1
|
Scott KJ, Speers LJ, Bilkey DK. Maternal immune activation alters bout structure of rat 50-kHz ultrasonic vocalizations. Behav Brain Res 2025; 488:115596. [PMID: 40252701 DOI: 10.1016/j.bbr.2025.115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Dysfunctional sequencing of behaviour and cognition is observed in schizophrenia across multiple domains, including during communication. We examined whether maternal immune activation (MIA), a risk factor for schizophrenia, disrupted the sequential organization of ultrasonic vocalizations (USVs) in a rat model. We analysed the structure of bursts of 50-kHz USVs (bouts) in two independent datasets (paired-rat: 19 control, 18 MIA; reward paradigm: 18 control, 20 MIA), using a Damerau-Levenshtein analysis with a k-fold cross-validation procedure. MIA animals showed greater variability in their bout sequences in both datasets, with lower Levenshtein similarity index (LSI) scores compared to control animals. Notably, MIA set median sequences were more similar to control bout sequences than to their own group's sequences, suggesting a breakdown in sequential organization. Additionally, we found an alteration to 50-kHz USV transitional preferences in MIA in a reward context. While sequence structure was altered, basic call production and call-type distribution remained largely intact across groups. These findings demonstrate that MIA specifically appears to affect the organization of vocal sequences at the bout level, while largely preserving basic vocalization patterns. This work extends our understanding of the effects of maternal infection during pregnancy, and how this can lead to altered communication sequences that are relevant to schizophrenia risk.
Collapse
Affiliation(s)
- K Jack Scott
- Department of Psychology, University of Otago, New Zealand
| | - Lucinda J Speers
- Department of Psychology, University of Otago, New Zealand; Grenoble Institut des Neurosciences, Inserm, France
| | - David K Bilkey
- Department of Psychology, University of Otago, New Zealand.
| |
Collapse
|
2
|
Tonetto S, Weikop P, Thomsen M. Nutritional ketosis as treatment for alcohol withdrawal symptoms in female C57BL/6J mice. Sci Rep 2024; 14:5092. [PMID: 38429369 PMCID: PMC10907582 DOI: 10.1038/s41598-024-55310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
Upon both acute and prolonged alcohol intake, the brain undergoes a metabolic shift associated with increased acetate metabolism and reduced glucose metabolism, which persists during abstinence, putatively leading to energy depletion in the brain. This study evaluates the efficacy of ketogenic treatments to rescue psychiatric and neurochemical alterations during long-term alcohol withdrawal. Female mice were intermittently exposed to alcohol vapor or air for three weeks, during which mice were introduced to either a ketogenic diet (KD), control diet supplemented with ketone ester (KE) or remained on control diet (CD). Withdrawal symptoms were assessed over a period of four weeks followed by re-exposure using several behavioral and biochemical tests. Alcohol-exposed mice fed CD displayed long-lasting depressive-like symptoms measured by saccharin preference and tail suspension, as well as decreased norepinephrine levels and serotonin turnover in the hippocampus. Both KD and KE rescued anhedonia for up to three weeks of abstinence. KD mice showed higher latency to first immobility in the tail suspension test, as well as lower plasma cholesterol levels. Our findings show promising effects of nutritional ketosis in ameliorating alcohol withdrawal symptoms in mice. KD seemed to better rescue these symptoms compared to KE.
Collapse
Affiliation(s)
- Simone Tonetto
- Laboratory of Neuropsychiatry, Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Morgan Thomsen
- Laboratory of Neuropsychiatry, Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark.
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Copenhagen, Denmark.
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Laboratory of Neuropsychiatry, Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Hovedvejen 17, 1., 2000, Frederiksberg, Denmark.
| |
Collapse
|
3
|
Wardak AD, Olszyński KH, Polowy R, Matysiak J, Filipkowski RK. Rats that learn to vocalize for food reward emit longer and louder appetitive calls and fewer short aversive calls. PLoS One 2024; 19:e0297174. [PMID: 38335191 PMCID: PMC10857575 DOI: 10.1371/journal.pone.0297174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/31/2023] [Indexed: 02/12/2024] Open
Abstract
Rats are social animals that use ultrasonic vocalizations (USV) in their intraspecific communication. Several types of USV have been previously described, e.g., appetitive 50-kHz USV and aversive short 22-kHz USV. It is not fully understood which aspects of the USV repertoire play important functions during rat ultrasonic exchange. Here, we investigated features of USV emitted by rats trained in operant conditioning, is a form of associative learning between behavior and its consequences, to reinforce the production/emission of 50-kHz USV. Twenty percent of the trained rats learned to vocalize to receive a reward according to an arbitrarily set criterion, i.e., reaching the maximum number of proper responses by the end of each of the last three USV-training sessions, as well as according to a set of measurements independent from the criterion (e.g., shortening of training sessions). Over the training days, these rats also exhibited: an increasing percentage of rewarded 50-kHz calls, lengthening and amplitude-increasing of 50-kHz calls, and decreasing number of short 22-kHz calls. As a result, the potentially learning rats, when compared to non-learning rats, displayed shorter training sessions and different USV structure, i.e. higher call rates, more rewarded 50-kHz calls, longer and louder 50-kHz calls and fewer short 22-kHz calls. Finally, we reviewed the current literature knowledge regarding different lengths of 50-kHz calls in different behavioral contexts, the potential function of short 22-kHz calls as well as speculate that USV may not easily become an operant response due to their primary biological role, i.e., communication of emotional state between conspecifics.
