1
|
Gebregzi HH, Zeiger JS, Smith JP, Stuyt L, Cullen L, Carsella J, Rogers DC, Lafebre J, Knalfec J, Vargas A, Diawara MM. Oral cannabidiol did not impair learning and memory in healthy adults. J Cannabis Res 2025; 7:5. [PMID: 39849639 PMCID: PMC11756171 DOI: 10.1186/s42238-025-00262-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND The effect of oral Cannabidiol (CBD) on interference during learning and memory (L&M) in healthy human volunteers has not been studied. METHOD A two-arm crossover, randomized, double-blind, placebo-controlled trial was conducted at Colorado State University Pueblo (CSU Pueblo) to evaluate the effects of 246 mg oral CBD on L&M in healthy adults. Among 57 healthy volunteers enrolled, 35 were included in the analyses. For assessment of L&M, Montreal Cognitive Assessment (MOCA) was used to evaluate verbal baseline cognitive function; RAVLT-R tests (List A and List B recalls, Proactive and Retroactive Interference ratios, and Forgetting Speed ratio) were used to evaluate verbal declarative memory; and total prose recall was used to evaluate verbal logical memory. Linear Mixed Models with Bonferroni Corrections were used to compare L&M results between primary outcomes (CBD vs. placebo) and secondary demographic outcomes, with a two-tailed statistical significance of P < 0.05. RESULTS CBD administration did not affect any of the dependent variables measured compared to the placebo group. There were no effects of THC, history of CBD use, or sex on CBD's modulation of L&M. However, a highly significant interaction effect between treatment groups (CBD vs. placebo) and age of subjects was observed for the PI ratio (P = 0.008; n = 35). CONCLUSIONS The results of this study suggest that administration of oral CBD alone does not significantly impair L&M in healthy adults. However, age might influence CBD related modulation of proactive interference during human L&M. Future research involving a larger group of older adults is needed to confirm this potential effect. TRIAL REGISTRATION The study was approved by the CSU Pueblo IRB, conducted in accordance with the Declaration of Helsinki, and registered with ClinicalTrials.gov (NCT06074172).
Collapse
Affiliation(s)
- Hanna H Gebregzi
- Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
- Clinical Research Organization, ICON PLC, 8307 Gault Lane, San Antonio, TX, 78209, USA
| | - Joanna S Zeiger
- Cann Research Foundation, 3996 Savannah Ct, Boulder, CO, 80301, USA
| | - Jeffrey P Smith
- Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Libby Stuyt
- Circle Program, Colorado Mental Health Institute at Pueblo, 1600 W 24th Street, Pueblo, CO, 81003, USA
| | - Luann Cullen
- Cullen Regenerative Medicine, Naturopathic Medicine, 112 W D St, Pueblo, CO, 81003, USA
- Department of Chemistry, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Jim Carsella
- Cullen Regenerative Medicine, Naturopathic Medicine, 112 W D St, Pueblo, CO, 81003, USA
| | - Daniel C Rogers
- Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Jordan Lafebre
- Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Jennah Knalfec
- Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Alfredo Vargas
- Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Moussa M Diawara
- Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA.
| |
Collapse
|
2
|
Briânis RC, Andreotti JP, Moreira FA, Iglesias LP. Interplay between endocannabinoid and endovanilloid mechanisms in fear conditioning. Acta Neuropsychiatr 2024; 36:255-264. [PMID: 37982167 DOI: 10.1017/neu.2023.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
OBJECTIVE The transient receptor potential cation channel, subfamily V (vanilloid), member 1 (TRPV1) mediates pain perception to thermal and chemical stimuli in peripheral neurons. The cannabinoid receptor type 1 (CB1), on the other hand, promotes analgesia in both the periphery and the brain. TRPV1 and CB1 have also been implicated in learned fear, which involves the association of a previously neutral stimulus with an aversive event. In this review, we elaborate on the interplay between CB1 receptors and TRPV1 channels in learned fear processing. METHODS We conducted a PubMed search for a narrative review on endocannabinoid and endovanilloid mechanisms on fear conditioning. RESULTS TRPV1 and CB1 receptors are activated by a common endogenous agonist, arachidonoyl ethanolamide (anandamide), Moreover, they are expressed in common neuroanatomical structures and recruit converging cellular pathways, acting in concert to modulate fear learning. However, evidence suggests that TRPV1 exerts a facilitatory role, whereas CB1 restrains fear responses. CONCLUSION TRPV1 and CB1 seem to mediate protective and aversive roles of anandamide, respectively. However, more research is needed to achieve a better understanding of how these receptors interact to modulate fear learning.
