1
|
Qiu W, Wu Q, Zhang K, Da X, Tang K, Yuan N, Deng L, Wu M, Zhang Y, Quan J, Ma Q, Li X, Chen J. Xiaoyaosan ameliorates depressive-like behavior and susceptibility to glucose intolerance in rat: involvement of LepR-STAT3/PI3K pathway in hypothalamic arcuate nucleus. BMC Complement Med Ther 2023; 23:116. [PMID: 37046230 PMCID: PMC10091664 DOI: 10.1186/s12906-023-03942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Accumulating evidence has demonstrated that arcuate nucleus (ARC) of the hypothalamus is likely responsible for the close association between chronic stress, depression, and diabetes. Xiaoyaosan (XYS), a Chinese herbal formula, remarkably improves depressive-like behavior and glucose intolerance, but the mechanism remains unclear. Leptin receptor (LepR) regulates energy expenditure and depression by mediating the action of leptin on the ARC. Therefore, we hypothesized that XYS may regulate depressive-like behavior and glucose intolerance via the leptin and its cascade LepR-STAT3/PI3K pathway in the ARC. METHODS A rat model of depressive-like behavior and susceptibility to glucose intolerance was induced by exposure to chronic unpredictable mild stress (CUMS) for six weeks. XYS (2.224 g/kg) was orally gavaged for six weeks, and fluoxetine (2.0 mg/kg) was administrated to the positive control group. Depressive-like behaviors were assessed using the open field test (OFT), sucrose preference test (SPT) and forced swim test (FST). Fasting blood glucose (FBG) and oral glucose tolerance test (OGTT) were performed to evaluate the effects of XYS on blood glucose. Peripheral leptin and blood lipids were detected using enzyme-linked immunosorbent assay and an automatic biochemical analyzer, respectively. The effects of XYS on the LepR-STAT3/PI3K pathway were detected by quantitative real-time PCR and western blotting. RESULTS XYS ameliorated CUMS-induced depressive-like behaviors and elevated blood glucose. XYS improved the food intake but have no significant effects on the body weight. Peripheral leptin and its central receptor were also suppressed by XYS, accompanied by the downregulation of JAK2/STAT3 and PI3K/AKT pathway in the ARC. Additionally, XYS increased AGRP and NPY expression but inhibited POMC in the ARC. CONCLUSIONS XYS improves depressive-like behaviors and susceptibility to glucose intolerance induced by CUMS, which may be achieved by the downregulation of the LepR-STAT3/PI3K signaling pathway in the ARC.
Collapse
Affiliation(s)
- Wenqi Qiu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kaiwen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoli Da
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Kairui Tang
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Naijun Yuan
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Lijuan Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Mansi Wu
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Ying Zhang
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiangyan Quan
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Qingyu Ma
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Xiaojuan Li
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Chronic alcohol disrupts hypothalamic responses to stress by modifying CRF and NMDA receptor function. Neuropharmacology 2020; 167:107991. [PMID: 32059962 DOI: 10.1016/j.neuropharm.2020.107991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 01/23/2023]
Abstract
The chronic inability of alcoholics to effectively cope with relapse-inducing stressors has been linked to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and corticotropin-releasing factor (CRF) signaling. However, the cellular mechanisms responsible for this dysregulation are yet to be identified. After exposure of male Sprague Dawley rats to chronic intermittent ethanol (CIE; 5-6 g/kg orally for 35 doses over 50 days) or water, followed by 40-60 days of protracted withdrawal, we investigated CIE effects on glutamatergic synaptic transmission, stress-induced plasticity, CRF- and ethanol-induced NMDAR inhibition using electrophysiological recordings in parvocellular neurosecretory cells (PNCs) of the paraventricular nucleus. We also assessed CIE effects on hypothalamic mRNA expression of CRF-related genes using real-time polymerase chain reaction, and on HPA axis function by measuring stress-induced increases in plasma adrenocorticotropic hormone, corticosterone, and self-grooming. In control rats, ethanol-mediated inhibition of NMDARs was prevented by CRF1 receptor (CRFR1) blockade with antalarmin, while CRF/CRFR1-mediated NMDAR blockade was prevented by intracellularly-applied inhibitor of phosphatases PP1/PP2A, okadaic acid, but not the selective striatal-enriched tyrosine protein phosphatase inhibitor, TC-2153. CIE exposure increased GluN2B subunit-dependent NMDAR function of PNCs. This was associated with the loss of both ethanol- and CRF-mediated NMDAR inhibition, and loss of stress-induced short-term potentiation of glutamatergic synaptic inputs, which could be reversed by intracellular blockade of NMDARs with MK801. CIE exposure also blunted the hormonal and self-grooming behavioral responses to repeated restraint stress. These findings suggest a cellular mechanism whereby chronic alcohol dysregulates the hormonal and behavioral responses to repetitive stressors by increasing NMDAR function and decreasing CRFR1 function.