Collapse
Affiliation(s)
- Agnieszka D. Wardak
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof H. Olszyński
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Matysiak
- Institute of Psychology, University of Economics and Human Sciences in Warsaw, Warsaw, Poland
| | - Robert K. Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Tonetto S, Weikop P, Brudek T, Thomsen M. Behavioral and biochemical effects of alcohol withdrawal in female C3H/HeNRj and C57BL/6JRj mice. Front Behav Neurosci 2023; 17:1143720. [PMID: 36910126 PMCID: PMC9995974 DOI: 10.3389/fnbeh.2023.1143720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Background Alcohol use disorder (AUD) is a major problem of our society and is often characterized and worsened by relapse. Prolonged alcohol exposure leads to numerous biochemical alterations that, upon cessation of alcohol intake, cause an array of immediate and lasting withdrawal symptoms. Acute withdrawal and neuroinflammation can be harmful in themselves, and lasting withdrawal symptoms contribute to relapse. Here, we conducted an initial feasibility study assessing several behavioral and neurochemical factors in female C3H/HeNRj (C3H) and C57BL/6JRj (B6) mice to determine which strain showed the clearest alcohol withdrawal symptoms during long-term abstinence and neurochemical alterations following re-exposure. Methods Female C3H and B6 mice (n = 12 per group/strain) were intermittently exposed to alcohol-containing or control liquid diets for 3 weeks. Acute and prolonged withdrawal symptoms were assessed over a period of 3 weeks using a battery of behavioral test, comprised of alcohol self-administration, anhedonia, hyperalgesia, anxiety-like and depressive-like disturbances. Brain inflammation was measured by multiplex cytokine assay. Monoamine levels in the hippocampus and striatum, as well as exploratory analyses of cations levels in the cerebellum, were assessed by High-Performance Liquid Chromatography (HPLC). Results Both C3H and B6 alcohol-exposed mice displayed decreased saccharin intake or preference and higher stress levels assessed by ultrasonic vocalizations (USVs) recordings. B6 but not C3H alcohol-exposed mice also exhibited a slower decline of alcohol oral self-administration (OSA), hyperalgesia, elevated brain TNF-α and elevated serotonin turnover. Conclusion Our findings highlight the suitability of the B6 strain to study the behavioral and neurochemical alterations caused by alcohol withdrawal and the potential efficacy of experimental treatments, not only in early detoxification, but also in prolonged abstinence. The feasibility of these assays is important because long-lasting withdrawal symptoms are often the main cause of relapse in alcohol-dependent patients.
Collapse
Affiliation(s)
- Simone Tonetto
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, University Hospital of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Tomasz Brudek
- Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Morgane Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, University Hospital of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Tivey EKL, Martin JE, Brown SM, Bombail V, Lawrence AB, Meddle SL. Sex differences in 50 kHz call subtypes emitted during tickling-induced playful behaviour in rats. Sci Rep 2022; 12:15323. [PMID: 36097035 PMCID: PMC9468157 DOI: 10.1038/s41598-022-19362-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
'Tickling' induces positive affective states in laboratory rats as evidenced by the production of 50-kHz ultrasonic vocalisations (USVs), although this has mostly been investigated in males. Juvenile rats emit distinctive 50-kHz USV subtypes. Frequency-modulated (FM) 50-kHz USVs are thought to be associated with positive affect and flat 50-kHz USVs with social communication. FM and flat USVs are produced by both sexes during tickling, but it is unclear whether these calls are produced in relation to particular play-related behaviours, and whether USV subtypes are used in a sexually dimorphic manner during tickling. We tested the hypotheses that FM USVs are associated with tickle-induced play behaviours in a sex-specific way, and that flat USVs are associated with non-play activities. Rats were allocated to one of two treatment groups: tickling (tickled, n = 16/sex) or no hand contact (control, n = 16/sex). Play behaviours (hopping, darting and hand approaches) and FM and flat USVs emitted during the testing session were quantified for each rat, with the frequency of FM and flat USVs made in anticipation of, and during, each behaviour analysed. In females, play behaviours were associated with more flat USVs than in males (before and during; p < 0.001), irrespective of treatment. FM USVs were paired with hopping and darting (before and during; p < 0.001), and in anticipation of hand approaches (p < 0.001) in both tickled females and males compared to controls (both sexes) suggesting that FM USVs are linked with play behaviour. The higher call rate of flat USVs paired with play behaviour in females suggests that there may be sex differences in the role of flat USVs during play. This result is evidence of sex differences in tickle-induced behaviours and has implications for our understanding of the function of different USVs in juvenile female and male rats.