Collapse
Affiliation(s)
- Rayssa C Briânis
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia P Andreotti
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lia P Iglesias
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Iglesias LP, Bedeschi L, Aguiar DC, Asth L, Moreira FA. Effects of Δ 9-THC and Type-1 Cannabinoid Receptor Agonists in the Elevated Plus Maze Test of Anxiety: A Systematic Review and Meta-Analysis. Cannabis Cannabinoid Res 2023; 8:24-33. [PMID: 35984927 DOI: 10.1089/can.2022.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Δ9-THC (the main active compound from Cannabis sativa) and related cannabinoids have been used as drugs of abuse and as medications. They induce a complex set of emotional responses in humans and experimental animals, consisting of either anxiolysis or heightened anxiety. These discrepant effects pose a major challenge for data reproducibility and for developing new cannabinoid-based medicines. In this study, we review and analyze previous data on cannabinoids and anxiety-like behavior in experimental animals. Systematic review and meta-analysis on the effects of type-1 cannabinoid receptor agonists (full or partial, selective or not) in rodents exposed to the elevated plus maze, a widely used test of anxiety-like behavior. Cannabinoids tend to reduce anxiety-like behavior if administered at low doses. THC effects are moderated by the dose factor, with anxiolytic- and anxiogenic-like effects occurring at low-dose (0.075-1 mg/kg) and high-dose (1-10 mg/kg) ranges, respectively. However, some studies report no effect at all regardless of the dose tested. Finally, motor impairment represents a potential confounding factor when high doses are administered. The present analysis may contribute to elucidate the experimental factors underlying cannabinoid effects on anxiety-like behavior and facilitate data reproducibility in future studies.
Collapse
Affiliation(s)
- Lia P Iglesias
- Graduate School in Neuroscience; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Department of Pharmacology; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas Bedeschi
- Department of Pharmacology; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniele C Aguiar
- Graduate School in Neuroscience; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Department of Pharmacology; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Graduate School in Physiology and Pharmacology; Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Laila Asth
- Graduate School in Neuroscience; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Graduate School in Physiology and Pharmacology; Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fabrício A Moreira
- Graduate School in Neuroscience; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Department of Pharmacology; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Graduate School in Physiology and Pharmacology; Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
4
|
Simone JJ, Green MR, McCormick CM. Endocannabinoid system contributions to sex-specific adolescent neurodevelopment. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110438. [PMID: 34534603 DOI: 10.1016/j.pnpbp.2021.110438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023]
Abstract
With an increasing number of countries and states adopting legislation permitting the use of cannabis for medical purposes, there is a growing interest among health and research professionals into the system through which cannabinoids principally act, the endocannabinoid system (ECS). Much of the seminal research into the ECS dates back only 30 years and, although there has been tremendous development within the field during this time, many questions remain. More recently, investigations have emerged examining the contributions of the ECS to normative development and the effect of altering this system during important critical periods. One such period is adolescence, a unique period during which brain and behaviours are maturing and reorganizing in preparation for adulthood, including shifts in endocannabinoid biology. The purpose of this review is to discuss findings to date regarding the maturation of the ECS during adolescence and the consequences of manipulations of the ECS during this period to normative neurodevelopmental processes, as well as highlight sex differences in ECS function, important technical considerations, and future directions. Because most of what we know is derived from preclinical studies on rodents, we provide relevant background of this model and some commentary on the translational relevance of the research in this area.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Huxley Health Inc., 8820 Jane St., Concord, ON, L4K 2M9, Canada; eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Matthew R Green
- eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
5
|
Mayo LM, Rabinak CA, Hill MN, Heilig M. Targeting the Endocannabinoid System in the Treatment of Posttraumatic Stress Disorder: A Promising Case of Preclinical-Clinical Translation? Biol Psychiatry 2022; 91:262-272. [PMID: 34598785 PMCID: PMC11097652 DOI: 10.1016/j.biopsych.2021.07.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023]
Abstract
The endocannabinoid (eCB) system is one the most ubiquitous signaling systems of the brain and offers a rich pharmacology including multiple druggable targets. Preclinical research shows that eCB activity influences functional connectivity between the prefrontal cortex and amygdala and thereby influences an organism's ability to cope with threats and stressful experiences. Animal studies show that CB1 receptor activation within the amygdala is essential for extinction of fear memories. Failure to extinguish traumatic memories is a core symptom of posttraumatic stress disorder, suggesting that potentiating eCB signaling may have a therapeutic potential in this condition. However, it has been unknown whether animal findings in this domain translate to humans. Data to inform this critical question are now emerging and are the focus of this review. We first briefly summarize the biology of the eCB system and the animal studies that support its role in fear extinction and stress responding. We then discuss the pharmacological eCB-targeting strategies that may be exploited for therapeutic purposes: direct CB1 receptor activation, using Δ9-tetrahydrocannabinol or its synthetic analogs; or indirect potentiation, through inhibition of eCB-degrading enzymes, the anandamide-degrading enzyme fatty acid amide hydrolase; or the 2-AG (2-arachidonoyl glycerol)-degrading enzyme monoacylglycerol lipase. We then review recent human data on direct CB1 receptor activation via Δ9-tetrahydrocannabinol and anandamide potentiation through fatty acid amide hydrolase blockade. The available human data consistently support a translation of animal findings on fear memories and stress reactivity and suggest a potential therapeutic utility in humans.
