1
|
Fritz M, Soravia SM, Dudeck M, Malli L, Fakhoury M. Neurobiology of Aggression-Review of Recent Findings and Relationship with Alcohol and Trauma. BIOLOGY 2023; 12:biology12030469. [PMID: 36979161 PMCID: PMC10044835 DOI: 10.3390/biology12030469] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aggression can be conceptualized as any behavior, physical or verbal, that involves attacking another person or animal with the intent of causing harm, pain or injury. Because of its high prevalence worldwide, aggression has remained a central clinical and public safety issue. Aggression can be caused by several risk factors, including biological and psychological, such as genetics and mental health disorders, and socioeconomic such as education, employment, financial status, and neighborhood. Research over the past few decades has also proposed a link between alcohol consumption and aggressive behaviors. Alcohol consumption can escalate aggressive behavior in humans, often leading to domestic violence or serious crimes. Converging lines of evidence have also shown that trauma and posttraumatic stress disorder (PTSD) could have a tremendous impact on behavior associated with both alcohol use problems and violence. However, although the link between trauma, alcohol, and aggression is well documented, the underlying neurobiological mechanisms and their impact on behavior have not been properly discussed. This article provides an overview of recent advances in understanding the translational neurobiological basis of aggression and its intricate links to alcoholism and trauma, focusing on behavior. It does so by shedding light from several perspectives, including in vivo imaging, genes, receptors, and neurotransmitters and their influence on human and animal behavior.
Collapse
Affiliation(s)
- Michael Fritz
- School of Health and Social Sciences, AKAD University of Applied Sciences, 70191 Stuttgart, Germany
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Sarah-Maria Soravia
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Manuela Dudeck
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Layal Malli
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| |
Collapse
|
2
|
Grecucci A, Sorella S, Consolini J. Decoding individual differences in expressing and suppressing anger from structural brain networks: A supervised machine learning approach. Behav Brain Res 2023; 439:114245. [PMID: 36470420 DOI: 10.1016/j.bbr.2022.114245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Anger can be broken down into different elements: a transitory state (state anger), a stable personality feature (trait anger), a tendency to express it (anger-out), or to suppress it (anger-in), and the ability to regulate it (anger control). These elements are characterized by individual differences that vary across a continuum. Among them, the abilities to express and suppress anger are of particular relevance as they determine outcomes and enable successful anger management in daily situations. The aim of this study was to demonstrate that anger suppression and expression can be decoded by patterns of grey matter of specific well-known brain networks. To this aim, a supervised machine learning technique, known as Kernel Ridge Regression, was used to predict anger expression and suppression scores of 212 healthy subjects from the grey matter concentration. Results show that individual differences in anger suppression were predicted by two grey matter patterns associated with the Default-Mode Network and the Salience Network. Additionally, individual differences in anger expression were predicted by a circuit mainly involving subcortical and fronto-temporal regions when considering whole brain grey matter features. These results expand previous findings regarding the neural bases of anger by showing that individual differences in specific anger-related components can be predicted by the grey matter features of specific networks.
Collapse
Affiliation(s)
- Alessandro Grecucci
- Clinical and Affective Neuroscience Lab, Cli.A.N. Lab, Department of Psychology and Cognitive Sciences - DiPSCo, University of Trento, Rovereto, Italy; Center for Medical Sciences, CISMed, University of Trento, Trento, Italy.
| | - Sara Sorella
- Clinical and Affective Neuroscience Lab, Cli.A.N. Lab, Department of Psychology and Cognitive Sciences - DiPSCo, University of Trento, Rovereto, Italy.
| | - Jennifer Consolini
- Clinical and Affective Neuroscience Lab, Cli.A.N. Lab, Department of Psychology and Cognitive Sciences - DiPSCo, University of Trento, Rovereto, Italy.
