1
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
2
|
Prefrontal Cortex Response to Prenatal Insult and Postnatal Opioid Exposure. Genes (Basel) 2022; 13:genes13081371. [PMID: 36011282 PMCID: PMC9407090 DOI: 10.3390/genes13081371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
The influence of proinflammatory challenges, such as maternal immune activation (MIA) or postnatal exposure to drugs of abuse, on brain molecular pathways has been reported. On the other hand, the simultaneous effects of MIA and drugs of abuse have been less studied and sometimes offered inconsistent results. The effects of morphine exposure on a pig model of viral-elicited MIA were characterized in the prefrontal cortex of males and females using RNA-sequencing and gene network analysis. Interacting and main effects of morphine, MIA, and sex were detected in approximately 2000 genes (false discovery rate-adjusted p-value < 0.05). Among the enriched molecular categories (false discovery rate-adjusted p-value < 0.05 and −1.5 > normalized enrichment score > 1.5) were the cell adhesion molecule pathways associated with inflammation and neuronal development and the long-term depression pathway associated with synaptic strength. Gene networks that integrate gene connectivity and expression profiles displayed the impact of morphine-by-MIA interaction effects on the pathways. The cell adhesion molecules and long-term depression networks presented an antagonistic effect between morphine and MIA. The differential expression between the double-challenged group and the baseline saline-treated Controls was less extreme than the individual challenges. The previous findings advance the knowledge about the effects of prenatal MIA and postnatal morphine exposure on the prefrontal cortex pathways.
Collapse
|
3
|
Maternal immune activation and adolescent alcohol exposure increase alcohol drinking and disrupt cortical-striatal-hippocampal oscillations in adult offspring. Transl Psychiatry 2022; 12:288. [PMID: 35859084 PMCID: PMC9300672 DOI: 10.1038/s41398-022-02065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Maternal immune activation (MIA) is strongly associated with an increased risk of developing mental illness in adulthood, which often co-occurs with alcohol misuse. The current study aimed to begin to determine whether MIA, combined with adolescent alcohol exposure (AE), could be used as a model with which we could study the neurobiological mechanisms behind such co-occurring disorders. Pregnant Sprague-Dawley rats were treated with polyI:C or saline on gestational day 15. Half of the offspring were given continuous access to alcohol during adolescence, leading to four experimental groups: controls, MIA, AE, and Dual (MIA + AE). We then evaluated whether MIA and/or AE alter: (1) alcohol consumption; (2) locomotor behavior; and (3) cortical-striatal-hippocampal local field potentials (LFPs) in adult offspring. Dual rats, particularly females, drank significantly more alcohol in adulthood compared to all other groups. MIA led to reduced locomotor behavior in males only. Using machine learning to build predictive models from LFPs, we were able to differentiate Dual rats from control rats and AE rats in both sexes, and Dual rats from MIA rats in females. These data suggest that Dual "hits" (MIA + AE) increases substance use behavior and disrupts activity in reward-related circuits, and that this may be a valuable heuristic model we can use to study the neurobiological underpinnings of co-occurring disorders. Our future work aims to extend these findings to other addictive substances to enhance the translational relevance of this model, as well as determine whether amelioration of these circuit disruptions can reduce substance use behavior.
Collapse
|
4
|
Galvanho JP, Manhães AC, Carvalho-Nogueira ACC, Silva JDM, Filgueiras CC, Abreu-Villaça Y. Profiling of behavioral effects evoked by ketamine and the role of 5HT 2 and D 2 receptors in ketamine-induced locomotor sensitization in mice. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109775. [PMID: 31676464 DOI: 10.1016/j.pnpbp.2019.109775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Ketamine has addictive potential, a troublesome fact due to its promising use as a therapeutic drug. An important phenomenon associated with drug addiction is behavioral sensitization, usually characterized as augmented locomotion. However, other behaviors may also be susceptible to sensitization, and/or interfere with locomotor activity. Thus, this study drew a comprehensive behavioral 'profiling' in an animal model of repeated administration of ketamine. Adult Swiss mice received single daily ketamine injections (30 or 50 mg/Kg, i.p.), which were followed by open field testing for 7 days (acquisition period, ACQ). A ketamine challenge (sensitization test, ST) was carried out after a 5-day withdrawal. Locomotion, rearing, grooming, rotation and falling were assessed during ACQ and ST. All behaviors were affected from the first ACQ day onwards, with no indication of competition between locomotion and the other behaviors. Only locomotion in response to 30 mg/Kg of ketamine both escalated during ACQ and expressed increased levels at ST, evidencing development and expression of locomotor sensitization. Considering the involvement of serotonin 5HT(2) and dopamine D(2) receptors on addiction mechanisms, we further tested the involvement of these receptors in ketamine-induced sensitization. Ketanserin (5HT2 antagonist, 3 mg/Kg, s.c.) prevented ketamine-evoked development of locomotor sensitization. However, ketanserin pretreatment during ACQ failed to inhibit its expression during ST. Raclopride (D2 antagonist, 0.5 mg/Kg, s.c.) evoked less robust reductions in locomotion but prevented the development of ketamine-evoked sensitization. Pretreatment during ACQ further inhibited the expression of sensitization during ST. These results indicate that a partial overlap in serotonergic and dopaminergic mechanisms underlies ketamine-induced locomotor sensitization.