Collapse
Affiliation(s)
- Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Science, Linköping University, Linköping, Sweden.
| | - Christine A Rabinak
- Department of Pharmacy Practice, Translational Neuroscience Program, Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Matthew N Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Hotchkiss Brain Institute and the Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Science, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Rezaie M, Nasehi M, Vaseghi S, Alimohammadzadeh K, Islami Vaghar M, Mohammadi-Mahdiabadi-Hasani MH, Zarrindast MR. The interaction effect of sleep deprivation and cannabinoid type 1 receptor in the CA1 hippocampal region on passive avoidance memory, depressive-like behavior and locomotor activity in rats. Behav Brain Res 2020; 396:112901. [PMID: 32920013 DOI: 10.1016/j.bbr.2020.112901] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
Abstract
Increasing evidence shows the interaction effect of cannabinoids and sleep on cognitive functions. In the present study, we aimed to investigate the interaction effect of cannabinoids type 1 receptor (CB1r) in the CA1 hippocampal region and sleep deprivation (SD) on passive avoidance memory and depressive-like behavior in male Wistar rats. We used water box apparatus to induce total SD (TSD) for 24 h. The shuttle-box was applied to assess passive avoidance memory and locomotion apparatus was applied to assess locomotor activity. Forced swim test (FST) was used to evaluate rat's behavior. ACPA (CB1r agonist) at the doses of 0.01, 0.001 and 0.0001 μg/rat, and AM251 (CB1r antagonist) at the doses of 100, 10 and 1 ng/rat were injected intra-CA1, five minutes after training via stereotaxic surgery. Results showed SD impaired memory. ACPA at the doses of 0.01 and 0.001 μg/rat impaired memory and at all doses did not alter the effect of SD on memory. AM251 by itself did not alter memory, while at lowest dose (1 ng/rat) restored SD-induced memory deficit. Both drugs induced depressive-like behavior in a dose-dependent manner. Furthermore, both drugs decreased swimming at some doses (ACPA at 0.0001 μg/rat, AM251 at 0.001 and 0.01 ng/rat). Also, ACPA at the highest dose increased climbing of SD rats. In conclusion, we suggest CB1r may interact with the effect of SD on memory. Additionally, cannabinoids may show a dose-dependent manner in modulating mood and behavior. Interestingly, CB1r agonists and antagonists may exhibit a similar effect in some behavioral assessments.
Collapse
Affiliation(s)
- Maede Rezaie
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.
| | - Khalil Alimohammadzadeh
- Department of Health Services Management, North Tehran Branch, Islamic Azad University, Tehran, Iran; Health Economics Policy Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Islami Vaghar
- Department of Nursing, Faculity of Nursing and Midwifery, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Developmental differences in the effects of CB1/2R agonist WIN55212-2 on extinction of learned fear. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109834. [PMID: 31830508 DOI: 10.1016/j.pnpbp.2019.109834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Adolescence is characterised by substantial changes in emotion regulation and, in particular, impaired extinction consolidation and retention. In this study, we replicated the well-established finding that increasing the activation of cannabinoid receptor 1 (CB1R) via the agonist WIN55212-2 improves fear extinction in adult rodents before examining whether this adjunct would also rescue the extinction retention deficit seen in adolescent rodents. Contrary to the effects in adults, we found that WIN55212-2 impaired within-session acquisition of extinction in adolescent rats with no effect on extinction retention. The same effects of WIN55212-2 were observed for juvenile rats, and did not vary as a function of drug dose. Increased fear expression observed during extinction training was not a result of altered locomotor or anxiety-like behaviour in adolescent rats, as assessed by the open field test. Lastly, we observed a linear decrease in CB1R protein expression across age (i.e., from juveniles, to adolescents, and adults) in both the medial prefrontal cortex and amygdala, two regions implicated in fear expression and extinction, suggesting that there is continued refinement of the endocannabinoid system across development in two regions involved in extinction. Our findings suggest that the expression and extinction of fear in developing rats is differentially affected by CB1R agonism due to an immature endocannabinoid system.