Collapse
Affiliation(s)
- Emma K L Tivey
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK.
| | - Jessica E Martin
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Sarah M Brown
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Vincent Bombail
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Alistair B Lawrence
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Bowen MT, George O, Muskiewicz DE, Hall FS. FACTORS CONTRIBUTING TO THE ESCALATION OF ALCOHOL CONSUMPTION. Neurosci Biobehav Rev 2022; 132:730-756. [PMID: 34839930 PMCID: PMC8892842 DOI: 10.1016/j.neubiorev.2021.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
Understanding factors that contribute to the escalation of alcohol consumption is key to understanding how an individual transitions from non/social drinking to AUD and to providing better treatment. In this review, we discuss how the way ethanol is consumed as well as individual and environmental factors contribute to the escalation of ethanol consumption from intermittent low levels to consistently high levels. Moreover, we discuss how these factors are modelled in animals. It is clear a vast array of complex, interacting factors influence changes in alcohol consumption. Some of these factors act early in the acquisition of ethanol consumption and initial escalation, while others contribute to escalation of ethanol consumption at a later stage and are involved in the development of alcohol dependence. There is considerable need for more studies examining escalation associated with the formation of dependence and other hallmark features of AUD, especially studies examining mechanisms, as it is of considerable relevance to understanding and treating AUD.
Collapse
Affiliation(s)
- Michael T. Bowen
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, 2050, Australia,The University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, 2006, Australia,Corresponding Author: Michael T. Bowen, Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia,
| | - Olivier George
- Department of Psychology, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Dawn E. Muskiewicz
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, OH, USA
| | - F. Scott Hall
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, OH, USA
| |
Collapse
|
7
|
Brudzynski SM. Biological Functions of Rat Ultrasonic Vocalizations, Arousal Mechanisms, and Call Initiation. Brain Sci 2021; 11:brainsci11050605. [PMID: 34065107 PMCID: PMC8150717 DOI: 10.3390/brainsci11050605] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
This review summarizes all reported and suspected functions of ultrasonic vocalizations in infant and adult rats. The review leads to the conclusion that all types of ultrasonic vocalizations subserving all functions are vocal expressions of emotional arousal initiated by the activity of the reticular core of the brainstem. The emotional arousal is dichotomic in nature and is initiated by two opposite-in-function ascending reticular systems that are separate from the cognitive reticular activating system. The mesolimbic cholinergic system initiates the aversive state of anxiety with concomitant emission of 22 kHz calls, while the mesolimbic dopaminergic system initiates the appetitive state of hedonia with concomitant emission of 50 kHz vocalizations. These two mutually exclusive arousal systems prepare the animal for two different behavioral outcomes. The transition from broadband infant isolation calls to the well-structured adult types of vocalizations is explained, and the social importance of adult rat vocal communication is emphasized. The association of 22 kHz and 50 kHz vocalizations with aversive and appetitive states, respectively, was utilized in numerous quantitatively measured preclinical models of physiological, psychological, neurological, neuropsychiatric, and neurodevelopmental investigations. The present review should help in understanding and the interpretation of these models in biomedical research.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
8
|
Spontaneous Ultrasonic Vocalization Transmission in Adult, Male Long-Evans Rats Is Age-Dependent and Sensitive to EtOH Modulation. Brain Sci 2020; 10:brainsci10110890. [PMID: 33266373 PMCID: PMC7700419 DOI: 10.3390/brainsci10110890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Ultrasonic vocalizations (USVs) are well-established markers of motivational and emotional status. Recent work from our lab has provided novel evidence for a role of USVs in models of ethanol (EtOH) use. For instance, USV acoustic characteristics can be used to accurately discriminate between rats selectively bred for high EtOH intake (e.g., alcohol-preferring (P) and high-alcohol-drinking (HAD)) versus EtOH-avoiding (e.g., alcohol-non-preferring (NP) and low-alcohol-drinking (LAD)) strains, as well as differentiate between male and female rats. In the present study we sought to explore the effect of age and alcohol availability on spontaneously emitted 50–55 kHz frequency modulated (FM) and 22–28 kHz USVs in adult, male Long–Evans rats. With the hypothesis that age and alcohol experience influence spontaneous USV emissions, we examined USV data collected across a 24-week intermittent EtOH access experiment in male Long–Evans rats. USV counts and acoustic characteristic (i.e., mean frequency, duration, bandwidth and power) data revealed distinct age-dependent phenotypes in both 50–55 kHz FM and 22–28 kHz USV transmission patterns that were modulated by EtOH exposure. These results highlight the influence of age and EtOH experience on the unique emotional phenotypes of male Long–Evans rats.
Collapse
|
9
|
Smith LC, Kimbrough A. Leveraging Neural Networks in Preclinical Alcohol Research. Brain Sci 2020; 10:E578. [PMID: 32825739 PMCID: PMC7565429 DOI: 10.3390/brainsci10090578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022] Open
Abstract
Alcohol use disorder is a pervasive healthcare issue with significant socioeconomic consequences. There is a plethora of neural imaging techniques available at the clinical and preclinical level, including magnetic resonance imaging and three-dimensional (3D) tissue imaging techniques. Network-based approaches can be applied to imaging data to create neural networks that model the functional and structural connectivity of the brain. These networks can be used to changes to brain-wide neural signaling caused by brain states associated with alcohol use. Neural networks can be further used to identify key brain regions or neural "hubs" involved in alcohol drinking. Here, we briefly review the current imaging and neurocircuit manipulation methods. Then, we discuss clinical and preclinical studies using network-based approaches related to substance use disorders and alcohol drinking. Finally, we discuss how preclinical 3D imaging in combination with network approaches can be applied alone and in combination with other approaches to better understand alcohol drinking.