Collapse
Affiliation(s)
- Jefferson P Galvanho
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil.
| | - Ana Cristina C Carvalho-Nogueira
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Joyce de M Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Claudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil.
| |
Collapse
|
5
|
Guo Q, Ebihara K, Fujiwara H, Toume K, Awale S, Araki R, Yabe T, Dong E, Matsumoto K. Kami-shoyo-san ameliorates sociability deficits in ovariectomized mice, a putative female model of autism spectrum disorder, via facilitating dopamine D 1 and GABA A receptor functions. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:231-239. [PMID: 30862522 DOI: 10.1016/j.jep.2019.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/01/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kami-shoyo-san (KSS) is a Kampo formula used clinically for menopause-related symptoms in Japan. However, the effect of KSS on autism spectrum disorder (ASD), a developmental disorder with a higher prevalence in males than in females, has not been reported yet. AIM OF THE STUDY It is accepted generally that dysfunction in the GABAergic system is associated with pathogenesis of ASD. In our previous study, a decrease in brain allopregnanolone (ALLO), a positive allosteric GABAA receptor modulator, induced ASD-like symptoms such as impaired sociability-related performance and increased repetitive self-grooming behavior in male mice, and that KSS ameliorated these behavioral abnormalities via GABAA receptor- and dopamine D1 receptor-mediated mechanisms. In this study, to better understand a gender difference in the prevalence of ASD, we examined whether dissection of ovary (OVX), a major organ secreting progesterone in females, causes ASD-like behaviors in a manner dependent on brain ALLO levels, and if so, how KSS affects the behaviors. MATERIALS AND METHODS Six-week-old ICR female mice received ovariectomy, and KSS (74 mg/kg and 222 mg/kg, p.o.) were treated before 1 h starting each behavioral test. The sociability, social anxiety-like behavior, and self-grooming behavior were analyzed by the resident-intruder test, mirror chamber test, and open field test, respectively. After finishing the behavioral experiment, the ALLO content in the brain was measured by ELISA. Furthermore, we examined the effects of OVX on the neuro-signaling pathways in the prefrontal cortex and striatum by Western blotting. RESULTS The results revealed that OVX induced sociability deficits and social anxiety-related behaviors, but not repetitive self-grooming behavior, and that these behavioral changes were accompanied not only by a decrease of brain ALLO levels, but also by impairment of CREB- and CaMKIIα-mediated neuro-signaling in the prefrontal cortex. Moreover, the administration of KSS had no effect on the brain ALLO level, but significantly ameliorated the OVX-induced behavioral and neurochemical changes via facilitation of GABAA receptor and dopamine D1 receptor-mediated neurotransmission. CONCLUSIONS These findings suggest that a decrease in gonadal hormone-derived ALLO plays a major role in ASD-like behaviors in female mice and that KSS is beneficial for the treatment of ASD in females.
