1
|
Li D, Pan Q, Xiao Y, Hu K. Advances in the study of phencyclidine-induced schizophrenia-like animal models and the underlying neural mechanisms. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:65. [PMID: 39039065 PMCID: PMC11263595 DOI: 10.1038/s41537-024-00485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Schizophrenia (SZ) is a chronic, severe mental disorder with heterogeneous clinical manifestations and unknown etiology. Research on SZ has long been limited by the low reliability of and ambiguous pathogenesis in schizophrenia animal models. Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist, rapidly induces both positive and negative symptoms of SZ as well as stable SZ-related cognitive impairment in rodents. However, the neural mechanism underlying PCP-induced SZ-like symptoms is not fully understood. Nondopaminergic pathophysiology, particularly excessive glutamate release induced by NMDAR hypofunction in the prefrontal cortex (PFC), may play a key role in the development of PCP-induced SZ-like symptoms. In this review, we summarize studies on the behavioral and metabolic effects of PCP and the cellular and circuitary targets of PCP in the PFC and hippocampus (HIP). PCP is thought to target the ventral HIP-PFC pathway more strongly than the PFC-VTA pathway and thalamocortical pathway. Systemic PCP administration might preferentially inhibit gamma-aminobutyric acid (GABA) neurons in the vHIP and in turn lead to hippocampal pyramidal cell disinhibition. Excitatory inputs from the HIP may trigger sustained, excessive and pathological PFC pyramidal neuron activation to mediate various SZ-like symptoms. In addition, astrocyte and microglial activation and oxidative stress in the cerebral cortex or hippocampus have been observed in PCP-induced models of SZ. These findings perfect the hypoglutamatergic hypothesis of schizophrenia. However, whether these effects direct the consequences of PCP administration and how about the relationships between these changes induced by PCP remain further elucidation through rigorous, causal and direct experimental evidence.
Collapse
Affiliation(s)
- Dabing Li
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China.
| | - Qiangwen Pan
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China
| | - Yewei Xiao
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China
| | - Kehui Hu
- Department of rehabilitation Medicine, SuiNing Central Hospital, The Affiliated Hospital of Chongqing Medical University, SuiNing, 629000, China.
| |
Collapse
|
2
|
Öz P, Kamalı O, Saka HB, Gör C, Uzbay İT. Baseline prepulse inhibition dependency of orexin A and REM sleep deprivation. Psychopharmacology (Berl) 2024; 241:1213-1225. [PMID: 38427059 PMCID: PMC11106105 DOI: 10.1007/s00213-024-06555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
RATIONALE Prepulse inhibition (PPI) impairment reflects sensorimotor gating problems, i.e. in schizophrenia. This study aims to enlighten the role of orexinergic regulation on PPI in a psychosis-like model. OBJECTIVES In order to understand the impact of orexinergic innervation on PPI and how it is modulated by age and baseline PPI (bPPI), chronic orexin A (OXA) injections was carried on non-sleep-deprived and sleep-deprived rats that are grouped by their bPPI. METHODS bPPI measurements were carried on male Wistar rats on P45 or P90 followed by grouping into low-PPI and high-PPI rats. The rats were injected with OXA twice per day for four consecutive days starting on P49 or P94, while the control groups received saline injections. 72 h REMSD was carried on via modified multiple platform technique on P94 and either OXA or saline was injected during REMSD. PPI tests were carried out 30 min. after the last injection. RESULTS Our previous study with acute OXA injection after REMSD without bPPI grouping revealed that low OXA doses might improve REMSD-induced PPI impairment. Our current results present three important conclusions: (1) The effect of OXA on PPI is bPPI-dependent and age-dependent. (2) The effect of REMSD is bPPI-dependent. (3) The effect of OXA on PPI after REMSD also depends on bPPI. CONCLUSION Orexinergic regulation of PPI response with and without REMSD can be predicted by bPPI levels. Our findings provide potential insights into the regulation of sensorimotor gating by sleep/wakefulness systems and present potential therapeutic targets for the disorders, where PPI is disturbed.
Collapse
Affiliation(s)
- Pınar Öz
- Department of Molecular Biology and Genetics, Üsküdar University, Istanbul, Turkey.
