1
|
Lan Y, Li A, Ding C, Xia J, Zhang X, Luo D. Mechanistic insights into Quetiapine's Protective effects on cognitive function and synaptic plasticity in epileptic rats. Brain Res 2025; 1850:149426. [PMID: 39730023 DOI: 10.1016/j.brainres.2024.149426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
The study aimed to examine the effects of Quetiapine, an atypical antipsychotic medication with purported neuroprotective qualities, on cognitive function and synaptic plasticity in epileptic rats. This investigation also sought to elucidate the mechanisms by which quetiapine influences the activity of the cyclic adenylate response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway and metallomatrix proteinase-9 (MMP9) expression in the context of epilepsy. The epileptic model was induced in rats through the administration of pilocarpine, with normal rats serving as the control group. Within the epilepsy group, two subgroups were established: one receiving normal saline and the other receiving quetiapine. Behavioral assays were utilized to assess learning, memory, and spatial exploration abilities. Furthermore, Western blot analysis, immunohistochemistry (IHC), and immunofluorescence (IF) staining were employed to evaluate the activity of the CREB/BDNF pathway, expression of MMP9 protein, and levels of synaptic plasticity-related proteins. Our study revealed that Quetiapine administration led to a notable enhancement in learning and memory in epileptic rats, as indicated by heightened drinking durations and visitation rates in behavioral assessments. Furthermore, Quetiapine upregulated the expression of pro-BDNF, m-BDNF, p-CREB, and CREB within the hippocampus, along with elevating mRNA levels of BDNF and CREB. Additionally, Quetiapine suppressed MMP-9 expression and promoted synaptic plasticity by augmenting SYN and PSD-95 expression levels in the hippocampus. Therefore, Quetiapine improved cognitive functions such as learning, memory, and spatial exploration in epileptic rats. Moreover, Quetiapine activated the CREB/BDNF signaling pathway, suppressed MMP-9 expression, and promoted synaptic plasticity.
Collapse
Affiliation(s)
- Yanping Lan
- Ningxia Clinical Research Institute, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, PR China.
| | - Ao Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Chenzhe Ding
- Ningxia Clinical Research Institute, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, PR China
| | - Jianxue Xia
- Ningxia Clinical Research Institute, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, PR China
| | - Xuebing Zhang
- Ningxia Clinical Research Institute, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, PR China
| | - Dongyang Luo
- Ningxia Clinical Research Institute, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, PR China
| |
Collapse
|
2
|
Brouwer A, Carhart‐Harris RL, Raison CL. Psychotomimetic compensation versus sensitization. Pharmacol Res Perspect 2024; 12:e1217. [PMID: 38923845 PMCID: PMC11194300 DOI: 10.1002/prp2.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
It is a paradox that psychotomimetic drugs can relieve symptoms that increase risk of and cooccur with psychosis, such as attention and motivational deficits (e.g., amphetamines), pain (e.g., cannabis) and symptoms of depression (e.g., psychedelics, dissociatives). We introduce the ideas of psychotomimetic compensation and psychotomimetic sensitization to explain this paradox. Psychotomimetic compensation refers to a short-term stressor or drug-induced compensation against stress that is facilitated by engagement of neurotransmitter/modulator systems (endocannabinoid, serotonergic, glutamatergic and dopaminergic) that mediate the effects of common psychotomimetic drugs. Psychotomimetic sensitization occurs after repeated exposure to stress and/or drugs and is evidenced by the gradual intensification and increase of psychotic-like experiences over time. Theoretical and practical implications of this model are discussed.
Collapse
Affiliation(s)
- Ari Brouwer
- Department of Human Development and Family Studies, School of Human EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Robin L. Carhart‐Harris
- Department of Neurology and PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Charles L. Raison
- Department of Psychiatry, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Vail Health Behavioral Health Innovation CenterVailColoradoUSA
- Center for the Study of Human HealthEmory UniversityAtlantaGeorgiaUSA
- Department of Spiritual HealthEmory University Woodruff Health Sciences CenterAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Culbert KM, Thakkar KN, Klump KL. Risk for midlife psychosis in women: critical gaps and opportunities in exploring perimenopause and ovarian hormones as mechanisms of risk. Psychol Med 2022; 52:1612-1620. [PMID: 35582864 PMCID: PMC9743981 DOI: 10.1017/s0033291722001143] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Women show a heightened risk for psychosis in midlife that is not observed in men. The menopausal transition (i.e. perimenopause) and accompanying changes in ovarian hormones are theorized to account for this midlife increase in risk. This narrative review aims to empirically examine these theories by reviewing studies of midlife and perimenopausal psychosis risk in women and potential ovarian hormone mechanisms of effects. Clinical and pre-clinical studies examining the effects of midlife age, menopausal stage, and ovarian hormones across adulthood on psychosis risk were identified. Synthesis of this body of work revealed that the peak ages of midlife psychosis risk in women overlap with the age range of key menopausal stages (especially the perimenopausal transition), although studies directly assessing menopausal stage are lacking. Studies examining ovarian hormone effects have almost exclusively focused on earlier developmental stages and events (e.g. pregnancy, the menstrual cycle) and show increases in psychotic symptoms in women and female rats during periods of lower estradiol levels. Estrogen treatment also tends to enhance the effects of neuroleptics in females across species at various reproductive phases. Initial data are promising in suggesting a role for menopausal stage and ovarian hormones in psychosis risk. However, critical gaps in our knowledge base remain, as there is a tendency to rely on indirect and proxy measures of menopausal status and hormones. Opportunities for future research are discussed with the goal of increasing research in this critical area of women's health.