Collapse
Affiliation(s)
- Qingyun Guo
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ken Ebihara
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hironori Fujiwara
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Kazufumi Toume
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Suresh Awale
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ryota Araki
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Takeshi Yabe
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Erbo Dong
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, IL, 60612, USA
| | - Kinzo Matsumoto
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
6
|
Guo QY, Ebihara K, Shimodaira T, Fujiwara H, Toume K, Dibwe DF, Awale S, Araki R, Yabe T, Matsumoto K. Kami-shoyo-san improves ASD-like behaviors caused by decreasing allopregnanolone biosynthesis in an SKF mouse model of autism. PLoS One 2019; 14:e0211266. [PMID: 30703109 PMCID: PMC6354989 DOI: 10.1371/journal.pone.0211266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/10/2019] [Indexed: 11/18/2022] Open
Abstract
Dysfunctions in the GABAergic system are associated with the pathogenesis of autism spectrum disorder (ASD). However, the mechanisms by which GABAergic system dysfunctions induce the pathophysiology of ASD remain unclear. We previously demonstrated that a selective type I 5α-reductase inhibitor SKF105111 (SKF) induced ASD-like behaviors, such as impaired sociability-related performance and repetitive grooming behaviors, in male mice. Moreover, the effects of SKF were caused by a decrease in the endogenous levels of allopregnanolone (ALLO), a positive allosteric modulator of the GABAA receptor. In this study, we used SKF-treated male mice as a putative animal model of ASD and examined the effects of Kami-shoyo-san (KSS) as an experimental therapeutic strategy for ASD. KSS is a traditional Kampo formula consisting of 10 different crude drugs and has been used for the treatment of neuropsychiatric symptoms. KSS dose-dependently attenuated sociability deficits and suppressed an increase in grooming behaviors in SKF-treated mice without affecting ALLO content in the prefrontal cortex. The systemic administration of the dopamine D1 receptor antagonist SCH23390 reversed the ameliorative effects of KSS. On the other hand, the dopamine D2 receptor antagonist sulpiride and GABAA receptor antagonist bicuculline only attenuated the ameliorative effect of KSS on repetitive self-grooming behaviors. The present results indicate that KSS improves SKF-induced ASD-like behaviors by facilitating dopamine receptor-mediated mechanisms and partly by neurosteroid-independent GABAA receptor-mediated neurotransmission. Therefore, KSS is a potential candidate for the treatment of ASD.
Collapse
Affiliation(s)
- Qing-Yun Guo
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Ken Ebihara
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | | | - Hironori Fujiwara
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
- * E-mail:
| | - Kazufumi Toume
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Dya Fita Dibwe
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Suresh Awale
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Ryota Araki
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Takeshi Yabe
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Kinzo Matsumoto
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
7
|
Bonapersona V, Joëls M, Sarabdjitsingh RA. Effects of early life stress on biochemical indicators of the dopaminergic system: A 3 level meta-analysis of rodent studies. Neurosci Biobehav Rev 2018; 95:1-16. [PMID: 30201218 DOI: 10.1016/j.neubiorev.2018.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022]
Abstract
Adverse early life events are a well-established risk factor for the precipitation of behavioral disorders characterized by anomalies in the dopaminergic system, such as schizophrenia and addiction. The correlation between early life conditions and the dopaminergic system has been causally investigated in more than 90 rodent publications. Here, we tested the validity of the hypothesis that early life stress (ELS) alters dopamine signaling by performing an extensive 3-level mixed effect meta-analysis. We included several ELS models and biochemical indicators of the dopaminergic system in a variety of brain areas, for a total of 1009 comparisons. Contrary to our expectations, only a few comparisons displayed a significant effect. Specifically, the striatal area was the most vulnerable, displaying decreased dopamine precursor and increased metabolites after ELS. To make all data openly accessible, we created MaDEapp (https://osf.io/w25m4/), a tool to explore data of the meta-analysis with the intent to guide future (pre)clinical research and allow power calculations. All in all, ELS induces a few yet robust changes on biochemical indicators of the dopaminergic system.
Collapse
Affiliation(s)
- V Bonapersona
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht University, The Netherlands.
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht University, The Netherlands; University Medical Center Groningen, University of Groningen, The Netherlands
| | - R A Sarabdjitsingh
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht University, The Netherlands
| |
Collapse
|
8
|
Labrousse VF, Leyrolle Q, Amadieu C, Aubert A, Sere A, Coutureau E, Grégoire S, Bretillon L, Pallet V, Gressens P, Joffre C, Nadjar A, Layé S. Dietary omega-3 deficiency exacerbates inflammation and reveals spatial memory deficits in mice exposed to lipopolysaccharide during gestation. Brain Behav Immun 2018; 73:427-440. [PMID: 29879442 DOI: 10.1016/j.bbi.2018.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 01/03/2023] Open
Abstract
Maternal immune activation (MIA) is a common environmental insult on the developing brain and represents a risk factor for neurodevelopmental disorders. Animal models of in utero inflammation further revealed a causal link between maternal inflammatory activation during pregnancy and behavioural impairment relevant to neurodevelopmental disorders in the offspring. Accumulating evidence point out that proinflammatory cytokines produced both in the maternal and fetal compartments are responsible for social, cognitive and emotional behavioral deficits in the offspring. Polyunsaturated fatty acids (PUFAs) are essential fatty acids with potent immunomodulatory activities. PUFAs and their bioactive derivatives can promote or inhibit many aspects of the immune and inflammatory response. PUFAs of the n-3 series ('n-3 PUFAs', also known as omega-3) exhibit anti-inflammatory/pro-resolution properties and promote immune functions, while PUFAs of the n-6 series ('n-6 PUFAs' or omega-6) favor pro-inflammatory responses. The present study aimed at providing insight into the effects of n-3 PUFAs on the consequences of MIA on brain development. We hypothesized that a reduction in n-3 PUFAs exacerbates both maternal and fetal inflammatory responses to MIA and later-life defects in memory in the offspring. Based on a lipopolysaccharide (LPS) model of MIA (LPS injection at embryonic day 17), we showed that n-3 PUFA deficiency 1) alters fatty acid composition of the fetal and adult offspring brain; 2) exacerbates maternal and fetal inflammatory processes with no significant alteration of microglia phenotype, and 3) induces spatial memory deficits in the adult offspring. We also showed a strong negative correlation between brain content in n-3 PUFA and cytokine production in MIA-exposed fetuses. Overall, our study is the first to address the deleterious effects of n-3 PUFA deficiency on brain lipid composition, inflammation and memory performances in MIA-exposed animals and indicates that it should be considered as a potent environmental risk factor for the apparition of neurodevelopmental disorders.