Collapse
Affiliation(s)
- Lauren C. Smith
- Department of Psychiatry, School of Medicine, University of California San Diego, MC 0667, La Jolla, CA 92093, USA;
| | - Adam Kimbrough
- Department of Psychiatry, School of Medicine, University of California San Diego, MC 0667, La Jolla, CA 92093, USA;
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Kuchniak K, Wyszogrodzka E, Chrapusta SJ, Czarna M, Michalak M, Płaźnik A, Krząścik P, Mierzejewski P, Taracha E. Using anticipatory and drug-evoked appetitive ultrasonic vocalization for monitoring the rewarding effect of amphetamine in a rat model of drug self-administration. Behav Brain Res 2019; 376:112187. [PMID: 31473284 DOI: 10.1016/j.bbr.2019.112187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022]
Abstract
Measuring ultrasonic vocalizations (USVs) allows studying psychoactive drug use-related affective states in laboratory rats and may help understand changes underlying the progress of addictions. We aimed at finding an effective scheme for amphetamine self-administration training in rats, identifying factors affecting their anticipatory and drug-evoked, frequency-modulated 50-kHz USV responses, and verifying whether the rewarding action of amphetamine promotes current drug intake during the training. Therefore, we monitored amphetamine intake and anticipatory and drug-evoked USVs in two rat cohorts trained using two different training schemes. Then we retrospectively divided these cohorts into low-amphetamine and high-amphetamine intake subsets and analyzed their frequency-modulated 50-kHz USV responses accordingly. Anticipatory (i.e., drug-context-related) USVs as well as USVs induced by self-administration training-related non-pharmacological manipulations (tested in an additional rat group) showed surprisingly high call rates but faded spontaneously relatively quickly. Only the scheme employing short cycles of training sessions (two instead of six) and intermittent instead of continuous intra-session drug availability yielded long-lasting escalation of amphetamine intake in a sizable subset. This subset showed high initial amphetamine-evoked USV call rate, which suggests that a strong rewarding action of the drug early in the SA training favors intake escalation. A major decrease in the drug-evoked USVs during advanced training indicated the emergence of tolerance to the rewarding action in these rats, a phenomenon that is characteristic of addiction. Frequency-modulated 50-kHz rat USVs are a good index of the rewarding action of amphetamine at the absence of USVs induced by drug context and other training-related factors.
Collapse
Affiliation(s)
- Karolina Kuchniak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957 Warsaw, Poland
| | - Edyta Wyszogrodzka
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957, Warsaw, Poland
| | - Stanisław J Chrapusta
- Department of Experimental Pharmacology, Polish Academy of Sciences Medical Research Centre, 5 Pawińskiego St., 02-106, Warsaw, Poland
| | - Magdalena Czarna
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957 Warsaw, Poland
| | - Magdalena Michalak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957 Warsaw, Poland
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957 Warsaw, Poland
| | - Paweł Krząścik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology, 1B Banacha St., 02-097 Warsaw, Poland
| | - Paweł Mierzejewski
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957, Warsaw, Poland
| | - Ewa Taracha
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957 Warsaw, Poland.
| |
Collapse
|
11
|
Effects of Ethanol Exposure and Withdrawal on Neuronal Morphology in the Agranular Insular and Prelimbic Cortices: Relationship with Withdrawal-Related Structural Plasticity in the Nucleus Accumbens. Brain Sci 2019; 9:brainsci9080180. [PMID: 31357611 PMCID: PMC6721441 DOI: 10.3390/brainsci9080180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
The present study investigated the effects of chronic intermittent ethanol exposure and withdrawal on dendritic morphology and spine density in the agranular insular and prelimbic cortices. Adult male Sprague–Dawley rats were passively exposed to vaporized ethanol (~37 mg/L; 12 h/day) or air (control) for ten consecutive days. Dendritic length, branching, and spine density were quantified in layer II/III pyramidal neurons 24 hours or seven days following the final ethanol exposure. Compared to unexposed control animals there were structural alterations on neurons in the prelimbic cortex, and to a lesser extent the agranular insular cortex. The most prominent ethanol-related differences were the transient increases in dendritic length and branching in prelimbic neurons at 24 h post-cessation, and increased mushroom-shaped spines at seven days post-cessation. The results obtained in the prelimbic cortex are the opposite of those previously reported in the nucleus accumbens core (Peterson, et al. 2015), suggesting that these regions undergo distinct functional adaptations following ethanol exposure and withdrawal.