- Faculty of Engineering and Natural Sciences, Üsküdar University Central Campus Block A, Altunizade Mah. Haluk Türksoy Sk. No : 14 34362, Üsküdar, Istanbul, Turkey.
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey.
| | - Osman Kamalı
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey
| | - Hacer Begüm Saka
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey
- Department of Neuroscience, Koç University, Istanbul, Turkey
| | - Ceren Gör
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey
| | | |
Collapse
|
3
|
Candidate Strategies for Development of a Rapid-Acting Antidepressant Class That Does Not Result in Neuropsychiatric Adverse Effects: Prevention of Ketamine-Induced Neuropsychiatric Adverse Reactions. Int J Mol Sci 2020; 21:ijms21217951. [PMID: 33114753 PMCID: PMC7662754 DOI: 10.3390/ijms21217951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023] Open
Abstract
Non-competitive N-methyl-D-aspartate/glutamate receptor (NMDAR) antagonism has been considered to play important roles in the pathophysiology of schizophrenia. In spite of severe neuropsychiatric adverse effects, esketamine (racemic enantiomer of ketamine) has been approved for the treatment of conventional monoaminergic antidepressant-resistant depression. Furthermore, ketamine improves anhedonia, suicidal ideation and bipolar depression, for which conventional monoaminergic antidepressants are not fully effective. Therefore, ketamine has been accepted, with rigorous restrictions, in psychiatry as a new class of antidepressant. Notably, the dosage of ketamine for antidepressive action is comparable to the dose that can generate schizophrenia-like psychotic symptoms. Furthermore, the psychotropic effects of ketamine precede the antidepressant effects. The maintenance of the antidepressive efficacy of ketamine often requires repeated administration; however, repeated ketamine intake leads to abuse and is consistently associated with long-lasting memory-associated deficits. According to the dissociative anaesthetic feature of ketamine, it exerts broad acute influences on cognition/perception. To evaluate the therapeutic validation of ketamine across clinical contexts, including its advantages and disadvantages, psychiatry should systematically assess the safety and efficacy of either short- and long-term ketamine treatments, in terms of both acute and chronic outcomes. Here, we describe the clinical evidence of NMDAR antagonists, and then the temporal mechanisms of schizophrenia-like and antidepressant-like effects of the NMDAR antagonist, ketamine. The underlying pharmacological rodent studies will also be discussed.
Collapse
|
4
|
Adell A. Brain NMDA Receptors in Schizophrenia and Depression. Biomolecules 2020; 10:biom10060947. [PMID: 32585886 PMCID: PMC7355879 DOI: 10.3390/biom10060947] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP), dizocilpine (MK-801) and ketamine have long been considered a model of schizophrenia, both in animals and humans. However, ketamine has been recently approved for treatment-resistant depression, although with severe restrictions. Interestingly, the dosage in both conditions is similar, and positive symptoms of schizophrenia appear before antidepressant effects emerge. Here, we describe the temporal mechanisms implicated in schizophrenia-like and antidepressant-like effects of NMDA blockade in rats, and postulate that such effects may indicate that NMDA receptor antagonists induce similar mechanistic effects, and only the basal pre-drug state of the organism delimitates the overall outcome. Hence, blockade of NMDA receptors in depressive-like status can lead to amelioration or remission of symptoms, whereas healthy individuals develop psychotic symptoms and schizophrenia patients show an exacerbation of these symptoms after the administration of NMDA receptor antagonists.