Collapse
Affiliation(s)
| | - Katharine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI
- Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI
| | - Kelly L. Klump
- Department of Psychology, Michigan State University, East Lansing, MI
| |
Collapse
|
4
|
Zemba Cilic A, Zemba M, Cilic M, Strbe S, Ilic S, Vukojevic J, Zoricic Z, Filipcic I, Kokot A, Smoday IM, Rukavina I, Boban Blagaic A, Tvrdeic A, Duplancic B, Stambolija V, Marcinko D, Skrtic A, Seiwerth S, Sikiric P. BPC 157, L-NAME, L-Arginine, NO-Relation, in the Suited Rat Ketamine Models Resembling "Negative-Like" Symptoms of Schizophrenia. Biomedicines 2022; 10:1462. [PMID: 35884767 PMCID: PMC9313087 DOI: 10.3390/biomedicines10071462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 12/30/2022] Open
Abstract
We attempted throughout the NO-system to achieve the particular counteraction of the ketamine-induced resembling "negative-like" schizophrenia symptoms in rats using pentadecapeptide BPC 157, and NO-agents, NG-nitro-L-arginine methylester (L-NAME), and/or L-arginine, triple application. This might be the find out the NO-system organized therapy (i.e., simultaneously implied NO-system blockade (L-NAME) vs. NO-system over-stimulation (L-arginine) vs. NO-system immobilization (L-NAME+L-arginine)). The ketamine regimen (intraperitoneally/kg) included: 3 mg (cognitive dysfunction, novel object recognition test), 30 mg (anxiogenic effect (open field test) and anhedonia (sucrose test)), and 8 mg/3 days (social withdrawal). Medication (mg/kg intraperitoneally) was L-NAME (5), L-arginine (100), and BPC 157 (0.01), alone and/or together, given immediately before ketamine (L-NAME, L-arginine, and combination) or given immediately after (BPC 157 and combinations). BPC 157 counteracted ketamine-cognition dysfunction, social withdrawal, and anhedonia, and exerted additional anxiolytic effect. L-NAME (antagonization, social withdrawal) and L-arginine (antagonization, cognitive dysfunction, anhedonia) both included worsening cognitive dysfunction, anhedonia, and anxiogenic effect (L-NAME), social withdrawal, and anxiogenic effect (L-arginine). Thus, ketamine-induced resembling "negative-like" schizophrenia symptoms were "L-NAME non-responsive, L-arginine responsive" (cognition dysfunction), "L-NAME responsive, L-arginine non-responsive" (social withdrawal), "L-NAME responsive, L-arginine responsive, opposite effect" (anhedonia) and "L-NAME responsive, L-arginine responsive, parallel effect" (both anxiogening). In cognition dysfunction, BPC 157 overwhelmed NO-agents effects. The mRNA expression studies in brain tissue evidenced considerable overlapping of gene overexpression in healthy rats treated with ketamine or BPC 157. With the BPC 157 therapy applied immediately after ketamine, the effect on Nos1, Nos2, Plcg1, Prkcg, and Ptgs2 (increased or decreased expression), appeared as a timely specific BPC 157 effect on ketamine-specific targets.
Collapse
Affiliation(s)
- Andrea Zemba Cilic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Mladen Zemba
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Matija Cilic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Sanja Strbe
- Department of Psychiatry, University of Zagreb School of Medicine, University Clinical Centre Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.F.); (D.M.)
| | - Spomenko Ilic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Jaksa Vukojevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Zoran Zoricic
- University Department of Psychiatry, University Hospital Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Igor Filipcic
- Department of Psychiatry, University of Zagreb School of Medicine, University Clinical Centre Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.F.); (D.M.)
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Iva Rukavina
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | | | - Vasilije Stambolija
- Department of Anesthesiology, Resuscitation and Intensive Care, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Darko Marcinko
- Department of Psychiatry, University of Zagreb School of Medicine, University Clinical Centre Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.F.); (D.M.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| |
Collapse
|
5
|
Rajagopal L, Ryan C, Elzokaky A, Burstein ES, Meltzer HY. Pimavanserin augments the efficacy of atypical antipsychotic drugs in a mouse model of treatment-refractory negative symptoms of schizophrenia. Behav Brain Res 2021; 422:113710. [PMID: 34906610 DOI: 10.1016/j.bbr.2021.113710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/15/2023]
Abstract
Negative symptoms are a core, pervasive, and often treatment-refractory phenotype of schizophrenia, one which contributes to poor functional outcome, ability to work, pursue educational goals, and quality of life, as well as caretaker burden. Improvement of negative symptoms in some patients with schizophrenia has been reported with some atypical antipsychotic drugs [AAPDs], but improvement is absent in many patients and partial in others. Therefore, more effective treatments are needed, and better preclinical models of negative symptoms are needed to identify them. Sub-chronic [sc] treatment of rodents with phencyclidine [PCP], a noncompetitive N-methyl-d-aspartate [NMDAR] antagonist, produces deficits in social interactions [SI] that have been widely studied as a model of negative symptoms in schizophrenia. Acute restraint stress [ARS] also provides a model of treatment-refractory negative symptoms [TRS] to AAPDs. By themselves, in sc-PCP mice, the AAPDs, risperidone, olanzapine, and aripiprazole, but not the selective 5-HT2AR inverse agonist, pimavanserin [PIM], rescued the SI deficit in sc-PCP mice, as did the combination of PIM with sub-effective doses of each of these AAPDs. These three AAPDs alone did not rescue SI deficit in sc-PCP+2h-ARS mice, indicating these mice were treatment refractory. However, co-administration of PIM with any of the AAPDs significantly restored SI in these mice. PIM may be an effective adjunctive therapy for treating negative symptoms of schizophrenia in some patients who have failed to respond to AAPDs, but further studies are needed.