Collapse
Affiliation(s)
- V F Labrousse
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - Q Leyrolle
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, F-75019 Paris, France
| | - C Amadieu
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Aubert
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Sere
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - E Coutureau
- Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Uité Mixte de Recherche 5287, 33076 Bordeaux, France; Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, 33076 Bordeaux, France
| | - S Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - L Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - V Pallet
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - P Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, F-75019 Paris, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - C Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| | - S Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|
9
|
Solek CM, Farooqi N, Verly M, Lim TK, Ruthazer ES. Maternal immune activation in neurodevelopmental disorders. Dev Dyn 2017; 247:588-619. [PMID: 29226543 DOI: 10.1002/dvdy.24612] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Converging lines of evidence from basic science and clinical studies suggest a relationship between maternal immune activation (MIA) and neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. The mechanisms through which MIA increases the risk of neurodevelopmental disorders have become a subject of intensive research. This review aims to describe how dysregulation of microglial function and immune mechanisms may link MIA and neurodevelopmental pathologies. We also summarize the current evidence in animal models of MIA. Developmental Dynamics 247:588-619, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cynthia M Solek
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Nasr Farooqi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Myriam Verly
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Tony K Lim
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Konefal SC, Stellwagen D. Tumour necrosis factor-mediated homeostatic synaptic plasticity in behavioural models: testing a role in maternal immune activation. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0160. [PMID: 28093554 DOI: 10.1098/rstb.2016.0160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
The proinflammatory cytokine tumour necrosis factor-alpha (TNFα) has long been characterized for its role in the innate immune system, but more recently has been found to have a distinct role in the nervous system that does not overlap with other proinflammatory cytokines. Through regulation of neuronal glutamate and GABA receptor trafficking, TNF mediates a homeostatic form of synaptic plasticity, but plays no direct role in Hebbian forms of plasticity. As yet, there is no evidence to suggest that this adaptive plasticity plays a significant role in normal development, but it does maintain neuronal circuit function in the face of several types of disruption. This includes developmental plasticity in primary sensory cortices, as well as modulating the response to antidepressants, chronic antipsychotics and drugs of abuse. TNF is also a prominent component of the neuroinflammation occurring in most neuropathologies, but the role of TNF-mediated synaptic plasticity in this context remains to be determined. We tested this in a maternal immune activation (MIA) model of neurodevelopmental disorders. Using TNF-/- mice, we observed that TNF is not required for the expression of abnormal social or anxious behaviour in this model. This indicates that TNF does not uniquely contribute to the development of neuronal dysfunction in this model, and suggests that during neuroinflammatory events, compensation between the various proinflammatory cytokines is the norm.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Sarah C Konefal
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada H3G 1A4
| | - David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada H3G 1A4
| |
Collapse
|
11
|
Ebihara K, Fujiwara H, Awale S, Dibwe DF, Araki R, Yabe T, Matsumoto K. Decrease in endogenous brain allopregnanolone induces autism spectrum disorder (ASD)-like behavior in mice: A novel animal model of ASD. Behav Brain Res 2017; 334:6-15. [PMID: 28743598 DOI: 10.1016/j.bbr.2017.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with core symptoms of social impairments and restrictive repetitive behaviors. Recent evidence has implicated a dysfunction in the GABAergic system in the pathophysiology of ASD. We investigated the role of endogenous allopregnanolone (ALLO), a neurosteroidal positive allosteric modulator of GABAA receptors, in the regulation of ASD-like behavior in male mice using SKF105111 (SKF), an inhibitor of type I and type II 5α-reductase, a rate-limiting enzyme of ALLO biosynthesis. SKF impaired sociability-related performance, as analyzed by three different tests; i.e., the 3-chamber test and social interaction in the open field and resident-intruder tests, without affecting olfactory function elucidated by the buried food test. SKF also induced repetitive grooming behavior without affecting anxiety-like behavior. SKF had no effect on short-term spatial working memory or long-term fear memory, but enhanced latent learning ability in male mice. SKF-induced ASD-like behavior in male mice was abolished by the systemic administration of ALLO (1mg/kg, i.p.) and methylphenidate (MPH: 2.5mg/kg, i.p.), a dopamine transporter inhibitor. The effects of SKF on brain ALLO contents in male mice were reversed by ALLO, but not MPH. On the other hand, SKF failed to induce ASD-like behavior or a decline in brain ALLO contents in female mice. These results suggest that ALLO regulates episodes of ASD-like behavior by positively modulating the function of GABAA receptors linked to the dopaminergic system. Moreover, a sex-dependently induced decrease in brain ALLO contents may provide an animal model to study the main features of ASD.