Collapse
Affiliation(s)
- Albert Adell
- Institute of Biomedicine and Biotechnology of Cantabria, IBBTEC (CSIC-University of Cantabria), Calle Albert Einstein 22 (PCTCAN), 39011 Santander, Spain; or
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 39011 Santander, Spain
| |
Collapse
|
5
|
Öz P, Gökalp HK, Göver T, Uzbay T. Dose-dependent and opposite effects of orexin A on prepulse inhibition response in sleep-deprived and non-sleep-deprived rats. Behav Brain Res 2017; 346:73-79. [PMID: 29237551 DOI: 10.1016/j.bbr.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/19/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023]
Abstract
Orexin is a novel neurotransmitter released from lateral hypothalamus, that is a crucial modulator in sleep/wakefulness system. Recent studies also suggest its possible role in the neurodevelopmental disorders, such as schizophrenia. Our study consists of two experiments, where we investigate the effect of orexin A (OXA), one of two isoforms of orexin that can pass blood brain barrier, on the prepulse inhibition of acoustic startle reflex. The first experiment tested the effect of OXA on PPI response of non-sleep-deprived rats via intraperitoneal injection 30min before testing. Our results show that 40μg/kg OXA attenuates PPI% at 78dB and 86dB prepulse intensities. The second experiment utilized 72-h REM sleep deprivation, as a model for sleep-deprivation-induced impairment of PPI response. Here, we tested the effect of OXA on PPI% of sleep-deprived rats via intraperitoneal injection at the last 30min of sleep deprivation, testing for PPI immediately afterwards. Our results showed that (1) sleep deprivation attenuates the PPI% at 74dB, 78dB and 86dB prepulse intensities and (2) 10μg/kg OXA completely restores the impaired PPI% at 78dB only, where the highest PPI% impairment was observed. These results suggest that orexin A modulates PPI response in rats in a dose-dependent manner, oppositely for non-sleep-deprived and sleep-deprived rats, and a more detailed investigation for the etiology of this effect should follow.
Collapse
Affiliation(s)
- Pınar Öz
- Neuropsychopharmacology Application and Research Center, Üsküdar University, İstanbul, Turkey; Department of Molecular Biology and Genetics, Üsküdar University, İstanbul, Turkey.
| | - H Kübra Gökalp
- Department of Molecular Biology and Genetics, Üsküdar University, İstanbul, Turkey
| | - Tansu Göver
- Department of Molecular Biology and Genetics, Üsküdar University, İstanbul, Turkey
| | - Tayfun Uzbay
- Neuropsychopharmacology Application and Research Center, Üsküdar University, İstanbul, Turkey; Department of Molecular Biology and Genetics, Üsküdar University, İstanbul, Turkey
| |
Collapse
|
6
|
Sinclair D, Oranje B, Razak KA, Siegel SJ, Schmid S. Sensory processing in autism spectrum disorders and Fragile X syndrome-From the clinic to animal models. Neurosci Biobehav Rev 2017; 76:235-253. [PMID: 27235081 PMCID: PMC5465967 DOI: 10.1016/j.neubiorev.2016.05.029] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/08/2016] [Accepted: 05/23/2016] [Indexed: 01/08/2023]
Abstract
Brains are constantly flooded with sensory information that needs to be filtered at the pre-attentional level and integrated into endogenous activity in order to allow for detection of salient information and an appropriate behavioral response. People with Autism Spectrum Disorder (ASD) or Fragile X Syndrome (FXS) are often over- or under-reactive to stimulation, leading to a wide range of behavioral symptoms. This altered sensitivity may be caused by disrupted sensory processing, signal integration and/or gating, and is often being neglected. Here, we review translational experimental approaches that are used to investigate sensory processing in humans with ASD and FXS, and in relevant rodent models. This includes electroencephalographic measurement of event related potentials, neural oscillations and mismatch negativity, as well as habituation and pre-pulse inhibition of startle. We outline robust evidence of disrupted sensory processing in individuals with ASD and FXS, and in respective animal models, focusing on the auditory sensory domain. Animal models provide an excellent opportunity to examine common mechanisms of sensory pathophysiology in order to develop therapeutics.
Collapse
Affiliation(s)
- D Sinclair
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, 125 S 31st St., Philadelphia, PA 19104, USA
| | - B Oranje
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, HP A 01.126 Heidelberglaan 100, CX Utrecht, 3584, The Netherlands; Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Psychiatric Center Glostrup, Ndr. Ringvej 29-67, Glostrup, 2600, Denmark; Faculty of Health Sciences, Department of Neurology, Psychiatry, and Sensory Sciences, University of Copenhagen, Denmark
| | - K A Razak
- Psychology Department, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - S J Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, 125 S 31st St., Philadelphia, PA 19104, USA
| | - S Schmid
- Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, MSB 470, London, ON N6A 5C1, Canada.