Collapse
|
3
|
Chronic social isolation in adaptation of HPA axis to heterotypic stress. Pharmacol Rep 2017; 69:1213-1223. [PMID: 29128802 DOI: 10.1016/j.pharep.2017.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/04/2017] [Accepted: 08/23/2017] [Indexed: 11/21/2022]
|
4
|
Psychostimulants and forced swim stress interaction: how activation of the hypothalamic-pituitary-adrenal axis and stress-induced hyperglycemia are affected. Psychopharmacology (Berl) 2017; 234:2859-2869. [PMID: 28710520 DOI: 10.1007/s00213-017-4675-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/21/2017] [Indexed: 12/23/2022]
Abstract
RATIONALE We recently reported that simultaneous exposure to amphetamine and various stressors resulted in reduced hypothalamic-pituitary-adrenal (HPA) and glycemic responses to the stressors. Since this is a new and relevant phenomenon, we wanted to further explore this interaction. OBJECTIVES This study aims (i) to characterize the effect of various doses of amphetamine on the physiological response to a predominantly emotional stressor (forced swim) when the drug was given immediately before stress; (ii) to study if an interaction appears when the drug was given 30 min or 7 days before swim; and (iii) to know whether cocaine causes similar effects when given just before stress. Adult male rats were used and plasma levels of ACTH, corticosterone, and glucose were the outcomes. RESULTS Amphetamine caused a dose-dependent activation of the HPA axis, but all doses reduced HPA and glycemic responses to swim when given just before the stressor. Importantly, during the post-swim period, the stressor potently inhibited the ACTH response to amphetamine, demonstrating mutual inhibition between the two stimuli. The highest dose of amphetamine also reduced the response to swim when given 30 min before stress, whereas it caused HPA sensitization when given 7 days before. Cocaine also reduced stress-induced HPA activation when given just before swim. CONCLUSIONS The present results demonstrate a negative synergy between psychostimulants (amphetamine and cocaine) and stress regarding HPA and glucose responses when rats were exposed simultaneously to both stimuli. The inhibitory effect of amphetamine is also observed when given shortly before stress, but not some days before.
Collapse
|
5
|
Abstract
In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Richard McCarty
- a Department of Psychology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
6
|
Gómez-Román A, Ortega-Sánchez JA, Rotllant D, Gagliano H, Belda X, Delgado-Morales R, Marín-Blasco I, Nadal R, Armario A. The neuroendocrine response to stress under the effect of drugs: Negative synergy between amphetamine and stressors. Psychoneuroendocrinology 2016; 63:94-101. [PMID: 26433325 DOI: 10.1016/j.psyneuen.2015.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 01/27/2023]
Abstract
There have been numerous studies into the interaction between stress and addictive drugs, yet few have specifically addressed how the organism responds to stress when under the influence of psychostimulants. Thus, we studied the effects of different acute stressors (immobilization, interleukin-1β and forced swimming) in young adult male rats simultaneously exposed to amphetamine (AMPH, 4 mg/kg SC), evaluating classic biological markers. AMPH administration itself augmented the plasma hypothalamic-pituitary-adrenal (HPA) hormones, adrenocorticotropin (ACTH) and corticosterone, without affecting plasma glucose levels. By contrast, this drug dampened the peripheral HPA axis, as well as the response of glucose to the three stressors. We also found that AMPH administration completely blocked the forced swim-induced expression of the corticotropin-releasing hormone (hnCRH) and it partially reduced c-fos expression in the paraventricular nucleus of the hypothalamus (PVN). Indeed, this negative synergy in the forced swim test could even be observed with a lower dose of AMPH (1mg/kg, SC), a dose that is usually received in self-administration experiments. In conclusion, when rats that receive AMPH are subjected to stress, a negative synergy occurs that dampens the prototypic peripheral physiological response to stress and activation of the PVN.