Collapse
Affiliation(s)
- Ken Ebihara
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hironori Fujiwara
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Suresh Awale
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Dya Fita Dibwe
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ryota Araki
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Takeshi Yabe
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Kinzo Matsumoto
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
12
|
Straley ME, Van Oeffelen W, Theze S, Sullivan AM, O'Mahony SM, Cryan JF, O'Keeffe GW. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation. Brain Behav Immun 2017; 63:21-34. [PMID: 27266391 DOI: 10.1016/j.bbi.2016.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 11/18/2022] Open
Abstract
The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring.
Collapse
Affiliation(s)
- Megan E Straley
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland; The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Ireland
| | - Wesley Van Oeffelen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Sarah Theze
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland; The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| |
Collapse
|
13
|
Reis-Silva TM, Cohn DW, Sandini TM, Udo MS, Teodorov E, Bernardi MM. Prenatal lipopolysaccharide exposure affects sexual dimorphism in different germlines of mice with a depressive phenotype. Life Sci 2016; 149:129-37. [DOI: 10.1016/j.lfs.2016.02.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 12/21/2022]
|
14
|
Borçoi AR, Patti CL, Zanin KA, Hollais AW, Santos-Baldaia R, Ceccon LMB, Berro LF, Wuo-Silva R, Grapiglia SB, Ribeiro LTC, Lopes-Silva LB, Frussa-Filho R. Effects of prenatal immune activation on amphetamine-induced addictive behaviors: Contributions from animal models. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:63-9. [PMID: 26051209 DOI: 10.1016/j.pnpbp.2015.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/30/2015] [Accepted: 05/31/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prenatal environmental adversities may affect brain development and are associated with increased risk for schizophrenia, an illness with 50% comorbidity with addiction. Maternal immune activation by poly-inosinic-citidilic acid (Poly(I:C)) exposure can promote behavioral alterations consistent with schizophrenia symptoms in rodents. OBJECTIVES Considering the vulnerability to addiction in patients with schizophrenia, we evaluated the interactions between prenatal Poly(I:C) administration and addiction in two animal models (behavioral sensitization and conditioned place preference - CPP) in mice repeatedly treated with amphetamine (AMP). Additionally, stereotyped behavior and cross-sensitization with cocaine (COC) were also investigated. METHODS Swiss male mice offspring were submitted to prenatal administration of 5mg/kg Poly(I:C) in the 9(th) day of pregnancy. At the age of 90days, mice were treated with 2.5mg/kg AMP for 9days to evaluate behavioral sensitization or stereotyped behavior. Cross-sensitization with 10mg/kg COC was evaluated 24h after the last treatment day. For AMP-induced CPP evaluation, mice were treated during 8 consecutive days. RESULTS Prenatal Poly(I:C) administration potentiated both AMP-induced behavioral sensitization and CPP. Furthermore, Poly(I:C) increased cross-sensitization with COC. CONCLUSIONS Prenatal administration of Poly(I:C) is able to potentiate vulnerability to addiction in two animal models, without however modulating stereotyped behavior.
