the kynurenine pathway, contribute to progressive neurodegeneration in Huntington's disease. We have now examined the blood levels of these metabolites in patients at different stages of Huntington's disease, assessed both in terms of clinical disease severity and numbers of CAG repeats. Close relatives of the patients were included in the study as well as unrelated healthy controls. Levels of lipid peroxidation products, the pro-inflammatory cytokine interleukin (IL)-23 and the soluble human leucocyte antigen-G (sHLA-G) were also measured. There were lower levels of tryptophan and a higher kynurenine : tryptophan ratio, indicating activation of indoleamine-2,3-dioxygenase, in the most severely affected group of patients, with increased levels of IL-23 and sHLA-G. Marked correlations were noted between IL-23 and the patient severity group, anthranilic acid levels and the number of CAG repeats, and between anthranilic acid and IL-23, supporting our previous evidence of a relationship between anthranilic acid and inflammatory status. Tryptophan was negatively correlated with symptom severity and number of CAG repeats, and positively correlated with sHLA-G. The results support the proposal that tryptophan metabolism along the kynurenine pathway in Huntington's disease is related to the degree of genetic abnormality, to clinical disease severity and to aspects of immunopathogenesis.
Collapse
Affiliation(s)
- Caroline M Forrest
- Faculty of Biomedical & Life Sciences, Neuroscience and Molecular Pharmacology, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|