| |
Collapse
|
3
|
Akhrif A, Roy A, Peters K, Lesch KP, Romanos M, Schmitt-Böhrer A, Neufang S. REVERSE phenotyping-Can the phenotype following constitutive Tph2 gene inactivation in mice be transferred to children and adolescents with and without adhd? Brain Behav 2021; 11:e02054. [PMID: 33523602 PMCID: PMC8119824 DOI: 10.1002/brb3.2054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Experimental models of neuropsychiatric disorders, for example, ADHD, are used to mimic specific phenotypic traits of a complex human disorder. However, it remains unresolved to what extent the animal phenotype reflects the specific human trait. The null mutant mouse of the serotonin-synthesizing tryptophan hydroxylase-2 (Tph2-/- ) gene has been proposed as experimental model for ADHD with high face validity for impulsive, aggressive, and anxious behaviors. To validate this ADHD-like model, we examined the Tph2-/- phenotype in humans when considering allelic variation of TPH2 function ("reverse phenotyping"). METHODS 58 participants (6 females, 8-18 years) were examined, of whom 32 were diagnosed with ADHD. All participants were phenotyped for impulsivity, aggression, and anxiety using questionnaires, behavioral tests, and MRI scanning while performing the 4-choice serial reaction time task. Additionally, participants were genotyped for the TPH2 G-703T (rs4570625) polymorphism. To analyze the relation between TPH2 G-703T variants and the impulsive/aggressive/anxious phenotype, mediation analyses were performed using behavioral and MRI data as potential mediators. RESULTS We found that the relation between TPH2 G-703T and aggression as part of the reverse Tph2- /- phenotype was mediated by structure and function of the right middle and inferior frontal gyrus. CONCLUSION At the example of trait aggression, our results support the assumption that the Tph2 null mutant mouse reflects the TPH2 G-703T-dependent phenotype in humans. Additionally, we conclude that "reverse phenotyping" is a promising method to validate experimental models and human findings for refined analysis of disease mechanisms.
Collapse
Affiliation(s)
- Atae Akhrif
- Department of Child and Adolescent Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Arunima Roy
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Katharina Peters
- Department of Child and Adolescent Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Angelika Schmitt-Böhrer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Susanne Neufang
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany.,Department of Psychiatry and Psychotherapy, Medical Faculty Heinrich, Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Alia-Klein N, Gan G, Gilam G, Bezek J, Bruno A, Denson TF, Hendler T, Lowe L, Mariotti V, Muscatello MR, Palumbo S, Pellegrini S, Pietrini P, Rizzo A, Verona E. The feeling of anger: From brain networks to linguistic expressions. Neurosci Biobehav Rev 2020; 108:480-497. [DOI: 10.1016/j.neubiorev.2019.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/14/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022]
|
5
|
Runions KC, Morandini HAE, Rao P, Wong JWY, Kolla NJ, Pace G, Mahfouda S, Hildebrandt CS, Stewart R, Zepf FD. Serotonin and aggressive behaviour in children and adolescents: a systematic review. Acta Psychiatr Scand 2019; 139:117-144. [PMID: 30446991 DOI: 10.1111/acps.12986] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The role of serotonin (5-HT) in human aggression has been the subject of a large number of studies, mostly with adults. Meta-analyses indicate a small but significant inverse relationship between central nervous 5-HT availability and aggression, but genetically informed studies suggest two pathways: one to reactive aggression and the other to proactive aggression. METHOD We conducted a systemic review on central nervous 5-HT function in children and adolescents, with attention to the function of aggression. RESULTS In total, 675 articles were screened for relevance, with 45 reviewed. These included blood assays (e.g. plasma, 5-HIAA; platelet 5-HTR2A ), epigenetic studies, retrospective PET studies and 5-HT challenge paradigms (e.g. tryptophan depletion). Overall, findings were mixed, with support both for negative and for positive associations of central nervous 5-HT function with aggression in children and adolescents. CONCLUSION We propose factors that may be blurring the picture, including problems in the conceptualization and measurement of aggression in young people, the lack of prospective designs and the bias towards clinical samples of boys. Research needs to account for variance in the both motivation for and implementation of aggression, and look to the behavioural economics literature to consider the roles of reward, vengeance and self-control more clearly.