Collapse
|
12
|
Mulvihill KG, Brudzynski SM. Non-pharmacological induction of rat 50 kHz ultrasonic vocalization: Social and non-social contexts differentially induce 50 kHz call subtypes. Physiol Behav 2018; 196:200-207. [DOI: 10.1016/j.physbeh.2018.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/24/2018] [Accepted: 09/06/2018] [Indexed: 11/29/2022]
|
13
|
Mittal N, Thakore N, Bell RL, Maddox WT, Schallert T, Duvauchelle CL. Sex-specific ultrasonic vocalization patterns and alcohol consumption in high alcohol-drinking (HAD-1) rats. Physiol Behav 2017; 203:81-90. [PMID: 29146494 DOI: 10.1016/j.physbeh.2017.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/03/2017] [Accepted: 11/12/2017] [Indexed: 12/29/2022]
Abstract
Ultrasonic vocalizations (USVs) have been established as an animal model of emotional status and are often utilized in drug abuse studies as motivational and emotional indices. Further USV functionality has been demonstrated in our recent work showing accurate identification of selectively-bred high versus low alcohol-consuming male rats ascertained exclusively from 22 to 28kHz and 50-55kHz FM USV acoustic parameters. With the hypothesis that alcohol-sensitive sex differences could be revealed through USV acoustic parameters, the present study examined USVs and alcohol consumption in male and female selectively bred high-alcohol drinking (HAD-1) rats. For the current study, we examined USV data collected during a 12-week experiment in male and female HAD-1 rats. Experimental phases included Baseline (2weeks), 4-h EtOH Access (4weeks), 24-h EtOH Access (4weeks) and Abstinence (2weeks). Findings showed that both male and female HAD-1 rats spontaneously emitted a large number of 22-28kHz and 50-55kHz FM USVs and that females drank significantly more alcohol compared to males over the entire course of the experiment. Analyses of USV acoustic characteristics (i.e. mean frequency, duration, bandwidth and power) revealed distinct sex-specific phenotypes in both 50-55kHz FM and 22-28kHz USV transmission that were modulated by ethanol exposure. Moreover, by using a linear combination of these acoustic characteristics, we were able to develop binomial logistic regression models able to discriminate between male and female HAD-1 rats with high accuracy. Together these results highlight unique emotional phenotypes in male and female HAD-1 rats that are differentially modulated by alcohol experience.
Collapse
Affiliation(s)
- N Mittal
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - N Thakore
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - R L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - W T Maddox
- Cognitive Design and Statistical Consulting, LLC, Austin, TX 78746, USA
| | - T Schallert
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA; The University of Texas at Austin, College of Liberal Arts, Behavioral Neuroscience, 108 E. Dean Keeton, Stop A8000, Austin, TX 78712, USA
| | - C L Duvauchelle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA.
| |
Collapse
|
14
|
Kimbrough A, de Guglielmo G, Kononoff J, Kallupi M, Zorrilla EP, George O. CRF 1 Receptor-Dependent Increases in Irritability-Like Behavior During Abstinence from Chronic Intermittent Ethanol Vapor Exposure. Alcohol Clin Exp Res 2017; 41:1886-1895. [PMID: 28833238 DOI: 10.1111/acer.13484] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/17/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND In humans, emotional and physical signs of withdrawal from ethanol are commonly seen. Many of these symptoms, including anxiety-like and depression-like behavior, have been characterized in animal models of ethanol dependence. One issue with several current behavioral tests that measure withdrawal in animal models is that they are often not repeatable within subjects over time. Additionally, irritability, one of the most common symptoms of ethanol withdrawal in humans, has not been well characterized in animal models. The corticotropin-releasing factor (CRF)-CRF1 receptor system has been suggested to be critical for the emergence of anxiety-like behavior in ethanol dependence, but the role of this system in irritability-like behavior has not been characterized. METHODS The present study compared the effects of chronic intermittent ethanol (CIE) vapor exposure-induced ethanol dependence on irritability-like behavior in rats using the bottle-brush test during acute withdrawal and protracted abstinence. Rats were trained to self-administer ethanol in operant chambers and then either left in a nondependent state or made dependent via CIE. Naïve, nondependent, and dependent rats were tested for irritability-like behavior in the bottle-brush test 8 hours and 2 weeks into abstinence from ethanol. Separate cohorts of dependent and nondependent rats were used to examine the effect of the specific CRF1 receptor antagonist R121919 on irritability-like behavior. RESULTS Dependent rats exhibited escalated ethanol intake compared with their own pre-CIE baseline and nondependent rats. At both time points of abstinence, ethanol-dependent rats exhibited increased aggressive-like responses compared with naïve and nondependent rats. R121919 reduced irritability-like behavior in both dependent and nondependent rats, but dependent rats were more sensitive to R121919. CONCLUSIONS Irritability-like behavior is a clinically relevant and reliable measure of negative emotional states that is partially mediated by activation of the CRF-CRF1 system and remains elevated during protracted abstinence in ethanol-dependent rats.