Collapse
Affiliation(s)
- Almudena Gómez-Román
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Juan A Ortega-Sánchez
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - David Rotllant
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Humberto Gagliano
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Xavier Belda
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Raúl Delgado-Morales
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ignacio Marín-Blasco
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Roser Nadal
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Psychobiology Unit (School of Psychology), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Antonio Armario
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| |
Collapse
|
7
|
Evidence against a critical role of CB1 receptors in adaptation of the hypothalamic-pituitary-adrenal axis and other consequences of daily repeated stress. Eur Neuropsychopharmacol 2015; 25:1248-59. [PMID: 26092203 DOI: 10.1016/j.euroneuro.2015.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 03/24/2015] [Accepted: 04/26/2015] [Indexed: 02/01/2023]
Abstract
There is evidence that endogenous cannabinoids (eCBs) play a role in the control of the hypothalamic-pituitary-adrenal (HPA) axis, although they appear to have dual, stimulatory and inhibitory, effects. Recent data in rats suggest that eCBs, acting through CB1 receptors (CB1R), may be involved in adaptation of the HPA axis to daily repeated stress. In the present study we analyze this issue in male mice and rats. Using a knock-out mice for the CB1 receptor (CB1-/-) we showed that mutant mice presented similar adrenocorticotropic hormone (ACTH) response to the first IMO as wild-type mice. Daily repeated exposure to 1h of immobilization reduced the ACTH response to the stressor, regardless of the genotype, demonstrating that adaptation occurred to the same extent in absence of CB1R. Prototypical changes observed after repeated stress such as enhanced corticotropin releasing factor (CRH) gene expression in the paraventricular nucleus of the hypothalamus, impaired body weight gain and reduced thymus weight were similarly observed in both genotypes. The lack of effect of CB1R in the expression of HPA adaptation to another similar stressor (restraint) was confirmed in wild-type CD1 mice by the lack of effect of the CB1R antagonist AM251 just before the last exposure to stress. Finally, the latter drug did not blunt the HPA, glucose and behavioral adaptation to daily repeated forced swim in rats. Thus, the present results indicate that CB1R is not critical for overall effects of daily repeated stress or proper adaptation of the HPA axis in mice and rats.
Collapse
|
8
|
Rabasa C, Gagliano H, Pastor-Ciurana J, Fuentes S, Belda X, Nadal R, Armario A. Adaptation of the hypothalamus-pituitary-adrenal axis to daily repeated stress does not follow the rules of habituation: A new perspective. Neurosci Biobehav Rev 2015; 56:35-49. [PMID: 26112129 DOI: 10.1016/j.neubiorev.2015.06.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/15/2015] [Accepted: 06/09/2015] [Indexed: 01/21/2023]
Abstract
Repeated exposure to a wide range of stressors differing in nature and intensity results in a reduced response of prototypical stress markers (i.e. plasma levels of ACTH and adrenaline) after an acute challenge with the same (homotypic) stressor. This reduction has been considered to be a habituation-like phenomenon. However, direct experimental evidence for this assumption is scarce. In the present work we demonstrate in adult male rats that adaptation of the hypothalamus-pituitary-adrenal (HPA) axis to repeated stress does not follow some of the critical rules of habituation. Briefly, adaptation was stronger and faster with more severe stressors, maximally observed even with a single exposure to severe stressors, extremely long-lasting, negatively related to the interval between the exposures and positively related to the length of daily exposure. We offer a new theoretical view to explain adaptation to daily repeated stress.