Collapse
|
9
|
Freels TG, Lester DB, Cook MN. Arachidonoyl serotonin (AA-5-HT) modulates general fear-like behavior and inhibits mesolimbic dopamine release. Behav Brain Res 2019; 362:140-151. [DOI: 10.1016/j.bbr.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/02/2023]
|
10
|
Lisboa SF, Vila-Verde C, Rosa J, Uliana DL, Stern CAJ, Bertoglio LJ, Resstel LB, Guimaraes FS. Tempering aversive/traumatic memories with cannabinoids: a review of evidence from animal and human studies. Psychopharmacology (Berl) 2019; 236:201-226. [PMID: 30604182 DOI: 10.1007/s00213-018-5127-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE Aversive learning and memory are essential to cope with dangerous and stressful stimuli present in an ever-changing environment. When this process is dysfunctional, however, it is associated with posttraumatic stress disorder (PTSD). The endocannabinoid (eCB) system has been implicated in synaptic plasticity associated with physiological and pathological aversive learning and memory. OBJECTIVE AND METHODS The objective of this study was to review and discuss evidence on how and where in the brain genetic or pharmacological interventions targeting the eCB system would attenuate aversive/traumatic memories through extinction facilitation in laboratory animals and humans. The effect size of the experimental intervention under investigation was also calculated. RESULTS Currently available data indicate that direct or indirect activation of cannabinoid type-1 (CB1) receptor facilitates the extinction of aversive/traumatic memories. Activating CB1 receptors around the formation of aversive/traumatic memories or their reminders can potentiate their subsequent extinction. In most cases, the effect size has been large (Cohen's d ≥ 1.0). The brain areas responsible for the abovementioned effects include the medial prefrontal cortex, amygdala, and/or hippocampus. The potential role of cannabinoid type-2 (CB2) receptors in extinction learning is now under investigation. CONCLUSION Drugs augmenting the brain eCB activity can temper the impact of aversive/traumatic experiences by diverse mechanisms depending on the moment of their administration. Considering the pivotal role the extinction process plays in PTSD, the therapeutic potential of these drugs is evident. The sparse number of clinical trials testing these compounds in stress-related disorders is a gap in the literature that needs to be addressed.
Collapse
Affiliation(s)
- Sabrina F Lisboa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | - C Vila-Verde
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - J Rosa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - D L Uliana
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - C A J Stern
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - L J Bertoglio
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - L B Resstel
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - F S Guimaraes
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Vaseghi S, Babapour V, Nasehi M, Zarrindast MR. The role of CA1 CB1 receptors on lithium-induced spatial memory impairment in rats. EXCLI JOURNAL 2018; 17:916-934. [PMID: 30564071 PMCID: PMC6295625 DOI: 10.17179/excli2018-1511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Lithium, a glycogen synthase kinase-3β (GSK-3β) inhibitor, prevents cannabinoid withdrawal syndrome, but there is limited data exploring the interaction between lithium and cannabinoid system on memory processes. The present study aimed to test the interaction between dorsal hippocampal (CA1 region) cannabinoid system and lithium on spatial memory in rats. Spatial memory was assessed in Morris Water Maze (MWM) apparatus by a single training session of eight trials. The results showed that pre-training intra-CA1 microinjection of ACPA, the cannabinoid type 1 receptor (CB1r) agonist, at doses of 0.001, 0.01 or 1 µg/rat, or AM251, the cannabinoid type 1 receptor (CB1r) antagonist, at doses of 1, 10 or 100 ng/rat, increased escape latency and traveled distance to the platform, suggesting a spatial learning impairment, whereas intraperitoneal administration of lithium (0.5, 1 or 5 mg/kg) had no effect on spatial learning. Also, rats that received lithium plus a lower dose of ACPA (0.001 µg/rat) or AM251 (1 ng/rat) had successful performance in the MWM. In the probe test, the results showed that pre-training administration of lithium (5 mg/kg) and ACPA (0.01 or 1 µg/rat) but not AM251 (at all doses used) impaired spatial memory retrieval. Also, lower dose of ACPA (0.001 µg/rat) or AM251 (1 ng/rat) potentiated the effect of ineffective doses of lithium (0.5 and 1 mg/kg) on spatial memory retrieval, while restored the effect of effective dose of lithium (5 mg/kg). In conclusion, cannabinoids may have a dual effect on lithium-induced spatial memory impairment in rats.