Collapse
Affiliation(s)
- Aline R Borçoi
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062 São Paulo, SP, Brazil
| | - Camilla L Patti
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062 São Paulo, SP, Brazil.
| | - Karina A Zanin
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062 São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04021002 São Paulo, SP, Brazil
| | - André W Hollais
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062 São Paulo, SP, Brazil
| | - Renan Santos-Baldaia
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062 São Paulo, SP, Brazil
| | - Liliane M B Ceccon
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062 São Paulo, SP, Brazil
| | - Laís F Berro
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062 São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04021002 São Paulo, SP, Brazil
| | - Raphael Wuo-Silva
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062 São Paulo, SP, Brazil
| | - Stephanie B Grapiglia
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062 São Paulo, SP, Brazil
| | - Luciana T C Ribeiro
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062 São Paulo, SP, Brazil
| | - Leonardo B Lopes-Silva
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062 São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04021002 São Paulo, SP, Brazil
| | - Roberto Frussa-Filho
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062 São Paulo, SP, Brazil
| |
Collapse
|
15
|
Labouesse MA, Langhans W, Meyer U. Abnormal context-reward associations in an immune-mediated neurodevelopmental mouse model with relevance to schizophrenia. Transl Psychiatry 2015; 5:e637. [PMID: 26371765 PMCID: PMC5068811 DOI: 10.1038/tp.2015.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/24/2015] [Accepted: 07/22/2015] [Indexed: 12/19/2022] Open
Abstract
Impairments in central reward processing constitute an important aspect of the negative symptoms of schizophrenia. Despite its clinical relevance, the etiology of deficient reward processing in schizophrenia remains largely unknown. Here, we used an epidemiologically informed mouse model of schizophrenia to explore the effects of prenatal immune activation on reward-related functions. The model is based on maternal administration of the viral mimic PolyI:C and has been developed in relation to the epidemiological evidence demonstrating enhanced risk of schizophrenia and related disorders following prenatal maternal infection. We show that prenatal immune activation induces selective deficits in the expression (but not acquisition) of conditioned place preference for a natural reward (sucrose) without changing hedonic or neophobic responses to the reward. On the other hand, prenatal immune activation led to enhanced place preference for the psychostimulant drug cocaine, while it attenuated the locomotor reaction to the drug. The prenatal exposure did not alter negative reinforcement learning as assessed using a contextual fear conditioning paradigm. Our findings suggest that the nature of reward-related abnormalities following prenatal immune challenge depends on the specificity of the reward (natural reward vs drug of abuse) as well as on the valence domain (positive vs negative reinforcement learning). Moreover, our data indicate that reward abnormalities emerging in prenatally immune-challenged offspring may, at least in part, stem from an inability to retrieve previously established context-reward associations and to integrate such information for appropriate goal-directed behavior.
Collapse
Affiliation(s)
- M A Labouesse
- Department of Health Sciences and Technology, Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland,Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH), Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland. E-mail:
| | - W Langhans
- Department of Health Sciences and Technology, Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - U Meyer
- Department of Health Sciences and Technology, Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland,Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| |
Collapse
|
16
|
Chou S, Jones S, Li M. Adolescent olanzapine sensitization is correlated with hippocampal stem cell proliferation in a maternal immune activation rat model of schizophrenia. Brain Res 2015; 1618:122-35. [PMID: 26049127 DOI: 10.1016/j.brainres.2015.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/09/2015] [Accepted: 05/14/2015] [Indexed: 12/12/2022]
Abstract
Previous work established that repeated olanzapine (OLZ) administration in normal adolescent rats induces a sensitization effect (i.e. increased behavioral responsiveness to drug re-exposure) in the conditioned avoidance response (CAR) model. However, it is unclear whether the same phenomenon can be detected in animal models of schizophrenia. The present study explored the generalizability of OLZ sensitization from healthy animals to a preclinical neuroinflammatory model of schizophrenia in the CAR. Maternal immune activation (MIA) was induced via polyinosinic:polycytidylic acid (PolyI:C) administration into pregnant dams. Behavioral assessments of offspring first identified decreased maternal separation-induced pup ultrasonic vocalizations and increased amphetamine-induced hyperlocomotion in animals prenatally exposed to PolyI:C. In addition, repeated adolescent OLZ administration confirmed the generalizability of the sensitization phenomenon. Using the CAR test, adolescent MIA animals displayed a similar increase in behavioral responsiveness after repeated OLZ exposure during both the repeated drug test days as well as a subsequent challenge test. Neurobiologically, few studies examining the relationship between hippocampal cell proliferation and survival and either antipsychotic exposure or MIA have incorporated concurrent behavioral changes. Thus, the current study also sought to reveal the correlation between OLZ behavioral sensitization in the CAR and hippocampal cell proliferation and survival. 5'-bromodeoxyuridine immunohistochemistry identified a positive correlation between the magnitude of OLZ sensitization (i.e. change in avoidance suppression induced by OLZ across days) and hippocampal cell proliferation. The implications of the relationship between behavioral and neurobiological results are discussed.