Collapse
Affiliation(s)
- Cristina Rabasa
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Humberto Gagliano
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Jordi Pastor-Ciurana
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Silvia Fuentes
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain; Institut de Neurociències and Unitat Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Roser Nadal
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain; Institut de Neurociències and Unitat Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain.
| |
Collapse
|
9
|
Chauhan E, Bali A, Singh N, Jaggi AS. Pharmacological investigations on cross adaptation in mice subjected to stress immobilization. Life Sci 2015; 127:98-105. [DOI: 10.1016/j.lfs.2015.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/21/2015] [Accepted: 02/17/2015] [Indexed: 11/15/2022]
|
10
|
Comparison of operant escape and reflex tests of nociceptive sensitivity. Neurosci Biobehav Rev 2015; 51:223-42. [PMID: 25660956 DOI: 10.1016/j.neubiorev.2015.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/17/2015] [Accepted: 01/27/2015] [Indexed: 01/17/2023]
Abstract
Testing of reflexes such as flexion/withdrawal or licking/guarding is well established as the standard for evaluating nociceptive sensitivity and its modulation in preclinical investigations of laboratory animals. Concerns about this approach have been dismissed for practical reasons - reflex testing requires no training of the animals; it is simple to instrument; and responses are characterized by observers as latencies or thresholds for evocation. In order to evaluate this method, the present review summarizes a series of experiments in which reflex and operant escape responding are compared in normal animals and following surgical models of neuropathic pain or pharmacological intervention for pain. Particular attention is paid to relationships between reflex and escape responding and information on the pain sensitivity of normal human subjects or patients with pain. Numerous disparities between results for reflex and operant escape measures are described, but the results of operant testing are consistent with evidence from humans. Objective reasons are given for experimenters to choose between these and other methods of evaluating the nociceptive sensitivity of laboratory animals.
Collapse
|
11
|
Crofton EJ, Zhang Y, Green TA. Inoculation stress hypothesis of environmental enrichment. Neurosci Biobehav Rev 2015; 49:19-31. [PMID: 25449533 PMCID: PMC4305384 DOI: 10.1016/j.neubiorev.2014.11.017] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/28/2014] [Accepted: 11/21/2014] [Indexed: 01/28/2023]
Abstract
One hallmark of psychiatric conditions is the vast continuum of individual differences in susceptibility vs. resilience resulting from the interaction of genetic and environmental factors. The environmental enrichment paradigm is an animal model that is useful for studying a range of psychiatric conditions, including protective phenotypes in addiction and depression models. The major question is how environmental enrichment, a non-drug and non-surgical manipulation, can produce such robust individual differences in such a wide range of behaviors. This paper draws from a variety of published sources to outline a coherent hypothesis of inoculation stress as a factor producing the protective enrichment phenotypes. The basic tenet suggests that chronic mild stress from living in a complex environment and interacting non-aggressively with conspecifics can inoculate enriched rats against subsequent stressors and/or drugs of abuse. This paper reviews the enrichment phenotypes, mulls the fundamental nature of environmental enrichment vs. isolation, discusses the most appropriate control for environmental enrichment, and challenges the idea that cortisol/corticosterone equals stress. The intent of the inoculation stress hypothesis of environmental enrichment is to provide a scaffold with which to build testable hypotheses for the elucidation of the molecular mechanisms underlying these protective phenotypes and thus provide new therapeutic targets to treat psychiatric/neurological conditions.