Collapse
Affiliation(s)
- L Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago IL 60611, USA
| | - C Ryan
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago IL 60611, USA
| | - A Elzokaky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago IL 60611, USA
| | - E S Burstein
- Acadia Pharmaceuticals Inc, San Diego, CA, 92130 USA
| | - H Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago IL 60611, USA.
| |
Collapse
|
6
|
Singh A, Bali A, Kumari P. One Pot Synthesis and Pharmacological Evaluation of Aryl Substituted Imidazoles as Potential Atypical Antipsychotics. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999200925164707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Second generation or “atypical” antipsychotics demonstrate an improved
therapeutic profile over conventional neuroleptics. These are effective in both positive and negative
symptoms of the disease and have a lower propensity to induce adverse symptoms.
Objective:
The main objective of the research was in silico design and synthesis of potential atypical
antipsychotics with combined antiserotonergic / antidopaminergic effect.
Methods:
A one pot synthesis of aryl substituted imidazole derivatives was carried out in green
solvent PEG-400 and the prepared compounds were evaluated for atypical antipsychotic activity in
animal models for dopaminergic and serotonergic antagonism. The compounds were designed
based on their 3D similarity studies to standard drugs and in silico (docking studies) with respect to
5-HT2A and D2 receptors.
Results:
Results from the docking studies with respect to 5-HT2A and D2 receptors suggested a potential
atypical antipsychotic profile for the test compounds. Theoretical ADME profiling of the
compounds based on selected physicochemical parameters suggested an excellent compliance with
Lipinski’s rules. The potential of these compounds to penetrate the blood brain barrier (log BB) was
computed through an online software program and the values obtained for the compounds suggested
a good potential for brain permeation. Reversal of apomorphine induced mesh climbing behaviour
coupled with inactivity in the stereotypy assay indicates antidopaminergic effect and a potential
atypical profile for the test compounds 1-5. Further, the activity of compounds in DOI assay
indicated a 5-HT2 antagonistic profile (5-HT2 antagonism).
Conclusion:
Compound 5 emerged as important lead compound showing combined antidopaminergic
and antiserotonergic (5-HT2A) activity with a potential atypical antipsychotic profile.
Collapse
Affiliation(s)
- Arshjyoti Singh
- University Institute of Pharmaceutical Sciences, UGC Cenrer of Advanced Study, Panjab University, Chandigarh 160014,India
| | - Alka Bali
- University Institute of Pharmaceutical Sciences, UGC Cenrer of Advanced Study, Panjab University, Chandigarh 160014,India
| | - Pooja Kumari
- University Institute of Pharmaceutical Sciences, UGC Cenrer of Advanced Study, Panjab University, Chandigarh 160014,India
| |
Collapse
|
7
|
Szulczyk D, Bielenica A, Kędzierska E, Leśniak A, Pawłowska A, Bujalska-Zadrożny M, Saccone I, Sparaco R, Fiorino F, Savchenko O, Struga M. G protein-coupled receptor binding and pharmacological evaluation of indole-derived thiourea compounds. Arch Pharm (Weinheim) 2019; 353:e1900218. [PMID: 31782553 DOI: 10.1002/ardp.201900218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/18/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
Four 2-(1H-indol-3-yl)ethylthiourea derivatives were prepared by condensation of 2-(1H-indol-3-yl)ethanamine with the corresponding aryl/alkylisothiocyanates in a medium-polarity solvent. Their structures were confirmed by spectral techniques, and the molecular structure of 3 was determined by X-ray crystal analysis. For all derivatives, the binding affinities at the 5-HT2A and 5-HT2C receptors, as well as their functional activities at the 5-HT1A and D2 receptors, were determined. The arylthioureas 1 and 4 were the most active at the 5-HT1A receptor, showing, at the same time, significant selectivity over the studied 5-HT2 and D2 receptor subtypes. The compounds were tested for their pharmacological activities within the central nervous system in relevant mouse models. The involvement of the serotonergic system in the activity of 1 and 4 was indicated. The antinociceptive action of 4 was linked to its anti-inflammatory activity.
Collapse
Affiliation(s)
- Daniel Szulczyk
- Department of Biochemistry, Medical University of Warsaw, Warszawa, Poland
| | - Anna Bielenica
- Department of Biochemistry, Medical University of Warsaw, Warszawa, Poland
| | - Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| | - Anna Leśniak
- Department of Pharmacodynamics, Medicine Division, Centre for Preclinical Research and Technology, Faculty of Pharmacy with the Laboratory, Medical University of Warsaw, Warszawa, Poland
| | - Agata Pawłowska
- Department of Pharmacodynamics, Medicine Division, Centre for Preclinical Research and Technology, Faculty of Pharmacy with the Laboratory, Medical University of Warsaw, Warszawa, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Medicine Division, Centre for Preclinical Research and Technology, Faculty of Pharmacy with the Laboratory, Medical University of Warsaw, Warszawa, Poland
| | - Irene Saccone
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rosa Sparaco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Marta Struga
- Department of Biochemistry, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
8
|
Serotonin 5-HT 1A, 5-HT 2A and dopamine D 2 receptors strongly influence prefronto-hippocampal neural networks in alert mice: Contribution to the actions of risperidone. Neuropharmacology 2019; 158:107743. [PMID: 31430459 DOI: 10.1016/j.neuropharm.2019.107743] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/22/2019] [Accepted: 08/13/2019] [Indexed: 12/26/2022]
Abstract
Atypical antipsychotic drugs (APDs) used to treat positive and negative symptoms in schizophrenia block serotonin receptors 5-HT2AR and dopamine receptors D2R and stimulate 5-HT1AR directly or indirectly. However, the exact cellular mechanisms mediating their therapeutic actions remain unresolved. We recorded neural activity in the prefrontal cortex (PFC) and hippocampus (HPC) of freely-moving mice before and after acute administration of 5-HT1AR, 5-HT2AR and D2R selective agonists and antagonists and atypical APD risperidone. We then investigated the contribution of the three receptors to the actions of risperidone on brain activity via statistical modeling and pharmacological reversal (risperidone + 5-HT1AR antagonist WAY-100635, risperidone + 5-HT2A/2CR agonist DOI, risperidone + D2R agonist quinpirole). Risperidone, 5-HT1AR agonism with 8-OH-DPAT, 5-HT2AR antagonism with M100907, and D2R antagonism with haloperidol reduced locomotor activity of mice that correlated with a suppression of neural spiking, power of theta and gamma oscillations in PFC and HPC, and reduction of PFC-HPC theta phase synchronization. By contrast, activation of 5-HT2AR with DOI enhanced high-gamma oscillations in PFC and PFC-HPC high gamma functional connectivity, likely related to its hallucinogenic effects. Together, power changes, regression modeling and pharmacological reversals suggest an important role of 5-HT1AR agonism and 5-HT2AR antagonism in risperidone-induced alterations of delta, beta and gamma oscillations, while D2R antagonism may contribute to risperidone-mediated changes in delta oscillations. This study provides novel insight into the neural mechanisms for widely prescribed psychiatric medication targeting the serotonin and dopamine systems in two regions involved in the pathophysiology of schizophrenia.