| |
Collapse
|
7
|
Yates NJ, Robertson D, Rodger J, Martin-Iverson MT. Effects of Neonatal Dexamethasone Exposure on Adult Neuropsychiatric Traits in Rats. PLoS One 2016; 11:e0167220. [PMID: 27936175 PMCID: PMC5147874 DOI: 10.1371/journal.pone.0167220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/10/2016] [Indexed: 11/18/2022] Open
Abstract
The effects of early life stress in utero or in neonates has long-term consequences on hypothalamic-pituitary-adrenal (HPA) stress axis function and neurodevelopment. These effects extend into adulthood and may underpin a variety of mental illnesses and be related to various developmental and cognitive changes. We examined the potential role of neonatal HPA axis activation on adult psychopathology and dopamine sensitivity in the mature rat using neonatal exposure to the synthetic glucocorticoid receptor agonist and stress hormone, dexamethasone. We utilized a comprehensive battery of assessments for behaviour, brain function and gene expression to determine if elevated early life HPA activation is associated with adult-onset neuropsychiatric traits. Dexamethasone exposure increased startle reactivity under all conditions tested, but decreased sensitivity of sensorimotor gating to dopaminergic disruption–contrasting with what is observed in several neuropsychiatric diseases. Under certain conditions there also appeared to be mild long-term changes in stress and anxiety-related behaviours with neonatal dexamethasone exposure. Electrophysiology revealed that there were no consistent neuropsychiatric abnormalities in auditory processing or resting state brain function with dexamethasone exposure. However, neonatal dexamethasone altered auditory cortex glucocorticoid activation, and auditory cortex synchronization. Our results indicate that neonatal HPA axis activation by dexamethasone alters several aspects of adult brain function and behaviour and may induce long-term changes in emotional stress-reactivity. However, neonatal dexamethasone exposure is not specifically related to any particular neuropsychiatric disease.
Collapse
Affiliation(s)
- Nathanael J. Yates
- School of Animal Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| | - Donald Robertson
- School of Anatomy, Physiology, and Human Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Jennifer Rodger
- School of Animal Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mathew T. Martin-Iverson
- School of Medicine and Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
8
|
Electrophysiological alterations in a complex rat model of schizophrenia. Behav Brain Res 2016; 307:65-72. [DOI: 10.1016/j.bbr.2016.03.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 12/17/2022]
|
9
|
Yang JC, Rodriguez A, Royston A, Niu YQ, Avar M, Brill R, Simon C, Grigsby J, Hagerman RJ, Olichney JM. Memantine Improves Attentional Processes in Fragile X-Associated Tremor/Ataxia Syndrome: Electrophysiological Evidence from a Randomized Controlled Trial. Sci Rep 2016; 6:21719. [PMID: 26898832 PMCID: PMC4761982 DOI: 10.1038/srep21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/29/2016] [Indexed: 11/24/2022] Open
Abstract
Progressive cognitive deficits are common in patients with fragile X-associated tremor/ataxia syndrome (FXTAS), with no targeted treatment yet established. In this substudy of the first randomized controlled trial for FXTAS, we examined the effects of NMDA antagonist memantine on attention and working memory. Data were analyzed for patients (24 in each arm) who completed both the primary memantine trial and two EEG recordings (at baseline and follow-up) using an auditory “oddball” task. Results demonstrated significantly improved attention/working memory performance after one year only for the memantine group. The event-related potential P2 amplitude elicited by non-targets was significantly enhanced in the treated group, indicating memantine-associated improvement in attentional processes at the stimulus identification/discrimination level. P2 amplitude increase was positively correlated with improvement on the behavioral measure of attention/working memory during target detection. Analysis also revealed that memantine treatment normalized the P2 habituation effect at the follow-up visit. These findings indicate that memantine may benefit attentional processes that represent fundamental components of executive function/dysfunction, thought to comprise the core cognitive deficit in FXTAS. The results provide evidence of target engagement of memantine, as well as therapeutically relevant information that could further the development of specific cognitive or disease-modifying therapies for FXTAS.