Collapse
Affiliation(s)
- Elizabeth J Crofton
- Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States
| | - Yafang Zhang
- Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States
| | - Thomas A Green
- Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States.
| |
Collapse
|
12
|
Rabasa C, Delgado-Morales R, Gómez-Román A, Nadal R, Armario A. Adaptation of the pituitary-adrenal axis to daily repeated forced swim exposure in rats is dependent on the temperature of water. Stress 2013; 16:698-705. [PMID: 23924206 DOI: 10.3109/10253890.2013.824964] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Comparison of exposure to certain predominantly emotional stressors reveals a qualitatively similar neuroendocrine response profile as well as a reduction of physiological responses after daily repeated exposure (adaptation). However, particular physical components of the stressor may interfere with adaptation. As defective adaptation to stress can enhance the probability to develop pathologies, we studied in adult male rats (n = 10/group) swimming behavior (struggling, immobility and mild swim) and physiological responses (ACTH, corticosterone and rectal temperature) to daily repeated exposure to forced swim (20 min, 13 d) at 25 or 36 °C (swim25 or swim36). Rats were repeatedly blood-sampled by tail-nick and hormones measured by radioimmunoassay. Some differences were observed between the two swim temperature groups after the first exposure to forced swim: (a) active behaviors were greater in swim25 than swim36 groups; (b) swim25 but not swim36 caused hypothermia; and (c) swim36 elicited the same ACTH response as swim25, but plasma corticosterone concentration was lower for swim36 at 30 min post-swim. After daily repeated exposure, adaptation in ACTH secretion was observed with swim36 already on day 4, whereas with swim25 adaptation was not observed until day 13 and was of lower magnitude. Nevertheless, after repeated exposure to swim25 a partial protection from hypothermia was observed and the two swim conditions resulted in progressive reduction of active behaviors. Thus, daily repeated swim at 25 °C impairs adaptation of the hypothalamic-pituitary-adrenal axis as compared to swim at 36 °C, supporting the hypothesis that certain physical components of predominantly emotional stressors can interfere with the process of adaptation.
Collapse
Affiliation(s)
- Cristina Rabasa
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra , Barcelona , Spain
| | | | | | | | | |
Collapse
|
13
|
Puzserova A, Slezak P, Balis P, Bernatova I. Long-term social stress induces nitric oxide-independent endothelial dysfunction in normotensive rats. Stress 2013; 16:331-9. [PMID: 22928844 DOI: 10.3109/10253890.2012.725116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As chronic stress is a significant risk factor for several cardiovascular disorders, this study investigated the hypothesis that long-term stress produced by crowding may lead to alterations in nitric oxide (NO) production and NO-dependent relaxation in the course of stress, resulting in endothelial dysfunction and hypertension in Wistar-Kyoto (WKY) rats. For this purpose, male WKY rats were divided into control (480 cm2/rat, four rats/cage, n = 8) and crowded (200 cm2/rat, five rats/cage, n = 10) groups for 8 or 12 weeks. Vasorelaxation was evaluated in vitro as a response to acetylcholine (ACh) of femoral arteries pre-contracted by serotonin, before and after NO synthase inhibition (N (G)-nitro-l-arginine methyl ester, 300 μmol/l). Crowding increased plasma corticosterone concentration but failed to affect blood pressure (determined by tail-cuff plethysmography) of rats. NO production was unchanged in the hypothalamus and left ventricle of both stressed groups; however it was significantly elevated in the aorta. Maximal ACh-induced relaxation was elevated significantly after 8-week stress, but reduced after 12 weeks. Stress elevated the NO-dependent component and reduced the NO-independent component of ACh-induced relaxation in both crowded groups. However, a reduction in the NO-independent component was more pronounced after 12-week versus 8-week stress. In conclusion, elevated endothelium-dependent relaxation was observed after 8-week stress, while the extension of stress exposure resulted in a reduction in arterial relaxation associated with a more pronounced decrease of its NO-independent component. Thus, elevation of the NO-dependent component of relaxation can be considered as an adaptation mechanism, and impairment of NO-independent relaxation might be the initial step in chronic stress-induced cardiovascular disorders.