Collapse
Affiliation(s)
- K C Runions
- Department of Health, Child and Adolescent Mental Health Services, Bentley, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health, Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - H A E Morandini
- Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health, Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - P Rao
- Department of Health, Child and Adolescent Mental Health Services, Bentley, WA, Australia.,Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health, Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - J W Y Wong
- Department of Health, Child and Adolescent Mental Health Services, Bentley, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health, Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - N J Kolla
- Centre for Addictions and Mental Health, University of Toronto, Toronto, ON, Canada
| | - G Pace
- Department of Health, Child and Adolescent Mental Health Services, Bentley, WA, Australia
| | - S Mahfouda
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,School of Psychological Sciences, Faculty of Sciences, University of Western Australia, Perth, WA, Australia
| | - C S Hildebrandt
- Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen, Germany.,Child and Adolescent Psychiatry and Psychotherapy, Clinics of the City Cologne GmbH, Cologne, Germany
| | - R Stewart
- Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health, Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - F D Zepf
- Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health, Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, School of Medicine, University of Western Australia, Perth, WA, Australia.,Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Clinics of the Friedrich Schiller University, Jena, Germany
| |
Collapse
|
6
|
Davydova JD, Litvinov SS, Enikeeva RF, Malykh SB, Khusnutdinova EK. Recent advances in genetics of aggressive behavior. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the most important problems of modern neurobiology and medicine is an understanding of the mechanisms of normal and pathological behavior of a person. Aggressive behavior is an integral part of the human psyche. However, environmental risk factors, mental illness and somatic diseases can lead to increased aggression to be the biological basis of antisocial behavior in a human society. An important role in development of aggressive behavior belongs to the hereditary factors that may be linked to abnormal functioning of neurotransmitter systems in the brain yet the underlying genetic mechanisms remain unclear, which is due to a large number of single nucleotide polymorphisms, insertions and deletions in the structure of genes that encode the components of the neurotransmitter systems. The most studied candidate genes for aggressive behavior are serotonergic (TPH1, TPH2, HTR2A, SLC6A4) and dopaminergic (DRD4, SLC6A3) system genes, as well as the serotonin or catecholamine metabolizing enzyme genes (COMT, MAOA). In addition, there is evidence that the hypothalamic-pituitary system genes (OXT, OXTR, AVPR1A, AVPR1B), the sex hormone receptors genes (ER1, AR), neurotrophin (BDNF) and neuronal apoptosis genes (CASP3, BAX) may also be involved in development of aggressive behavior. The results of Genome-Wide Association Studies (GWAS) have demonstrated that FYN, LRRTM4, NTM, CDH13, DYRK1A and other genes are involved in regulation of aggressive behavior. These and other evidence suggest that genetic predisposition to aggressive behavior may be a very complex process.
Collapse
Affiliation(s)
- J. D. Davydova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of RAS
| | - S. S. Litvinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of RAS
| | - R. F. Enikeeva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of RAS
| | - S. B. Malykh
- Psychological Institute, Russian Academy of Education
| | - E. K. Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of RAS; Department of Genetics and Fundamental Medicine, Bashkir State University
| |
Collapse
|
7
|
Kutlubaev MA, Mendelevich VD. The problem of aggressive behavior in epilepsy: clinical and neurobiological aspects. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:94-100. [DOI: 10.17116/jnevro20181187194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Perry LM, Goldstein-Piekarski AN, Williams LM. Sex differences modulating serotonergic polymorphisms implicated in the mechanistic pathways of risk for depression and related disorders. J Neurosci Res 2017; 95:737-762. [PMID: 27870440 DOI: 10.1002/jnr.23877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/27/2022]
Abstract
Despite consistent observations of sex differences in depression and related emotional disorders, we do not yet know how these sex differences modulate the effects of genetic polymorphisms implicated in risk for these disorders. This Mini-Review focuses on genetic polymorphisms of the serotonergic system to illustrate how sex differences might modulate the neurobiological pathways involved in the development of depression. We consider the interacting role of environmental factors such as early-life stress. Given limited current knowledge about this topic, we highlight methodological considerations, challenges, and guidelines for future research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- LeeAnn M Perry
- Neurosciences Program, Stanford University, Stanford, California
| | - Andrea N Goldstein-Piekarski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.,Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.,Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
9
|
Gilam G, Lin T, Fruchter E, Hendler T. Neural indicators of interpersonal anger as cause and consequence of combat training stress symptoms. Psychol Med 2017; 47:1561-1572. [PMID: 28052779 DOI: 10.1017/s0033291716003354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Angry outbursts are an important feature of various stress-related disorders, and commonly lead to aggression towards other people. Findings regarding interpersonal anger have linked the ventromedial prefrontal cortex (vmPFC) to anger regulation and the locus coeruleus (LC) to aggression. Both regions were previously associated with traumatic and chronic stress symptoms, yet it is unclear if their functionality represents a consequence of, or possibly also a cause for, stress symptoms. Here we investigated the relationship between the neural trajectory of these indicators of anger and the development and manifestation of stress symptoms. METHOD A total of 46 males (29 soldiers, 17 civilians) participated in a prospective functional magnetic resonance imaging experiment in which they played a modified interpersonal anger-provoking Ultimatum Game (UG) at two-points. Soldiers were tested at the beginning and end of combat training, while civilians were tested at the beginning and end of civil service. We assumed that combat training would induce chronic stress and result in increased stress symptoms. RESULTS Soldiers showed an increase in stress symptoms following combat training while civilians showed no such change following civil service. All participants were angered by the modified UG irrespective of time point. Higher post-combat training stress symptoms were associated with lower pre-combat training vmPFC activation and with higher activation increase in the LC between pre- and post-combat training. CONCLUSIONS Results suggest that during anger-provoking social interactions, flawed vmPFC functionality may serve as a causal risk factor for the development of stress symptoms, and heightened reactivity of the LC possibly reflects a consequence of stress-inducing combat training. These findings provide potential neural targets for therapeutic intervention and inoculation for stress-related psychopathological manifestations of anger.