Collapse
Affiliation(s)
- Adam Kimbrough
- Department of Neuroscience (AK, GdG, JK, MK, EPZ, OG), The Scripps Research Institute, La Jolla, California
| | - Giordano de Guglielmo
- Department of Neuroscience (AK, GdG, JK, MK, EPZ, OG), The Scripps Research Institute, La Jolla, California
| | - Jenni Kononoff
- Department of Neuroscience (AK, GdG, JK, MK, EPZ, OG), The Scripps Research Institute, La Jolla, California
| | - Marsida Kallupi
- Department of Neuroscience (AK, GdG, JK, MK, EPZ, OG), The Scripps Research Institute, La Jolla, California
| | - Eric P Zorrilla
- Department of Neuroscience (AK, GdG, JK, MK, EPZ, OG), The Scripps Research Institute, La Jolla, California
| | - Olivier George
- Department of Neuroscience (AK, GdG, JK, MK, EPZ, OG), The Scripps Research Institute, La Jolla, California
| |
Collapse
|
15
|
Garcia EJ, Jorgensen ET, Sprick LS, Cain ME. Voluntary ethanol consumption changes anticipatory ultrasonic vocalizations but not novelty response. Behav Brain Res 2016; 320:186-194. [PMID: 27956212 DOI: 10.1016/j.bbr.2016.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
Novelty and sensation seeking (NSS) and affective disorders are correlated with earlier ethanol (ETOH) consumption, and sustained drinking into adulthood. Understanding the NSS response and affective response before and after voluntary ETOH consumption could elucidate important individual differences promoting sustained ETOH consumption. This study determined that NSS and affective response to rewarding stimulation-measured by ultrasonic vocalizations (USVs)-change after adolescent ETOH voluntary drinking. Rats were tested for their NSS response using the inescapable novelty test. Then rats were tested for their affective response to a natural reward and USVs were measured. The natural reward was experimenter-induced play behavior. Rats were exposed to ETOH for 8 weeks using an intermittent two bottle paradigm. After 8 weeks of voluntary consumption, rats were retested for their response to NSS and affective response to natural reward. Results indicate that voluntary ETOH consumption did not change the response to novelty. Control and ETOH exposed rats decreased their novelty response equally after ETOH consumption, suggesting the decrease was due to age. Importantly, voluntary ETOH consumption changed affective USVs. Compared to water-drinking control rats, ETOH-consuming rats elicited greater anticipatory trill USVs to a natural reward-associated context during a post-drinking probe test. Tickle-induced trill USVs did not change differently between ETOH and control rats. These results provide evidence that voluntary intermittent ETOH exposure increases the anticipation of reward and may represent a form of incentive salience. We postulate these diverging effects could be due to differences in incentive salience or reward processing. Together, these results suggest that voluntary ETOH consumption changes the affective response to conditioned and unconditioned natural rewards and offers a behavioral mechanism for studying affective reward processing after ETOH consumption.
Collapse
Affiliation(s)
- Erik J Garcia
- Department of Psychological Sciences, 492 Bluemont Hall, Manhattan, KS 66506-5302, United States.
| | - Emily T Jorgensen
- Department of Psychological Sciences, 492 Bluemont Hall, Manhattan, KS 66506-5302, United States
| | - Lukas S Sprick
- Department of Psychological Sciences, 492 Bluemont Hall, Manhattan, KS 66506-5302, United States
| | - Mary E Cain
- Department of Psychological Sciences, 492 Bluemont Hall, Manhattan, KS 66506-5302, United States
| |
Collapse
|
16
|
Simola N, Costa G, Morelli M. Activation of adenosine A₂A receptors suppresses the emission of pro-social and drug-stimulated 50-kHz ultrasonic vocalizations in rats: possible relevance to reward and motivation. Psychopharmacology (Berl) 2016; 233:507-19. [PMID: 26564233 DOI: 10.1007/s00213-015-4130-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/18/2015] [Indexed: 12/31/2022]
Abstract
RATIONALE Rats emit 50-kHz ultrasonic vocalizations (USVs) in response to pleasurable stimuli, and these USVs are considered a tool for investigating reward and motivation. OBJECTIVES This study aimed to clarify how activity of adenosine A2A receptors, which modulate reward and motivation, influences 50-kHz USV emission in rats. METHODS Rats received one of the following treatments in a test cage: (1) acute administration of the A2A receptor agonist CGS 21680 (0.05-0.2 mg/kg, i.p.) during social interactions; (2) long-term amphetamine (1 or 2 mg/kg, i.p.) or morphine (7.5 mg/kg, s.c.) administration on alternate days, alone or with CGS 21680, followed after 7 days of discontinuation by test cage re-exposure, to assess drug-conditioning effects, and thereafter drug challenge; (3) acute administration of the D1/D2 receptor agonist apomorphine (4 mg/kg, i.p.), alone or with CGS 21680; and (4) long-term administration of the non-selective A1/A2A receptor antagonist caffeine (15 mg/kg, i.p.), on alternate days. USVs and locomotor activity were evaluated throughout the treatments. RESULTS CGS 21680 attenuated 50-kHz USV emission stimulated by social interactions, amphetamine, apomorphine, and morphine, and rats administered CGS 21680 with amphetamine or morphine emitted fewer conditioned 50-kHz USVs upon test cage re-exposure, compared with rats administered amphetamine or morphine alone. Moreover, CGS 21680 administration prevented long-term changes in locomotor activity in amphetamine- and morphine-treated rats. Finally, caffeine had no effect on 50-kHz USVs. CONCLUSIONS These results indicate that activation of A2A receptors attenuates 50-kHz USV emission in rats and further elucidate how these receptors modulate the motivational properties of natural and pharmacological stimuli.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale, 72, 09124, Cagliari, Italy.