Collapse
Affiliation(s)
- Angelika Puzserova
- Institute of Normal and Pathological Physiology, Centre of Excellence for Examination of Regulatory Role of Nitric Oxide in Civilisation Diseases, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
14
|
Svendsen PM, Malmkvist J, Halekoh U, Mendl M. Responses of mink to auditory stimuli: prerequisites for applying the 'cognitive bias' approach. Behav Processes 2012; 91:291-7. [PMID: 23026144 DOI: 10.1016/j.beproc.2012.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/11/2012] [Accepted: 09/21/2012] [Indexed: 11/18/2022]
Abstract
The aim of the study was to determine and validate prerequisites for applying a cognitive (judgement) bias approach to assessing welfare in farmed mink (Neovison vison). We investigated discrimination ability and associative learning ability using auditory cues. The mink (n=15 females) were divided into two groups (High, n=8; Low, n=7, representing the frequency of the tone they were habituated to, 18 and 2 kHz respectively) and were tested using a habituation-dishabituation procedure in experiment 1. In experiment 2 one auditory stimulus was followed by an inter-trial-interval (safe/neutral situation), whereas another auditory stimulus was followed by an aversive stimulus (air blow) before the inter-trial-interval (danger situation). We observed behaviour including latencies to show a response during both experiments. The High mink showed significant habituation in experiment 1 but the Low mink only showed habituation in experiment 2. Regardless of the frequency used (2 and 18 kHz), cues predicting the danger situation initially elicited slower responses compared to those predicting the safe situation but quickly became faster. Using auditory cues as discrimination stimuli for female farmed mink in a judgement bias approach would thus appear to be feasible. However several specific issues are to be considered in order to successfully adapt a cognitive bias approach to mink, and these are discussed.
Collapse
Affiliation(s)
- Pernille M Svendsen
- Group of Animal Behaviour and Stress Biology, Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | | | | | | |
Collapse
|
15
|
Belda X, Daviu N, Nadal R, Armario A. Acute stress-induced sensitization of the pituitary-adrenal response to heterotypic stressors: independence of glucocorticoid release and activation of CRH1 receptors. Horm Behav 2012; 62:515-24. [PMID: 22986335 DOI: 10.1016/j.yhbeh.2012.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 01/01/2023]
Abstract
A single exposure to some severe stressors causes sensitization of the hypothalamic-pituitary-adrenal (HPA) response to novel stressors. However, the putative factors involved in stress-induced sensitization are not known. In the present work we studied in adult male rats the possible role of glucocorticoids and CRH type 1 receptor (CRH-R1), using an inhibitor of glucocorticoid synthesis (metyrapone, MET), the glucocorticoid receptor (GR) antagonist RU38486 (mifepristone) and the non-peptide CRH-R1 antagonist R121919. In a first experiment we demonstrated with different doses of MET (40-150 mg/kg) that the highest dose acted as a pharmacological stressor greatly increasing ACTH release and altering the normal circadian pattern of HPA hormones, but no dose affected ACTH responsiveness to a novel environment as assessed 3 days after drug administration. In a second experiment, we found that MET, at a dose (75 mg/kg) that blocked the corticosterone response to immobilization (IMO), did not alter IMO-induced ACTH sensitization. Finally, neither the GR nor the CRH-R1 antagonists blocked IMO-induced ACTH sensitization on the day after IMO. Thus, a high dose of MET, in contrast to IMO, was unable to sensitize the HPA response to a novel environment despite the huge activation of the HPA axis caused by the drug. Neither a moderate dose of MET that markedly reduced corticosterone response to IMO, nor the blockade of GR or CRH-R1 receptors was able to alter stress-induced HPA sensitization. Therefore, stress-induced sensitization is not the mere consequence of a marked HPA activation and does not involve activation of glucocorticoid or CRH-R1 receptors.