Collapse
Affiliation(s)
- Jin-Chen Yang
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,Department of Neurology, University of California Davis, School of Medicine, Sacramento, CA, 95817 USA
| | - Annette Rodriguez
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,Department of Psychology, California State University, Sacramento, Sacramento, CA, 95819 USA
| | - Ashley Royston
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,Department of Psychology, University of California Davis, Davis, CA, 95616 USA
| | - Yu-Qiong Niu
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,Department of Neurology, University of California Davis, School of Medicine, Sacramento, CA, 95817 USA
| | - Merve Avar
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,University of Vienna, Vienna, 1010 Austria
| | - Ryan Brill
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,Department of Neurology, University of California Davis, School of Medicine, Sacramento, CA, 95817 USA
| | - Christa Simon
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,Department of Neurology, University of California Davis, School of Medicine, Sacramento, CA, 95817 USA
| | - Jim Grigsby
- Department of Psychology, Department of Medicine, University of Colorado Denver, Denver, CO, 80217 USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, School of Medicine, Sacramento, CA, 95817 USA.,Department of Pediatrics, University of California Davis, School of Medicine, Sacramento, CA, 95817 USA
| | - John M Olichney
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,Department of Neurology, University of California Davis, School of Medicine, Sacramento, CA, 95817 USA
| |
Collapse
|
10
|
Abstract
Over the past 60 years, a large number of selective neurotoxins were discovered and developed, making it possible to animal-model a broad range of human neuropsychiatric and neurodevelopmental disorders. In this paper, we highlight those neurotoxins that are most commonly used as neuroteratologic agents, to either produce lifelong destruction of neurons of a particular phenotype, or a group of neurons linked by a specific class of transporter proteins (i.e., dopamine transporter) or body of receptors for a specific neurotransmitter (i.e., NMDA class of glutamate receptors). Actions of a range of neurotoxins are described: 6-hydroxydopamine (6-OHDA), 6-hydroxydopa, DSP-4, MPTP, methamphetamine, IgG-saporin, domoate, NMDA receptor antagonists, and valproate. Their neuroteratologic features are outlined, as well as those of nerve growth factor, epidermal growth factor, and that of stress. The value of each of these neurotoxins in animal modeling of human neurologic, neurodegenerative, and neuropsychiatric disorders is discussed in terms of the respective value as well as limitations of the derived animal model. Neuroteratologic agents have proven to be of immense importance for understanding how associated neural systems in human neural disorders may be better targeted by new therapeutic agents.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Box 500, 430 50, Gothenburg, Sweden.
| | - Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN, 37614, USA
| |
Collapse
|
11
|
Comparing Pharmacological Modulation of Sensory Gating in Healthy Humans and Rats: The Effects of Reboxetine and Haloperidol. Neuropsychopharmacology 2016; 41:638-45. [PMID: 26129678 PMCID: PMC5130139 DOI: 10.1038/npp.2015.194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/20/2015] [Accepted: 06/10/2015] [Indexed: 11/09/2022]
Abstract
Sensory gating is the brain's ability to filter out irrelevant information before it reaches high levels of conscious processing. In the current study we aimed to investigate the involvement of the noradrenergic and dopaminergic neurotransmitter systems in sensory gating. Furthermore, we investigated cross-species reliability by comparing effects in both healthy humans and rats, while keeping all experimental conditions as similar as possible between the species. The design of the human experiment (n=21) was a double-blind, placebo-controlled, cross-over study where sensory gating was assessed following a dose of either reboxetine (8 mg), haloperidol (2 mg), their combination or placebo at four separate visits. Similarly in the animal experiment sensory gating was assessed in rats, (n=22) following a dose of reboxetine (2 mg/kg), haloperidol (0.08 mg/kg), their combination or placebo. The sensory gating paradigms in both experiments were identical. In humans, we found significantly reduced P50 suppression following separate administration of reboxetine or haloperidol, while their combined administration did not reach statistical significance compared with placebo. In the rats, we found a similar significant reduction of sensory gating (N40) following treatment with haloperidol and the combination of haloperidol and reboxetine, but not with separate reboxetine treatment, compared with placebo. Our study indicates that even when experimental conditions are kept as similar as possible, direct human to rat cross-species translation of pharmacological effects on sensory gating is challenging, which calls for more focussed research in this important translational area.