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale, 72, 09124, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale, 72, 09124, Cagliari, Italy.,CNR, National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| |
Collapse
|
17
|
Thakore N, Reno JM, Gonzales RA, Schallert T, Bell RL, Maddox WT, Duvauchelle CL. Alcohol enhances unprovoked 22-28 kHz USVs and suppresses USV mean frequency in High Alcohol Drinking (HAD-1) male rats. Behav Brain Res 2016; 302:228-36. [PMID: 26802730 DOI: 10.1016/j.bbr.2016.01.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/05/2016] [Accepted: 01/17/2016] [Indexed: 12/31/2022]
Abstract
Heightened emotional states increase impulsive behaviors such as excessive ethanol consumption in humans. Though positive and negative affective states in rodents can be monitored in real-time through ultrasonic vocalization (USV) emissions, few animal studies have focused on the role of emotional status as a stimulus for initial ethanol drinking. Our laboratory has recently developed reliable, high-speed analysis techniques to compile USV data during multiple-hour drinking sessions. Since High Alcohol Drinking (HAD-1) rats are selectively bred to voluntarily consume intoxicating levels of alcohol, we hypothesized that USVs emitted by HAD-1 rats would reveal unique emotional phenotypes predictive of alcohol intake and sensitive to alcohol experience. In this study, male HAD-1 rats had access to water, 15% and 30% EtOH or water only (i.e., Controls) during 8 weeks of daily 7-h drinking-in-the-dark (DID) sessions. USVs, associated with both positive (i.e., 50-55 kHz frequency-modulated or FM) and negative (i.e., 22-28 kHz) emotional states, emitted during these daily DID sessions were examined. Findings showed basal 22-28 kHz USVs were emitted by both EtOH-Naïve (Control) and EtOH-experienced rats, alcohol experience enhanced 22-28 kHz USV emissions, and USV acoustic parameters (i.e., mean frequency in kHz) of both positive and negative USVs were significantly suppressed by chronic alcohol experience. These data suggest that negative affective status initiates and maintains excessive alcohol intake in selectively bred HAD-1 rats and support the notion that unprovoked emissions of negative affect-associated USVs (i.e., 22-28 kHz) predict vulnerability to excessive alcohol intake in distinct rodent models.
Collapse
Affiliation(s)
- Neha Thakore
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - James M Reno
- The University of Texas at Austin, Department of Psychology, 108 E. Dean Keeton Avenue, Stop A8000, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - Rueben A Gonzales
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - Timothy Schallert
- The University of Texas at Austin, Department of Psychology, 108 E. Dean Keeton Avenue, Stop A8000, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - Richard L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - W Todd Maddox
- The University of Texas at Austin, Department of Psychology, 108 E. Dean Keeton Avenue, Stop A8000, Austin, TX 78712, USA
| | - Christine L Duvauchelle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Scardochio T, Trujillo-Pisanty I, Conover K, Shizgal P, Clarke PBS. The Effects of Electrical and Optical Stimulation of Midbrain Dopaminergic Neurons on Rat 50-kHz Ultrasonic Vocalizations. Front Behav Neurosci 2015; 9:331. [PMID: 26696851 PMCID: PMC4672056 DOI: 10.3389/fnbeh.2015.00331] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/18/2015] [Indexed: 01/11/2023] Open
Abstract
Rationale: Adult rats emit ultrasonic vocalizations (USVs) at around 50-kHz; these commonly occur in contexts that putatively engender positive affect. While several reports indicate that dopaminergic (DAergic) transmission plays a role in the emission of 50-kHz calls, the pharmacological evidence is mixed. Different modes of dopamine (DA) release (i.e., tonic and phasic) could potentially explain this discrepancy. Objective: To investigate the potential role of phasic DA release in 50-kHz call emission. Methods: In Experiment 1, USVs were recorded in adult male rats following unexpected electrical stimulation of the medial forebrain bundle (MFB). In parallel, phasic DA release in the nucleus accumbens (NAcc) was recorded using fast-scan cyclic voltammetry. In Experiment 2, USVs were recorded following response-contingent or non-contingent optogenetic stimulation of midbrain DAergic neurons. Four 20-s schedules of optogenetic stimulation were used: fixed-interval, fixed-time, variable-interval, and variable-time. Results: Brief electrical stimulation of the MFB increased both 50-kHz call rate and phasic DA release in the NAcc. During optogenetic stimulation sessions, rats initially called at a high rate comparable to that observed following reinforcers such as psychostimulants. Although optogenetic stimulation maintained reinforced responding throughout the 2-h session, the call rate declined to near zero within the first 30 min. The trill call subtype predominated following both electrical and optical stimulation. Conclusion: The occurrence of electrically-evoked 50-kHz calls, time-locked to phasic DA (Experiment 1), provides correlational evidence supporting a role for phasic DA in USV production. However, in Experiment 2, the temporal dissociation between calling and optogenetic stimulation of midbrain DAergic neurons suggests that phasic mesolimbic DA release is not sufficient to produce 50-kHz calls. The emission of the trill subtype of 50-kHz calls potentially provides a marker distinguishing positive affect from positive reinforcement.