Collapse
Affiliation(s)
- G Gilam
- Tel Aviv Center for Brain Function,Wohl Institute for Advanced Imaging,Tel Aviv Sourasky Medical Center,Weizmann 6,Tel Aviv,64239,Israel
| | - T Lin
- Tel Aviv Center for Brain Function,Wohl Institute for Advanced Imaging,Tel Aviv Sourasky Medical Center,Weizmann 6,Tel Aviv,64239,Israel
| | - E Fruchter
- Division of Mental Health,Israeli Defense Force Medical Corp,Tel Hashomer,Military Mail 02149,Israel
| | - T Hendler
- Tel Aviv Center for Brain Function,Wohl Institute for Advanced Imaging,Tel Aviv Sourasky Medical Center,Weizmann 6,Tel Aviv,64239,Israel
| |
Collapse
|
10
|
Han KM, Won E, Kang J, Kim A, Yoon HK, Chang HS, Son KR, Lee MS, Tae WS, Ham BJ. Local gyrification index in patients with major depressive disorder and its association with tryptophan hydroxylase-2 (TPH2) polymorphism. Hum Brain Mapp 2016; 38:1299-1310. [PMID: 27807918 DOI: 10.1002/hbm.23455] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/28/2016] [Accepted: 10/24/2016] [Indexed: 01/19/2023] Open
Abstract
The tryptophan hydroxylase-2 (TPH2) gene is considered a promising genetic candidate regarding its association with a predisposition to major depressive disorder (MDD). Local gyrification reflects the early neural development of cortical connectivity, and is regarded as a potential neural endophenotype in psychiatric disorders. They aimed to investigate the alterations in the cortical gyrification of the prefrontal cortex and anterior cingulate cortex and their association with the TPH2 rs4570625 polymorphism in patients with MDD. One hundred and thirteen patients with MDD and eighty-six healthy controls underwent T1-weighted structural magnetic resonance imaging and genotyping for TPH2 rs4570625. The local gyrification index of 22 cortical regions in the prefrontal cortex and anterior cingulate cortex was analyzed using the FreeSurfer. The patients with MDD showed significant hypergyria in the right rostral anterior cingulate cortex (P = 0.001), medial orbitofrontal cortex (P = 0.003), and frontal pole (P = 0.001). There was a significant genotype-by-diagnosis interaction for the local gyrification index in the right rostral anterior cingulate cortex (P = 0.003). Their study revealed significant hypergyria of the anterior cingulate cortex and prefrontal cortex and an interactive effect between the diagnosis of MDD and the genotype in the anterior cingulate cortex. This might be associated with the dysfunction of neural circuits mediating emotion processing, which could contribute to pathophysiology of MDD. Hum Brain Mapp 38:1299-1310, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ho-Kyoung Yoon
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hun Soo Chang
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, Bucheon, Republic of Korea
| | - Kyu Ri Son
- Department of Radiology, Korea University Medical Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
11
|
Fernàndez-Castillo N, Cormand B. Aggressive behavior in humans: Genes and pathways identified through association studies. Am J Med Genet B Neuropsychiatr Genet 2016; 171:676-96. [PMID: 26773414 DOI: 10.1002/ajmg.b.32419] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022]
Abstract
Aggressive behavior has both genetic and environmental components. Many association studies have been performed to identify genetic factors underlying aggressive behaviors in humans. In this review we summarize the previous work performed in this field, considering both candidate gene (CGAS) and genome-wide association studies (GWAS), excluding those performed in samples where the primary diagnosis is a psychiatric or neurological disorder other than an aggression-related phenotype. Subsequently, we have studied the enrichment of pathways and functions in GWAS data. The results of our searches show that most CGAS have identified associations with genes involved in dopaminergic and serotonergic neurotransmission and in hormone regulation. On the other hand, GWAS have not yet identified genome-wide significant associations, but top nominal findings are related to several signaling pathways, such as axon guidance or estrogen receptor signaling, and also to neurodevelopmental processes and synaptic plasticity. Future studies should use larger samples, homogeneous phenotypes and standardized measurements to identify genes that underlie aggressive behaviors in humans. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Noèlia Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Bru Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| |
Collapse
|
12
|
Won E, Ham BJ. Imaging genetics studies on monoaminergic genes in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:311-9. [PMID: 25828849 DOI: 10.1016/j.pnpbp.2015.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 12/28/2022]
Abstract