Collapse
|
12
|
Sullivan EM, Timi P, Hong LE, O'Donnell P. Reverse translation of clinical electrophysiological biomarkers in behaving rodents under acute and chronic NMDA receptor antagonism. Neuropsychopharmacology 2015; 40:719-27. [PMID: 25176166 PMCID: PMC4289960 DOI: 10.1038/npp.2014.228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 01/23/2023]
Abstract
Electroencephalogram (EEG) stands out as a highly translational tool for psychiatric research, yet rodent and human EEG are not typically obtained in the same way. In this study we developed a tool to record skull EEG in awake-behaving rats in a similar manner to how human EEG are obtained and then used this technique to test whether acute NMDA receptor antagonism alters rodent EEG signals in a similar manner as in humans. Acute MK-801 treatment elevated gamma power and reduced beta band power, which closely mirrored EEG data from healthy volunteers receiving acute ketamine. To explore the mechanisms behind these oscillatory changes, we examined the effects of GABA-A receptor blockade, finding that picrotoxin (PTX) recapitulated the decrease in sound-evoked beta oscillations observed with acute MK-801, but did not produce changes in gamma band power. Chronic treatment with either PTX or MK-801 did not affect frequency-specific oscillatory activity when tested 24 h after the last drug injection, but decreased total broadband oscillatory power. Overall, this study validated a novel platform for recording rodent EEG and demonstrated similar oscillatory changes after acute NMDA receptor antagonism in both humans and rodents, suggesting that skull EEG may be a powerful tool for further translational studies.
Collapse
Affiliation(s)
- Elyse M Sullivan
- Department of Anatomy and Neurobiology, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patricia Timi
- Department of Anatomy and Neurobiology, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patricio O'Donnell
- Department of Anatomy and Neurobiology, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA,Neuroscience Research Unit, Pfizer, 610 Main Street, Cambridge, MA 02139, USA, Tel: +1 161 7395 0838, Fax: +1 84 54744276, E-mail:
| |
Collapse
|
13
|
Heckman PRA, Blokland A, Ramaekers J, Prickaerts J. PDE and cognitive processing: beyond the memory domain. Neurobiol Learn Mem 2014; 119:108-22. [PMID: 25464010 DOI: 10.1016/j.nlm.2014.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 01/01/2023]
Abstract
Phosphodiesterase inhibitors (PDE-Is) enhance cAMP and/or cGMP signaling via reducing the degradation of these cyclic nucleotides. Both cAMP and cGMP signaling are essential for a variety of cellular functions and exert their effects both pre- and post-synaptically. Either of these second messengers relays and amplifies incoming signals at receptors on the cell surface making them important elements in signal transduction cascades and essential in cellular signaling in a variety of cell functions including neurotransmitter release and neuroprotection. Consequently, these processes can be influenced by PDE-Is as they increase cAMP and/or cGMP concentrations. PDE-Is have been considered as possible therapeutic agents to treat impaired memory function linked to several brain disorders, including depression, schizophrenia and Alzheimer's disease (AD). This review will, however, focus on the possible role of phosphodiesterases (PDEs) in cognitive decline beyond the memory domain. Here we will discuss the involvement of PDEs on three related domains: attention, information filtering (sensory- and sensorimotor gating) and response inhibition (drug-induced hyperlocomotion). Currently, these are emerging cognitive domains in the field of PDE research. Here we discuss experimental studies and the potential beneficial effects of PDE-I drugs on these cognitive domains, as effects of PDE-Is on these domains could potentially influence effects on memory performance. Overall, PDE4 seems to be the most promising target for all domains discussed in this review.
Collapse
Affiliation(s)
- P R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; Department of Neuropsychology and Psychopharmacology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - A Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - J Ramaekers
- Department of Neuropsychology and Psychopharmacology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - J Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
14
|
Auditory sensory processing deficits in sensory gating and mismatch negativity-like responses in the social isolation rat model of schizophrenia. Behav Brain Res 2014; 266:85-93. [DOI: 10.1016/j.bbr.2014.02.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 11/23/2022]
|
15
|