Collapse
|
9
|
Spasov AA, Yakovlev DS, Brigadirova AA, Maltsev DV, Agatsarskaya YV. Novel Approaches to the Development of Antimigraine Drugs: A Focus on 5-HT2A Receptor Antagonists. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019020146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Li J, Yang S, Liu X, Han Y, Li Y, Feng J, Zhao H. Hypoactivity of the lateral habenula contributes to negative symptoms and cognitive dysfunction of schizophrenia in rats. Exp Neurol 2019; 318:165-173. [PMID: 31082390 DOI: 10.1016/j.expneurol.2019.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Abstract
Dopaminergic (DAergic) hypofunction in the medial prefrontal cortex (mPFC) has been implicated in the negative and cognitive symptoms of schizophrenia and is regulated by serotonergic (5-HTergic) neurons in the dorsal raphe nucleus (DRN). The lateral habenula (LHb) is a key element in controlling DRN 5-HT neurons. We investigated how the LHb impacts the activity of mPFC neurons and whether it mediates the involvement of DRN on development of symptoms in a pharmacological animal model of schizophrenia. We used immunohisochemistry to assess cytochrome-c oxidase (COX) activity of the LHb in MK-801 model rats and extracellular firing recording to compare firing rates in LHb neurons of acute MK-801-treated rats. The sucrose preference, social interaction, and radial arm maze tests were used to access schizophrenia-like behavior in rats with electrolytically lesioned LHb. Finally, we examined levels of the dopamine D1 receptor (D1R) and tyrosine hydroxylase (TH) in the mPFC, and tryptophan hydroxylase 2 (TPH2) in the DRN of rats with LHb lesions to determine the possible mechanism underlying the schizophrenia-like behavior associated with lesioned LHb. We found that COX levels and LHb neuron firing rates decreased significantly in MK-801-treated animals. The LHb lesions induced negative and cognitive, but not positive symptoms of schizophrenia. The D1R and TH levels decreased in the mPFC while TPH2 expression elevated in the DRN and mPFC of LHb-lesioned rats. These results suggest that LHb hypoactivity may contribute to the negative and cognitive symptoms of schizophrenia by downregulating D1R expression in the mPFC, which might be mediated by DRN 5-HT neurons.
Collapse
Affiliation(s)
- Jicheng Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Shaojun Yang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Xiaofeng Liu
- Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, PR China
| | - Yuliang Han
- The department of neurology, second Hospital of Jilin University, Changchun 130021, PR China
| | - Yanhui Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Jingjing Feng
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China; Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
11
|
Adem A, Madjid N, Stiedl O, Bonito-Oliva A, Konradsson-Geuken Å, Holst S, Fisone G, Ögren SO. Atypical but not typical antipsychotic drugs ameliorate phencyclidine-induced emotional memory impairments in mice. Eur Neuropsychopharmacol 2019; 29:616-628. [PMID: 30910381 DOI: 10.1016/j.euroneuro.2019.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 01/09/2023]
Abstract
Schizophrenia is associated with cognitive impairments related to hypofunction in glutamatergic N-methyl-D-aspartate receptor (NMDAR) transmission. Phencyclidine (PCP), a non-competitive NMDAR antagonist, models schizophrenia-like behavioral symptoms including cognitive deficits in rodents. This study examined the effects of PCP on emotional memory function examined in the passive avoidance (PA) task in mice and the ability of typical and atypical antipsychotic drugs (APDs) to rectify the PCP-mediated impairment. Pre-training administration of PCP (0.5, 1, 2 or 3 mg/kg) dose-dependently interfered with memory consolidation in the PA task. In contrast, PCP was ineffective when administered after training, and immediately before the retention test indicating that NMDAR blockade interferes with memory encoding mechanisms. The typical APD haloperidol and the dopamine D2/3 receptor antagonist raclopride failed to block the PCP-induced PA impairment suggesting a negligible role of D2 receptors in the PCP impairment. In contrast, the memory impairment was blocked by the atypical APDs clozapine and olanzapine in a dose-dependent manner while risperidone was effective only at the highest dose tested (1 mg/kg). The PCP-induced impairment involves 5-HT1A receptor mechanisms since the antagonist NAD-299 blocked the memory impairment caused by PCP and the ability of clozapine to attenuate the impairment by PCP. These results indicate that atypical but not typical APDs can ameliorate NMDAR-mediated memory impairments and support the view that atypical APDs such as clozapine can modulate glutamatergic memory dysfunctions through 5-HT1A receptor mechanisms. These findings suggest that atypical APDs may improve cognitive impairments related to glutamatergic dysfunction relevant for emotional memories in schizophrenia.