Collapse
Affiliation(s)
- Shinnyi Chou
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA
| | - Sean Jones
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA.
| |
Collapse
|
17
|
Cocaine counteracts LPS-induced hypolocomotion and triggers locomotor sensitization expression. Behav Brain Res 2015; 287:226-9. [PMID: 25835320 DOI: 10.1016/j.bbr.2015.03.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/16/2015] [Accepted: 03/23/2015] [Indexed: 11/23/2022]
Abstract
Neuroimmune signalling underlies addiction and comorbid depression. Clinical observations indicate that infections and chronic lesions are more frequent in drug users and elevated inflammatory states are evident in cocaine dependents. Therefore, lipopolysaccharide (LPS) and inflammatory cytokines represent an important tool for the investigation of sickness, depressive illness and addiction behaviour. A major component of addiction is the progressive and persistent increase in locomotor activity after repeated drug administration and even prolonged periods of abstinence. The aim of this study was to investigate the response of locomotor sensitization when a non-sensitizing dose of cocaine is paired with a systemic inflammatory stimulus. LPS and cocaine were administered intraperitonealy in young-adult male C57bl/6 mice during a 5-day acquisition phase. After a 48-h withdrawal period all groups were challenged with cocaine to evaluate locomotor expression. During the acquisition phase, the LPS-treated groups displayed characteristic hypolocomotion related to sickness behaviour. The low dose of cocaine did not increase the distance travelled, characterizing a non-sensitization dose. Groups that received both LPS and cocaine did not display hypolocomotion, indicating that cocaine might counteract hypolocomotion sickness behaviour. Moreover, during challenge, only these animals expressed locomotor sensitization. Our results indicate that LPS could facilitate the expression of locomotor sensitization in mice and that the immune system may modulate cocaine-induced sensitization.
Collapse
|
18
|
Zager A, Peron JP, Mennecier G, Rodrigues SC, Aloia TP, Palermo-Neto J. Maternal immune activation in late gestation increases neuroinflammation and aggravates experimental autoimmune encephalomyelitis in the offspring. Brain Behav Immun 2015; 43:159-71. [PMID: 25108214 DOI: 10.1016/j.bbi.2014.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by an autoimmune response against myelin antigens driven by autoreactive T cells. Several lines of evidence indicate that environmental factors, such as previous infection, can influence and trigger autoimmune responses. However, the importance of the gestational period, particularly under inflammatory conditions, on the modulation of MS and related neuroinflammation by the offspring is unknown. This study aimed to evaluate the impact of prenatal exposure to lipopolysaccharide (LPS) during late gestation on the neuroinflammatory response in primary mixed glial cultures and on the progression of experimental autoimmune encephalomyelitis (EAE, an animal model of MS) in the offspring. LPS (Escherichia coli 0127:B8, 120μg/kg) was administered intraperitoneally to pregnant C57BL/6J mice on gestational day 17, and the offspring were assigned to two experiments: (1) mixed glial cultures generated using the brain of neonates, stimulated in vitro with LPS, and (2) adult offspring immunized with MOG35-55. The EAE clinical symptoms were followed for 30days. Different sets of animals were sacrificed either during the onset (7days post-immunization [p.i.]), when spleen and lymph nodes were collected, or the peak of disease (20days p.i.), when CNS were collected for flow cytometry, cytokine production, and protein/mRNA-expression analysis. The primary CNS cultures from the LPS-treated group produced exaggerated amounts of IL-6, IL-1β and nitrites after in vitro stimulus, while IL-10 production was lowered compared to the data of the control group. Prenatal exposure to LPS worsened EAE disease severity in adult offspring, and this worsening was linked to increased CNS-infiltrating macrophages, Th1 cells and Th17 cells at the peak of EAE severity; additionally, exacerbated gliosis was evidenced in microglia (MHC II) and astrocytes (GFAP protein level and immunoreactivity). The IL-2, IL-6 and IL-17 levels in the spleen and lymph nodes were increased in the offspring of the LPS-exposed dams. Our results indicate that maternal immune activation during late gestation predispose the offspring to increased neuroinflammation and potentiate the autoimmune response and clinical manifestation of EAE.