Expression of presynaptic markers in a neurodevelopmental animal model with relevance to schizophrenia. Neuroreport 2013; 24:928-33. [DOI: 10.1097/wnr.0000000000000030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
PDE2 and PDE10, but not PDE5, inhibition affect basic auditory information processing in rats. Behav Brain Res 2013; 250:251-6. [DOI: 10.1016/j.bbr.2013.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/08/2023]
|
17
|
Kjaerby C, Bundgaard C, Fejgin K, Kristiansen U, Dalby NO. Repeated potentiation of the metabotropic glutamate receptor 5 and the alpha 7 nicotinic acetylcholine receptor modulates behavioural and GABAergic deficits induced by early postnatal phencyclidine (PCP) treatment. Neuropharmacology 2013; 72:157-68. [PMID: 23643744 DOI: 10.1016/j.neuropharm.2013.04.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/11/2013] [Accepted: 04/20/2013] [Indexed: 12/29/2022]
Abstract
The underlying mechanism of the GABAergic deficits observed in schizophrenia has been proposed to involve NMDA receptor hypofunction. An emerging treatment strategy therefore aims at enhancing GABAergic signalling by increasing the excitatory transmission onto interneurons. We wanted to determine whether behavioural and GABAergic functional deficits induced by the NMDA receptor channel blocker, phencyclidine (PCP), could be reversed by repeated administration of two drugs known to enhance GABAergic transmission: the positive allosteric modulator (PAM) of the metabotropic glutamate receptor 5 (mGluR5), ADX47273, and the partial agonist of the α7 nicotinic acetylcholine receptor (α7 nAChR), SSR180711. Adolescent rats (4-5 weeks) subjected to PCP treatment during the second postnatal week displayed a consistent deficit in prepulse inhibition (PPI), which was reversed by a one-week treatment with ADX47273 or SSR180711. We examined GABAergic transmission by whole cell patch-clamp recordings of miniature inhibitory postsynaptic currents (mIPSC) in pyramidal neurons in layer II/III of prefrontal cortex (PFC) and by activation of extrasynaptic δ-containing GABAA receptors by THIP. Following PCP treatment, pyramidal neurons displayed a reduced mIPSC frequency and up-regulation of extrasynaptic THIP-induced current. ADX47273 treatment restored this up-regulation of THIP-induced current. Reduced receptor function seems to be the underlying cause of the reported changes, since repeated treatment with ADX47273 and SSR180711 decreased the induction of spontaneous inhibitory current caused by acute and direct agonism of mGluR5s and α7 nAChRs in slices. These results show that repeated administration of ADX47273 or SSR180711 reverses certain behavioural and functional deficits induced by PCP, likely through down-regulation or desensitisation of mGluR5s and α7 nAChRs, respectively.
Collapse
Affiliation(s)
- Celia Kjaerby
- Synaptic Transmission I&II, H. Lundbeck A/S, Ottiliavej 7-9, 2500 Valby, Denmark.
| | | | | | | | | |
Collapse
|
18
|
Reneerkens OAH, Sambeth A, Van Duinen MA, Blokland A, Steinbusch HWM, Prickaerts J. The PDE5 inhibitor vardenafil does not affect auditory sensory gating in rats and humans. Psychopharmacology (Berl) 2013; 225:303-12. [PMID: 22855271 DOI: 10.1007/s00213-012-2817-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/16/2012] [Indexed: 12/26/2022]
Abstract
RATIONALE Sensory gating is an adaptive mechanism of the brain to prevent overstimulation. Patients suffering from clinical disorders such as Alzheimer's disease or schizophrenia exhibit a deficit in gating, which indicates not only an impairment in basic information processing that might contribute to the cognitive problems seen in these patients. Phosphodiesterase type 5 inhibitors (PDE5-Is) have been shown to improve cognition in rodents in various behavioural tasks and might consequently be an interesting target for cognition enhancement. However, the effects of PDE5-Is on sensory gating are not known yet. OBJECTIVES This work aims to study the effects of PDE5 inhibition on auditory sensory gating in rats and humans. METHODS In the rat study, vehicle or 0.3-3 mg/kg of the PDE5-I vardenafil was given orally 30 min before testing and electrode locations were the vertex, hippocampus and the striatum. The human subjects received placebo, 10-20 mg vardenafil 85 min before testing and sensory gating was measured at the cortex (Fz, Fcz and Cz) electrodes. RESULTS Significant gating was only found for the N1 component in rats while all three peaks P1, N1 and P2 showed gating in humans, i.e. the response to the second sound click was decreased as compared with the first for these deflections. Administration of vardenafil did neither have an effect on sensory gating in rats nor in humans. CONCLUSIONS These findings imply that positive effects of PDE5 inhibition on cognition are not mediated by more early phases of information processing.