Collapse
Affiliation(s)
- Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates.
| | - Nather Madjid
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates; Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden
| | - Oliver Stiedl
- Center for Neurogenomics and Cognitive Research, VU University Amsterdam, the Netherlands
| | | | - Åsa Konradsson-Geuken
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden
| | - Sarah Holst
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden
| | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden.
| |
Collapse
|
12
|
Olivito L, De Risi M, Russo F, De Leonibus E. Effects of pharmacological inhibition of dopamine receptors on memory load capacity. Behav Brain Res 2018; 359:197-205. [PMID: 30391393 DOI: 10.1016/j.bbr.2018.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022]
Abstract
Memory capacity (MC) refers to the limited capacity of working memory and is defined as the number of elements that an individual can remember for a short retention interval. MC is impaired in many human pathologies, such as schizophrenia and ageing. Fronto-striatal dopamine regulates working memory, through its action on dopamine D1- and D2-like receptors. Human and rodent studies have suggested that MC is improved by D2 dopamine receptor agonists. Although D1 receptors have been crucially involved in the maintenance of working memory during delay, their role in regulating the capacity of WM remains poorly explored. In this study, we tested the effects of systemic injection of the D1-like and D2-like receptor antagonists, SCH 23390 and Haloperidol respectively, on MC in mice. For this, we used a modified version of the object recognition task, the Different/Identical Objects Task (DOT/IOT), which allows the evaluation of MC in rodents. The results showed a negative interaction between the dose of both drugs and the number of objects that could be remembered. The doses of SCH 23390 and Haloperidol that impaired novel object discrimination in the highest memory load condition were about 4 and 3 time lower, respectively, of those impairing performance in the lowest memory load condition. However, while SCH 23390 specifically impaired memory load capacity, the effects of Haloperidol were associated to impairment in exploratory behaviors. These findings may help to predict the cognitive side effects induced by Haloperidol in healthy subjects.
Collapse
Affiliation(s)
- Laura Olivito
- Institute of Genetics and Biophysics (IGB), Naples and Institute of Cellular Biology and Neurobiology (IBCN), National Research Council, Monterotondo (Rome), Italy; Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy
| | - Maria De Risi
- Institute of Genetics and Biophysics (IGB), Naples and Institute of Cellular Biology and Neurobiology (IBCN), National Research Council, Monterotondo (Rome), Italy; Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy; PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Italy
| | - Fabio Russo
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy
| | - Elvira De Leonibus
- Institute of Genetics and Biophysics (IGB), Naples and Institute of Cellular Biology and Neurobiology (IBCN), National Research Council, Monterotondo (Rome), Italy; Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy.
| |
Collapse
|
13
|
Rajagopal L, Huang M, Michael E, Kwon S, Meltzer HY. TPA-023 attenuates subchronic phencyclidine-induced declarative and reversal learning deficits via GABA A receptor agonist mechanism: possible therapeutic target for cognitive deficit in schizophrenia. Neuropsychopharmacology 2018; 43:2468-2477. [PMID: 30093697 PMCID: PMC6180114 DOI: 10.1038/s41386-018-0160-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/02/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
Abstract
GABAergic drugs are of interest for the treatment of anxiety, depression, bipolar disorder, pain, cognitive impairment associated with schizophrenia (CIAS), and other neuropsychiatric disorders. Some evidence suggests that TPA-023, (7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b] pyridazine), a GABAA α2,3 subtype-selective GABAA partial agonist and α1/5 antagonist, and the neurosteroid, pregnenolone sulfate, a GABAA antagonist, may improve CIAS in pilot clinical trials. The goal of this study was to investigate the effect of TPA-023 in mice after acute or subchronic (sc) treatment with the N-methyl-D-aspartate receptor (NMDAR) antagonist, phencyclidine (PCP), on novel object recognition (NOR), reversal learning (RL), and locomotor activity (LMA) in rodents. Acute TPA-023 significantly reversed scPCP-induced NOR and RL deficits. Co-administration of sub-effective dose (SED) TPA-023 with SEDs of the atypical antipsychotic drug, lurasidone, significantly potentiated the effect of TPA-023 in reversing the scPCP-induced NOR deficit. Further, scTPA-023 co-administration significantly prevented scPCP-induced NOR deficit for 5 weeks. Also, administration of TPA-023 for 7 days following scPCP reversed the NOR deficit for 1 week. However, TPA-023 did not blunt acute PCP-induced hyperactivity, suggesting lack of efficacy as a treatment for psychosis. Systemic TPA-023 significantly blocked lurasidone-induced increases in cortical acetylcholine, dopamine, and glutamate without affecting increases in norepinephrine and with minimal effect on basal release of these neurotransmitters. TPA-023 significantly inhibited PCP-induced cortical and striatal dopamine, serotonin, norepinephrine, and glutamate efflux. These results suggest that TPA-023 and other GABAA agonists may be of benefit to treat CIAS.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Mei Huang
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Eric Michael
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Sunoh Kwon
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Herbert Y. Meltzer
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
14
|
Malikowska-Racia N, Podkowa A, Sałat K. Phencyclidine and Scopolamine for Modeling Amnesia in Rodents: Direct Comparison with the Use of Barnes Maze Test and Contextual Fear Conditioning Test in Mice. Neurotox Res 2018; 34:431-441. [PMID: 29680979 PMCID: PMC6154175 DOI: 10.1007/s12640-018-9901-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Nowadays cognitive impairments are a growing unresolved medical issue which may accompany many diseases and therapies, furthermore, numerous researchers investigate various neurobiological aspects of human memory to find possible ways to improve it. Until any other method is discovered, in vivo studies remain the only available tool for memory evaluation. At first, researchers need to choose a model of amnesia which may strongly influence observed results. Thereby a deeper insight into a model itself may increase the quality and reliability of results. The most common method to impair memory in rodents is the pretreatment with drugs that disrupt learning and memory. Taking this into consideration, we compared the activity of agents commonly used for this purpose. We investigated effects of phencyclidine (PCP), a non-competitive NMDA receptor antagonist, and scopolamine (SCOP), an antagonist of muscarinic receptors, on short-term spatial memory and classical fear conditioning in mice. PCP (3 mg/kg) and SCOP (1 mg/kg) were administrated intraperitoneally 30 min before behavioral paradigms. To assess the influence of PCP and SCOP on short-term spatial memory, the Barnes maze test in C57BL/J6 mice was used. Effects on classical conditioning were evaluated using contextual fear conditioning test. Additionally, spontaneous locomotor activity of mice was measured. These two tests were performed in CD-1 mice. Our study reports that both tested agents disturbed short-term spatial memory in the Barnes maze test, however, SCOP revealed a higher activity. Surprisingly, learning in contextual fear conditioning test was impaired only by SCOP. ᅟ ![]()
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30 - 688, Krakow, Poland.