Collapse
Affiliation(s)
- Tina Scardochio
- Department of Pharmacology and Therapeutics, Neuropsychopharmacology, McGill University Montreal, QC, Canada
| | - Ivan Trujillo-Pisanty
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University Montreal, QC, Canada
| | - Kent Conover
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University Montreal, QC, Canada
| | - Peter Shizgal
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University Montreal, QC, Canada
| | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, Neuropsychopharmacology, McGill University Montreal, QC, Canada ; Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University Montreal, QC, Canada
| |
Collapse
|
19
|
Translational Assessment of Reward and Motivational Deficits in Psychiatric Disorders. Curr Top Behav Neurosci 2015; 28:231-62. [PMID: 26873017 DOI: 10.1007/7854_2015_5004] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Deficits in reward and motivation are common symptoms characterizing several psychiatric and neurological disorders. Such deficits may include anhedonia, defined as loss of pleasure, as well as impairments in anticipatory pleasure, reward valuation, motivation/effort, and reward learning. This chapter describes recent advances in the development of behavioral tasks used to assess different aspects of reward processing in both humans and non-human animals. While earlier tasks were generally developed independently with limited cross-species correspondence, a newer generation of translational tasks has emerged that are theoretically and procedurally analogous across species and allow parallel testing, data analyses, and interpretation between human and rodent behaviors. Such enhanced conformity between cross-species tasks will facilitate investigation of the neurobiological mechanisms underlying discrete reward and motivated behaviors and is expected to improve our understanding and treatment of neuropsychiatric disorders characterized by reward and motivation deficits.
Collapse
|
20
|
Brudzynski SM. Pharmacology of Ultrasonic Vocalizations in adult Rats: Significance, Call Classification and Neural Substrate. Curr Neuropharmacol 2015; 13:180-92. [PMID: 26411761 PMCID: PMC4598430 DOI: 10.2174/1570159x13999150210141444] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022] Open
Abstract
Pharmacological studies of emotional arousal and initiation of emotional states in rats measured by their ultrasonic vocalizations are reviewed. It is postulated that emission of vocalizations is an inseparable feature of emotional states and it evolved from mother-infant interaction. Positive emotional states are associated with emission of 50 kHz vocalizations that could be induced by rewarding situations and dopaminergic activation of the nucleus accumbens and are mediated by D1, D2, and partially D3 dopamine receptors. Three biologically significant subtypes of 50 kHz vocalizations have been identified, all expressing positive emotional states: (1) flat calls without frequency modulation that serve as contact calls during social interactions; (2) frequencymodulated calls without trills that signal rewarding and significantly motivated situation; and (3) frequency-modulated calls with trills or trills themselves that are emitted in highly emotional situations associated with intensive affective state. Negative emotional states are associated with emission of 22 kHz vocalizations that could be induced by aversive situations, muscarinic cholinergic activation of limbic areas of medial diencephalon and forebrain, and are mediated by M2 muscarinic receptors. Two biologically significant subtypes of 22 kHz vocalizations have been identified, both expressing negative emotional sates: (1) long calls that serve as alarm calls and signal external danger; and (2) short calls that express a state of discomfort without external danger. The positive and negative states with emission of vocalizations are initiated by two ascending reticular activating subsystems: the mesolimbic dopaminergic subsystem as a specific positive arousal system, and the mesolimbic cholinergic subsystem as a specific negative arousal system.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, L2S 3A1 Canada.
| |
Collapse
|
21
|
Peterson VL, McCool BA, Hamilton DA. Effects of ethanol exposure and withdrawal on dendritic morphology and spine density in the nucleus accumbens core and shell. Brain Res 2014; 1594:125-35. [PMID: 25452024 DOI: 10.1016/j.brainres.2014.10.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 12/24/2022]
Abstract
Exposure to drugs of abuse can result in profound structural modifications on neurons in circuits involved in addiction that may contribute to drug dependence, withdrawal and related processes. Structural alterations on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) have been observed following exposure to and withdrawal from a variety of drugs; however, relatively little is known about the effects of alcohol exposure and withdrawal on structural alterations of NAc MSNs. In the present study male rats were chronically exposed to vaporized ethanol for 10 days and underwent 1 or 7 days of withdrawal after which the brains were processed for Golgi-Cox staining and analysis of dendritic length, branching and spine density. MSNs of the NAc shell and core underwent different patterns of changes following ethanol exposure and withdrawal. At 1 day of withdrawal there were modest reductions in the dendritic length and branching of MSNs in both the core and the shell compared to control animals exposed only to air. At 7 days of withdrawal the length and branching of shell MSNs was reduced, whereas the length and branching of core MSNs were increased relative to the shell. The density of mature spines was increased in the core at 1 day of withdrawal, whereas the density of less mature spines was increased in both regions at 7 days of withdrawal. Collectively, these observations indicate that MSNs of the NAc core and shell undergo distinct patterns of structural modifications following ethanol exposure and withdrawal suggesting that modifications in dendritic structure in these regions may contribute differentially to ethanol withdrawal.
Collapse
Affiliation(s)
- Veronica L Peterson
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|