Collapse
Affiliation(s)
- O A H Reneerkens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Sandner G, Meyer L, Angst MJ, Guignard B, Guiberteau T, Mensah-Nyagan AG. Neonatal ventral hippocampal lesions modify pain perception and evoked potentials in rats. Behav Brain Res 2012; 234:167-74. [DOI: 10.1016/j.bbr.2012.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 01/27/2023]
|
20
|
Okamoto M, Katayama T, Suzuki Y, Hoshino KY, Yamada H, Matsuoka N, Jodo E. Neonatal administration of phencyclidine decreases the number of putative inhibitory interneurons and increases neural excitability to auditory paired clicks in the hippocampal CA3 region of freely moving adult mice. Neuroscience 2012; 224:268-81. [PMID: 22906477 DOI: 10.1016/j.neuroscience.2012.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 10/28/2022]
Abstract
Animals exposed to phencyclidine (PCP) during the neonatal period have fewer GABAergic interneurons in the corticolimbic area, including the hippocampus, and exhibit abnormal behaviors after attaining maturation that correspond with schizophrenic symptoms. Since a lack of inhibitory interneurons in the hippocampus has also been reported in postmortem studies of patients with schizophrenia, the deficit may induce abnormal activity of hippocampal neurons that underlies pathological states in schizophrenia. However, it remains unclear how PCP treatment during the neonatal period affects the discharge activity of hippocampal neurons in adulthood. In the current study, single unit responses of hippocampal CA3 neurons to paired auditory clicks were recorded in freely moving mice repeatedly injected with PCP or saline during the neonatal period. The recorded neurons were classified into two subpopulations, narrow-spike neurons and broad-spike neurons, based on the spike width. The spontaneous discharge rate was higher in the narrow-spike neurons than in the broad-spike neurons, indicating that the narrow-spike neurons correspond with hippocampal inhibitory neurons. The proportion of narrow-spike neurons was significantly smaller in neonatally PCP-treated mice than in saline-treated mice. The broad-spike neurons that exhibited a response magnitude to the second click as large as that to the first click (E/E-type response) showed longer response duration to the paired clicks in PCP-treated mice than in the saline-treated mice. Further, the number of neurons with E/E-type response was higher in the PCP-treated mice than in the saline-treated mice. Finally, the attenuation of an auditory-evoked potential component, N40, to the second click (sensory gating) was blunted in the PCP-treated mice when compared with that in the saline-treated mice. These results suggest that the neonatal administration of PCP induced a deficit of inhibitory interneurons and altered discharge activity of neurons in the hippocampal CA3 region to the paired clicks, thereby inducing the deficit in sensory gating.
Collapse
Affiliation(s)
- M Okamoto
- Department of Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima City, Fukushima 960-1295, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The past 20 years have seen the glutamatergic hypothesis go from theory to phase III trials of novel mechanism antipsychotics. RECENT FINDINGS We review the recent literature on glutamatergic theory, covering assessment and genetic studies, as well as drug development in animals and humans. SUMMARY Although evidence continues to accumulate in support of glutamate hypotheses, further research continues to be required and interactions with other key systems need to be explored.
Collapse
Affiliation(s)
- Joshua Kantrowitz
- Schizophrenia Research Institute, Nathan Kline Institute for Psychiatric Research, New York, USA.
| | | |
Collapse
|
22
|
Brennan CH. Zebrafish behavioural assays of translational relevance for the study of psychiatric disease. Rev Neurosci 2011; 22:37-48. [PMID: 21615260 DOI: 10.1515/rns.2011.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Understanding the pathogenesis of the complex behavioural disorders that constitute psychiatric disease is a major challenge for biomedical research. Assays in rodents have contributed significantly to our understanding of the neural basis of behavioural disorders and continue to be one of the main focuses for the development of novel therapeutics. Now, owing to their genetic tractability and optical transparency (allowing in vivo imaging of circuit function) and the rapid expansion of genetic tools, zebrafish are becoming increasingly popular for behavioural genetic research. The increased development of behavioural assays in zebrafish raises the possibility of exploiting the advantages of this system to identify molecular mechanisms contributing to behavioural phenotypes associated with psychiatric disorders as well as potential therapeutics. This mini-review describes behavioural paradigms in zebrafish that can be used to address endophenotypes associated with psychiatric disease. The content reflects the interests of the author and covers tests of cognitive functions, response choice and inhibition, social interaction and executive function.
Collapse
Affiliation(s)
- Caroline H Brennan
- Queen Mary University of London, Biological and Experimental Psychology Group, School of Biological and Chemical Sciences, Mile End, London E1 4NS, UK.
| |
Collapse
|