| | - Adrian Podkowa
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30 - 688, Krakow, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30 - 688, Krakow, Poland
| |
Collapse
|
15
|
Tarland E, Franke RT, Fink H, Pertz HH, Brosda J. Effects of 2-bromoterguride, a dopamine D 2 receptor partial agonist, on cognitive dysfunction and social aversion in rats. Psychopharmacology (Berl) 2018; 235:99-108. [PMID: 28971230 PMCID: PMC5748440 DOI: 10.1007/s00213-017-4747-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
RATIONALE 2-Bromoterguride, a dopamine D2 receptor partial agonist with antagonist properties at serotonin 5-HT2A receptors and α2C-adrenoceptors, meets the prerequisites of a putative atypical antipsychotic drug (APD). We recently showed that 2-bromoterguride is effective in tests of positive symptoms of schizophrenia in rats without inducing extrapyramidal side effects or metabolic changes. OBJECTIVE In continuation of our recent work, we now investigated the effect of 2-bromoterguride on apomorphine and phencyclidine (PCP)-induced disruptions of prepulse inhibition (PPI) of the acoustic startle response, a measure of sensory gating. In addition, we used subchronic PCP treatment to produce cognitive deficits and social aversion, and assessed the effect of 2-bromoterguride on the performance in the novel object recognition (NOR) task (model for studying cognitive deficit symptoms of schizophrenia) and the social interaction test (model for studying negative symptoms of schizophrenia). Finally, we extended the side effect profile of 2-bromoterguride by measuring the prolactin response to systemic administration of the drug in rats. RESULTS Treatment with 2-bromoterguride (0.1 and 0.3 mg/kg) reversed PPI deficits induced by apomorphine and PCP, respectively. Subchronic PCP induced impairments in object memory and social interaction behavior which were ameliorated by 2-bromoterguride but not by clozapine and aripiprazole, respectively. Prolactin concentration in blood serum was not elevated at 1, 2, or 4 h post-2-bromoterguride treatment, which further supports the safe and effective use of this drug. CONCLUSIONS Our data support 2-bromoterguride as a promising APD candidate due to its beneficial effect on cognitive impairments and negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Emilia Tarland
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| | - Robert T. Franke
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heidrun Fink
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heinz H. Pertz
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jan Brosda
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, 14195, Berlin, Germany. .,Bundesamt für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
16
|
Malikowska N, Sałat K, Podkowa A. Comparison of pro-amnesic efficacy of scopolamine, biperiden, and phencyclidine by using passive avoidance task in CD-1 mice. J Pharmacol Toxicol Methods 2017; 86:76-80. [PMID: 28412329 DOI: 10.1016/j.vascn.2017.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/15/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Memory disorders accompany numerous diseases and therapies, and this is becoming a growing medical issue worldwide. Currently, various animal models of memory impairments are available; however, many of them require high financial outlay and/or are time-consuming. A simple way to achieve an efficient behavioral model of cognitive disorders is to inject defined drug that has pro-amnesic properties. Since the involvement of cholinergic and glutamatergic neurotransmission in cognition is well established, the utilization of a nonselective muscarinic receptor antagonist, scopolamine (SCOP), a selective M1 muscarinic receptor antagonist, biperiden (BIP), and a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine (PCP) seems to be reliable tools to induce amnesia. As the determination of their effective doses remains vague and the active doses vary significantly in laboratory settings and in mouse species being tested, the aim of this study was to compare these three models of amnesia in CD-1 mice. METHODS Male Swiss Albino mice were used in passive avoidance (PA) test. All the compounds were administered intraperitoneally (ip) at doses 1mg/kg, 5mg/kg, and 10mg/kg (SCOP and BIP), and 1mg/kg, 3mg/kg, and 6mg/kg (PCP). RESULTS In the retention trial of the PA task, SCOP and PCP led to the reduction of step-through latency at all the tested doses as compared to control, but BIP was effective only at the dose of 10mg/kg. CONCLUSION This study revealed the effectiveness of SCOP, PCP, and BIP as tools to induce amnesia, with the PCP model being the most efficacious and SCOP being the only model that demonstrates a clear dose-response relationship.