Collapse
Affiliation(s)
- Adriano Zager
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil.
| | - Jean Pierre Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gregory Mennecier
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Sandra C Rodrigues
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago P Aloia
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - João Palermo-Neto
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Gender-dependent effects of maternal immune activation on the behavior of mouse offspring. PLoS One 2014; 9:e104433. [PMID: 25111339 PMCID: PMC4128679 DOI: 10.1371/journal.pone.0104433] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/24/2014] [Indexed: 01/01/2023] Open
Abstract
Autism spectrum disorders are neurodevelopmental disorders characterized by two core symptoms; impaired social interactions and communication, and ritualistic or repetitive behaviors. Both epidemiological and biochemical evidence suggests that a subpopulation of autistics may be linked to immune perturbations that occurred during fetal development. These findings have given rise to an animal model, called the "maternal immune activation" model, whereby the offspring from female rodents who were subjected to an immune stimulus during early or mid-pregnancy are studied. Here, C57BL/6 mouse dams were treated mid-gestation with saline, lipopolysaccharide (LPS) to mimic a bacterial infection, or polyinosinic:polycytidylic acid (Poly IC) to mimic a viral infection. Autism-associated behaviors were examined in the adult offspring of the treated dams. Behavioral tests were conducted to assess motor activity, exploration in a novel environment, sociability, and repetitive behaviors, and data analyses were carried independently on male and female mice. We observed a main treatment effect whereby male offspring from Poly IC-treated dams showed reduced motor activity. In the marble burying test of repetitive behavior, male offspring but not female offspring from both LPS and Poly IC-treated mothers showed increased marble burying. Our findings indicate that offspring from mothers subjected to immune stimulation during gestation show a gender-specific increase in stereotyped repetitive behavior.
Collapse
|
20
|
Zager A, Andersen ML, Tufik S, Palermo-Neto J. Maternal immune activation increases the corticosterone response to acute stress without affecting the hypothalamic monoamine content and sleep patterns in male mice offspring. Neuroimmunomodulation 2014; 21:37-44. [PMID: 24216750 DOI: 10.1159/000355466] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Early life experiences are homeostatic determinants for adult organisms. We evaluated the impact of prenatal immune activation during late gestation on the neuroimmune-endocrine function of adult offspring and its interaction with acute stress. METHODS Pregnant Swiss mice received saline or lipopolysaccharide (LPS) on gestational day 17. Adult male offspring were assigned to the control or restraint stress condition. We analyzed plasmatic corticosterone and catecholamine levels, the monoamine content in the hypothalamus, striatum and frontal cortex, and the sleep-wake cycle before and after acute restraint stress. RESULTS AND CONCLUSION Offspring from LPS-treated dams had increased baseline norepinephrine levels and potentiated corticosterone secretion after the acute stressor, and no effect was observed on hypothalamic monoamine content or sleep behavior. The offspring of immune-activated dams exhibited impairments in stress-induced serotonergic and dopaminergic alterations in the striatum and frontal cortex. The data demonstrate a distinction between the plasmatic levels of corticosterone in response to acute stress and the hypothalamic monoamine content and sleep patterns. We provide new evidence regarding the influence of immune activation during late gestation on the neuroendocrine homeostasis of offspring.
Collapse
Affiliation(s)
- Adriano Zager
- Neuroimmunomodulation Research Group, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo (FMVZ-USP), São Paulo (UNIFESP), Brazil
| | | | | | | |
Collapse
|
21
|
Zager A, Pinheiro ML, Ferraz-de-Paula V, Ribeiro A, Palermo-Neto J. Increased cell-mediated immunity in male mice offspring exposed to maternal immune activation during late gestation. Int Immunopharmacol 2013; 17:633-7. [DOI: 10.1016/j.intimp.2013.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/16/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
|
22
|
Ng E, McGirr A, Wong AHC, Roder JC. Using rodents to model schizophrenia and substance use comorbidity. Neurosci Biobehav Rev 2013; 37:896-910. [PMID: 23567519 DOI: 10.1016/j.neubiorev.2013.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 12/13/2022]
Abstract
Schizophrenia and substance use disorders (SUD) often occur together, yet it is unclear why this is the case or how best to manage dual diagnosis. Rodent models are well suited to study how genes and environment interact to impact neurodevelopment, brain function and behaviors relevant to dual diagnosis. Indeed a variety of rodent models for schizophrenia display behavioral and physiological features relevant to SUD including: neurodevelopmental models, models of a rare variant (Disc1), to models of common variants (neurexin, dysbindin and neuregulin), and models of various gene-drug interactions. Thus it may be worthwhile to probe models of schizophrenia for insights relevant to SUD and dual diagnosis. However, future studies on dual diagnosis should involve characterization beyond measuring locomotor responses to self-administration tasks, include drug classes other than psychostimulants, and dissect the neuroadaptations that underlie risk for dual diagnosis.
Collapse
Affiliation(s)
- Enoch Ng
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 860, Toronto, Ontario M5G 1X5, Canada.
| | | | | | | |
Collapse
|