Collapse
Affiliation(s)
- Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
16
|
Flak JN, Solomon MB, Jankord R, Krause EG, Herman JP. Identification of chronic stress-activated regions reveals a potential recruited circuit in rat brain. Eur J Neurosci 2012; 36:2547-55. [PMID: 22789020 DOI: 10.1111/j.1460-9568.2012.08161.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic stress induces presynaptic and postsynaptic modifications in the paraventricular nucleus of the hypothalamus that are consistent with enhanced excitatory hypothalamo-pituitary-adrenocortical (HPA) axis drive. The brain regions mediating these molecular modifications are not known. We hypothesized that chronic variable stress (CVS) tonically activates stress-excitatory regions that interact with the paraventricular nucleus of the hypothalamus, culminating in stress facilitation. In order to identify chronically activated brain regions, ΔFosB, a documented marker of tonic neuronal activation, was assessed in known stress regulatory limbic and brainstem sites. Four experimental groups were included: CVS, repeated restraint (RR) (control for HPA habituation), animals weight-matched (WM) to CVS animals (control for changes in circulating metabolic factors due to reduced weight gain), and non-handled controls. CVS, (but not RR or WM) induced adrenal hypertrophy, indicating that sustained HPA axis drive only occurred in the CVS group. CVS (but not RR or WM) selectively increased the number of FosB/ΔFosB nuclei in the nucleus of the solitary tract, posterior hypothalamic nucleus, and both the infralimbic and prelimbic divisions of the medial prefrontal cortex, indicating an involvement of these regions in chronic drive of the HPA axis. Increases in FosB/ΔFosB-immunoreactive cells were observed following both RR and CVS in the other regions (e.g. the dorsomedial hypothalamus), suggesting activation by both habituating and non-habituating stress conditions. The data suggest that unpredictable stress uniquely activates interconnected cortical, hypothalamic, and brainstem nuclei, potentially revealing the existence of a recruited circuitry mediating chronic drive of brain stress effector systems.
Collapse
Affiliation(s)
- Jonathan N Flak
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Psychiatry North, Building E, 2nd Floor, 2170 East Galbraith Road, Cincinnati, OH 45237-0506, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects.
Collapse
Affiliation(s)
- Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA.
| | | | | | | |
Collapse
|
18
|
Evidence for a lack of phasic inhibitory properties of habituated stressors on HPA axis responses in rats. Physiol Behav 2011; 105:568-75. [PMID: 21708179 DOI: 10.1016/j.physbeh.2011.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 11/22/2022]
Abstract
This experiment tested the hypothesis that habituation to repeated stressor exposures is produced by phasic inhibitory influence on the neural circuitry that normally drives the paraventricular nucleus of the hypothalamus and subsequently the adrenocortical hormone response to psychological stress. Such a process would be expected to lower the acute response to a novel stressor when experienced concurrently with a habituated stressor. Rats were exposed to restraint or no stress conditions for 14 consecutive days. On the 15th day, the rats were exposed to the control condition (no stress), acute restraint, loud noise, or restraint and loud noise concurrently. Blood was taken and assayed for ACTH and corticosterone and brains were collected to examine c-fos messenger RNA expression in several brain areas. As predicted, the rats that received the same (homotypic) stressor repeatedly and again on the test day displayed low levels of ACTH and corticosterone, similar to the control conditions (i.e., showed habituation). All rats that received a single novel stressor on the test day, regardless of prior stress history, exhibited high levels of ACTH and corticosterone. The rats that received two novel stressors also displayed high levels of ACTH and corticosterone, but little evidence of additivity was observed. Importantly, when a novel stressor was concurrently given with a habituated stressor on the test day, no reduction of HPA axis response was observed when compared to previously habituated rats given only the novel stressor on the test day. In general, c-fos mRNA induction in several stress responsive brain areas followed the same patterns as the ACTH and corticosterone data. These data suggest that habituation of the adrenocortical hormone response to psychological stressors is not mediated by phasic inhibition of the effector system.
Collapse
|