Collapse
Affiliation(s)
- Natalia Malikowska
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Medyczna 9 St., 30-688 Krakow, Poland.
| | - Kinga Sałat
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Adrian Podkowa
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| |
Collapse
|
17
|
Miyauchi M, Neugebauer NM, Meltzer HY. Dopamine D 4 receptor stimulation contributes to novel object recognition: Relevance to cognitive impairment in schizophrenia. J Psychopharmacol 2017; 31:442-452. [PMID: 28347261 DOI: 10.1177/0269881117693746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several atypical antipsychotic drugs (APDs) have high affinity for the dopamine (DA) D4 receptor, but the relevance to the efficacy for the treatment of cognitive impairment associated with schizophrenia (CIAS) is poorly understood. The aim of this study was to investigate the effects of D4 receptor stimulation or blockade on novel object recognition (NOR) in normal rats and on the sub-chronic phencyclidine (PCP)-induced novel object recognition deficit. The effect of the D4 agonist, PD168077, and the D4 antagonist, L-745,870, were studied alone, and in combination with clozapine and lurasidone. In normal rats, L-745,870 impaired novel object recognition, whereas PD168077 had no effect. PD168077 acutely reversed the sub-chronic phencyclidine-induced novel object recognition deficit. Co-administration of a sub-effective dose (SED) of PD168077 with a sub-effective dose of lurasidone also reversed this deficit, but a sub-effective dose of PD168077 with a sub-effective dose of clozapine, a more potent D4 antagonist than lurasidone, did not reverse the sub-chronic phencyclidine-induced novel object recognition deficit. At a dose that did not induce a novel object recognition deficit, L-745,870 blocked the ability of clozapine, but not lurasidone, to reverse the novel object recognition deficit. D4 receptor agonism has a beneficial effect on novel object recognition in sub-chronic PCP-treated rats and augments the cognitive enhancing efficacy of an atypical antipsychotic drug that lacks affinity for the D4 receptor, lurasidone.
Collapse
Affiliation(s)
- Masanori Miyauchi
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA.,2 Sumitomo Dainippon Pharma Co. Ltd, Suita, Osaka, Japan
| | - Nichole M Neugebauer
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| | - Herbert Y Meltzer
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
18
|
Piromelatine ameliorates memory deficits associated with chronic mild stress-induced anhedonia in rats. Psychopharmacology (Berl) 2016; 233:2229-39. [PMID: 27007604 DOI: 10.1007/s00213-016-4272-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/08/2016] [Indexed: 12/15/2022]
Abstract
RATIONALE Previous studies have demonstrated that piromelatine (a melatonin and serotonin 5-HT1A and 5-HT1D agonist) exerts an antidepressant activity in rodent models of acute stress and improves cognitive impairments in a rat model of Alzheimer's disease (AD). However, the role of piromelatine in chronic stress-induced memory dysfunction remains unclear. OBJECTIVE The aim of this study was to determine whether piromelatine ameliorates chronic mild stress (CMS)-induced memory deficits and explore the underlying mechanisms. METHODS Rats were exposed randomly to chronic mild stressors for 7 weeks to induce anhedonia (reflected by a significant decrease in sucrose intake), which was used to select rats vulnerable (CMS-anhedonic, CMSA) or resistant (CMS-resistant, CMSR) to stress. Piromelatine (50 mg/kg) was administered daily during the last 2 weeks of CMS. The tail suspension and forced swimming tests were adopted to further characterize vulnerable and resilient rats. The Y-maze and novel object recognition (NOR) tests were used to evaluate memory performance. Brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), phosphorylated CREB (pCREB), and cytogenesis were measured in the hippocampus. RESULTS We found that only CMSA rats displayed significant increases in immobility time in the tail suspension and forced swimming tests; memory deficits in the Y-maze and NOR tests; significant decreases in hippocampal BDNF, CREB, and pCREB expression; and cytogenesis. All these anhedonia-associated effects were reversed by piromelatine. CONCLUSIONS Piromelatine ameliorates memory deficits associated with CMS-induced anhedonia in rats and this effect may be mediated by restoring hippocampal BDNF, CREB, and cytogenesis deficits.
Collapse
|
19
|
Borroto-Escuela DO, Pintsuk J, Schäfer T, Friedland K, Ferraro L, Tanganelli S, Liu F, Fuxe K. Multiple D2 heteroreceptor complexes: new targets for treatment of schizophrenia. Ther Adv Psychopharmacol 2016; 6:77-94. [PMID: 27141290 PMCID: PMC4837969 DOI: 10.1177/2045125316637570] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The dopamine (DA) neuron system most relevant for schizophrenia is the meso-limbic-cortical DA system inter alia densely innervating subcortical limbic regions. The field of dopamine D2 receptors and schizophrenia changed markedly with the discovery of many types of D2 heteroreceptor complexes in subcortical limbic areas as well as the dorsal striatum. The results indicate that the D2 is a hub receptor which interacts not only with many other G protein-coupled receptors (GPCRs) including DA isoreceptors but also with ion-channel receptors, receptor tyrosine kinases, scaffolding proteins and DA transporters. Disturbances in several of these D2 heteroreceptor complexes may contribute to the development of schizophrenia through changes in the balance of diverse D2 homo- and heteroreceptor complexes mediating the DA signal, especially to the ventral striato-pallidal γ-aminobutyric acid (GABA) pathway. This will have consequences for the control of this pathway of the glutamate drive to the prefrontal cortex via the mediodorsal thalamic nucleus which can contribute to psychotic processes. Agonist activation of the A2A protomer in the A2A-D2 heteroreceptor complex inhibits D2 Gi/o mediated signaling but increases the D2 β-arrestin2 mediated signaling. Through this allosteric receptor-receptor interaction, the A2A agonist becomes a biased inhibitory modulator of the Gi/o mediated D2 signaling, which may the main mechanism for its atypical antipsychotic properties especially linked to the limbic A2A-D2 heterocomplexes. The DA and glutamate hypotheses of schizophrenia come together in the signal integration in D2-N-methyl-d-aspartate (NMDA) and A2A-D2-metabotropic glutamate receptor 5 (mGlu5) heteroreceptor complexes, especially in the ventral striatum. 5-Hydroxytryptamine 2A (5-HT2A)-D2 heteroreceptor complexes are special targets for atypical antipsychotics with high potency to block their 5-HT2A protomer signaling in view of the potential development of pathological allosteric facilitatory 5-HT2A-D2 interaction increasing D2 protomer signaling. Neurotensin (NTS1)-D2 heterocomplexes also exist in the ventral and dorsal striatum, and likely also in midbrain DA nerve cells as NTS1-D2 autoreceptor complexes where neurotensin produces antipsychotic and propsychotic actions, respectively.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden Department of Biomolecular Science, Section of Physiology, University of Urbino, Italy