Although depression is the leading cause of disability worldwide, current understanding of the neurobiology of depression has failed to be translated into clinical practice. Major depressive disorder (MDD) pathogenesis is considered to be significantly influenced by multiple risk genes, however genetic effects are not simply expressed at a behavioral level. Therefore the concept of endophenotype has been applied in psychiatric genetics. Imaging genetics applies anatomical or functional imaging technologies as phenotypic assays to evaluate genetic variation and their impact on behavior. This paper attempts to provide a comprehensive review of available imaging genetics studies, including reports on genetic variants that have most frequently been linked to MDD, such as the monoaminergic genes (serotonin transporter gene, monoamine oxidase A gene, tryptophan hydroxylase-2 gene, serotonin receptor 1A gene and catechol-O-methyl transferase gene), with regard to key structures involved in emotion processing, such as the hippocampus, amygdala, anterior cingulate cortex and orbitofrontal cortex.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Veroude K, Zhang-James Y, Fernàndez-Castillo N, Bakker MJ, Cormand B, Faraone SV. Genetics of aggressive behavior: An overview. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:3-43. [PMID: 26345359 DOI: 10.1002/ajmg.b.32364] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/05/2015] [Indexed: 12/24/2022]
Abstract
The Research Domain Criteria (RDoC) address three types of aggression: frustrative non-reward, defensive aggression and offensive/proactive aggression. This review sought to present the evidence for genetic underpinnings of aggression and to determine to what degree prior studies have examined phenotypes that fit into the RDoC framework. Although the constructs of defensive and offensive aggression have been widely used in the animal genetics literature, the human literature is mostly agnostic with regard to all the RDoC constructs. We know from twin studies that about half the variance in behavior may be explained by genetic risk factors. This is true for both dimensional, trait-like, measures of aggression and categorical definitions of psychopathology. The non-shared environment seems to have a moderate influence with the effects of shared environment being unclear. Human molecular genetic studies of aggression are in an early stage. The most promising candidates are in the dopaminergic and serotonergic systems along with hormonal regulators. Genome-wide association studies have not yet achieved genome-wide significance, but current samples are too small to detect variants having the small effects one would expect for a complex disorder. The strongest molecular evidence for a genetic basis for aggression comes from animal models comparing aggressive and non-aggressive strains or documenting the effects of gene knockouts. Although we have learned much from these prior studies, future studies should improve the measurement of aggression by using a systematic method of measurement such as that proposed by the RDoC initiative.
Collapse
Affiliation(s)
- Kim Veroude
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Yanli Zhang-James
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Mireille J Bakker
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Bru Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| |
Collapse
|
14
|
Abstract
Aggression and violence represent a significant public health concern and a clinical challenge for the mental healthcare provider. A great deal has been revealed regarding the neurobiology of violence and aggression, and an integration of this body of knowledge will ultimately serve to advance clinical diagnostics and therapeutic interventions. We will review here the latest findings regarding the neurobiology of aggression and violence. First, we will introduce the construct of aggression, with a focus on issues related to its heterogeneity, as well as the importance of refining the aggression phenotype in order to reduce pathophysiologic variability. Next we will examine the neuroanatomy of aggression and violence, focusing on regional volumes, functional studies, and interregional connectivity. Significant emphasis will be on the amygdala, as well as amygdala-frontal circuitry. Then we will turn our attention to the neurochemistry and molecular genetics of aggression and violence, examining the extensive findings on the serotonergic system, as well as the growing literature on the dopaminergic and vasopressinergic systems. We will also address the contribution of steroid hormones, namely, cortisol and testosterone. Finally, we will summarize these findings with a focus on reconciling inconsistencies and potential clinical implications; and, then we will suggest areas of focus for future directions in the field.
Collapse
|
15
|
Yildirim BO, Derksen JJ. Systematic review, structural analysis, and new theoretical perspectives on the role of serotonin and associated genes in the etiology of psychopathy and sociopathy. Neurosci Biobehav Rev 2013; 37:1254-96. [DOI: 10.1016/j.neubiorev.2013.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/09/2013] [Accepted: 04/17/2013] [Indexed: 12/18/2022]
|