| | - Julia Pintsuk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia
| | - Thorsten Schäfer
- Clinical and Molecular Pharmacy, Department of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen-Nürnberg, Germany
| | - Kristina Friedland
- Clinical and Molecular Pharmacy, Department of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen-Nürnberg, Germany
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Sergio Tanganelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy Department of Medical Sciences, University of Ferrara, Italy
| | - Fang Liu
- Campbell Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
20
|
Horiguchi M, Miyauchi M, Neugebauer NM, Oyamada Y, Meltzer HY. Prolonged reversal of the phencyclidine-induced impairment in novel object recognition by a serotonin (5-HT)1A-dependent mechanism. Behav Brain Res 2016; 301:132-41. [DOI: 10.1016/j.bbr.2015.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/27/2015] [Accepted: 08/30/2015] [Indexed: 02/08/2023]
|
21
|
Fragoso VMDS, Hoppe LY, de Araújo-Jorge TC, de Azevedo MJ, Campos JDDS, Cortez CM, de Oliveira GM. Use of haloperidol and risperidone in highly aggressive Swiss Webster mice by applying the model of spontaneous aggression (MSA). Behav Brain Res 2015; 301:110-8. [PMID: 26698401 DOI: 10.1016/j.bbr.2015.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/05/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Aggression is defined as the act in which an individual intentionally harms or injures another of their own species. Antipsychotics are a form of treatment used in psychiatric routine. They have been used for decades in treatment of patients with aggressive behavior. Haloperidol and risperidone promote the control of psychiatric symptoms, through their respective mechanisms of action. Experimental models are obtained by behavioral, genetic, and pharmacological manipulations, and use a reduced number of animals. In this context, we applied the model of spontaneous aggression (MSA), originating the presence of highly aggressive mice (AgR) when reassembled in adulthood. We administered haloperidol and risperidone in escalating doses, for ten consecutive days. Using positive and negative control groups, we evaluated the effectiveness of these drugs and the reversal of the aggressive behavior, performing the tail suspension test (TST) and open field test (OFT) on 10th day of treatment and 10 days after its discontinuation. The results showed that both antipsychotic drugs were effective in AgR and reversed the aggressive phenotype, reducing the number of attacks by AgR and the extent of lesions in the subordinate mice (AgD) exposed to the pattern of aggressive behavior (PAB) of the aggressors. This conclusion is based on the reduction in the animals' motor and exploratory activity, and on the reversal of patterns of aggressive behavior. The association between the MSA and experiments with other therapeutic protocols and different antipsychotics can be an important methodology in the study of aggressive behavior in psychiatric patients.
Collapse
Affiliation(s)
- Viviane Muniz da Silva Fragoso
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute/FIOCRUZ, Av. Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil.
| | - Luanda Yanaan Hoppe
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute/FIOCRUZ, Av. Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil.
| | - Tânia Cremonini de Araújo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute/FIOCRUZ, Av. Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil.
| | - Marcos José de Azevedo
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute/FIOCRUZ, Av. Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil.
| | - Jerônimo Diego de Souza Campos
- Laboratory of Cell Biology, Oswaldo Cruz Institute/FIOCRUZ, Av. Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil.
| | - Célia Martins Cortez
- Applied Mathematics, Rio de Janeiro State University, Rua São Francisco Xavier, 524, 20559-900, Brazil.
| | - Gabriel Melo de Oliveira
- Laboratory of Cell Biology, Oswaldo Cruz Institute/FIOCRUZ, Av. Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
McAllister KAL, Mar AC, Theobald DE, Saksida LM, Bussey TJ. Comparing the effects of subchronic phencyclidine and medial prefrontal cortex dysfunction on cognitive tests relevant to schizophrenia. Psychopharmacology (Berl) 2015. [PMID: 26194915 DOI: 10.1007/s00213-015-4018-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE It is becoming increasingly clear that the development of treatments for cognitive symptoms of schizophrenia requires urgent attention, and that valid animal models of relevant impairments are required. With subchronic psychotomimetic agent phencyclidine (scPCP), a putative model of such impairment, the extent to which changes following scPCP do or do not resemble those following dysfunction of the prefrontal cortex is of importance. OBJECTIVES The present study carried out a comparison of the most common scPCP dosing regimen with excitotoxin-induced medial prefrontal cortex (mPFC) dysfunction in rats, across several cognitive tests relevant to schizophrenia. METHODS ScPCP subjects were dosed intraperitoneal with 5 mg/kg PCP or vehicle twice daily for 1 week followed by 1 week washout prior to behavioural testing. mPFC dysfunction was induced via fibre-sparing excitotoxin infused into the pre-limbic and infralimbic cortex. Subjects were tested on spontaneous novel object recognition, touchscreen object-location paired-associates learning and touchscreen reversal learning. RESULTS A double-dissociation was observed between object-location paired-associates learning and object recognition: mPFC dysfunction impaired acquisition of the object-location task but not spontaneous novel object recognition, while scPCP impaired spontaneous novel object recognition but not object-location associative learning. Both scPCP and mPFC dysfunction resulted in a similar facilitation of reversal learning. CONCLUSIONS The pattern of impairment following scPCP raises questions around its efficacy as a model of cognitive impairment in schizophrenia, particularly if importance is placed on faithfully replicating the effects of mPFC dysfunction.
Collapse
Affiliation(s)
- K A L McAllister
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK. .,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK. .,, 20 Manchester Sq., London, W1U 3PZ, UK.
| | - A C Mar
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - D E Theobald
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - L M Saksida
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T J Bussey
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|