Collapse
Affiliation(s)
- Salar Vaseghi
- Department of Physiology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahab Babapour
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Simone JJ, Baumbach JL, McCormick CM. Sex-specific effects of CB1 receptor antagonism and stress in adolescence on anxiety, corticosterone concentrations, and contextual fear in adulthood in rats. Int J Dev Neurosci 2018; 69:119-131. [PMID: 30063953 DOI: 10.1016/j.ijdevneu.2018.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
There is a paucity of research regarding the role of endogenous cannabinoid signalling in adolescence on brain and behaviour development. We previously demonstrated effects of repeated CB1 receptor antagonism in adolescence on socioemotional behaviours and neural protein expression 24-48 h after the last drug administration in female rats, with no effect in males. Here we investigate whether greater effects would be manifested after a lengthier delay. In Experiment 1, male and female rats were administered either 1 mg / kg of the CB1 receptor-selective antagonist AM251, vehicle (VEH), or did not receive injections (NoINJ) daily on postnatal days (PND) 30-44 either alone (no adolescent confinement stress; noACS), or in tandem with 1 h ACS. On PND 70, adolescent AM251 exposure reduced anxiety in an elevated plus maze in males, irrespective of ACS, with no effects in females. On PND 73, there were no group differences in either sex in plasma corticosterone concentrations before or after 30 min of restraint stress, although injection stress resulted in higher baseline concentrations in males. Brains were collected on PND 74, with negligible effects of either AM251 or ACS on protein markers of synaptic plasticity and of the endocannabinoid system in the hippocampus and medial prefrontal cortex. In Experiment 2, rats from both sexes were treated with vehicle or AM251 on PND 30-44 and were tested for contextual fear conditioning and extinction in adulthood. AM251 females had greater fear recall than VEH females 24 h after conditioning, with no group differences in within- or between-session fear extinction. There were no group differences in long-term extinction memory, although AM251 females froze more during a reconditioning trial compared with VEH females. There were no group differences on any of the fear conditioning measures in males. Together, these findings indicate a modest, sex-specific role of CB1 receptor signalling in adolescence on anxiety-like behaviour in males and conditioned fear behaviour in females.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Jennet L Baumbach
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada; Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada; Center for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
13
|
Stern CA, de Carvalho CR, Bertoglio LJ, Takahashi RN. Effects of Cannabinoid Drugs on Aversive or Rewarding Drug-Associated Memory Extinction and Reconsolidation. Neuroscience 2018; 370:62-80. [DOI: 10.1016/j.neuroscience.2017.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/23/2017] [Accepted: 07/09/2017] [Indexed: 12/22/2022]
|
14
|
Cooper ZD, Craft RM. Sex-Dependent Effects of Cannabis and Cannabinoids: A Translational Perspective. Neuropsychopharmacology 2018; 43:34-51. [PMID: 28811670 PMCID: PMC5719093 DOI: 10.1038/npp.2017.140] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/14/2017] [Accepted: 06/27/2017] [Indexed: 01/21/2023]
Abstract
Recent policy changes have led to significant increases in the use of cannabis for both medical and recreational purposes. Although men are more likely to endorse past month cannabis use and are more frequently diagnosed with Cannabis Use Disorder relative to women, a growing proportion of medical cannabis users are reported to be women. The increased popularity of cannabis for medical purposes and the narrowing gap in prevalence of use between men and women raises questions regarding sex-dependent effects related to therapeutic efficacy and negative health effects of cannabis and cannabinoids. The objective of this review is to provide a translational perspective on the sex-dependent effects of cannabis and cannabinoids by synthesizing findings from preclinical and clinical studies focused on sex comparisons of their therapeutic potential and abuse liability, two specific areas that are of significant public health relevance. Hormonal and pharmacological mechanisms that may underlie sex differences in the effects of cannabis and cannabinoids are highlighted.
Collapse
Affiliation(s)
- Ziva D Cooper
- Division on Substance Abuse, New York State Psychiatric Institute and Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Rebecca M Craft
- Department of Psychology, Washington State University, Pullman, WA, USA
| |
Collapse
|
15
|
Simone JJ, Baumbach JL, McCormick CM. Effects of CB1 receptor antagonism and stress exposures in adolescence on socioemotional behaviours, neuroendocrine stress responses, and expression of relevant proteins in the hippocampus and prefrontal cortex in rats. Neuropharmacology 2017; 128:433-447. [PMID: 29092785 DOI: 10.1016/j.neuropharm.2017.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 01/07/2023]
Abstract
Little is known about the consequences of altered endocannabinoid signalling in adolescence. We hypothesized that CB1 receptor antagonism (AM251, 1 mg/kg) and stress exposures (1 h confinement stress) in adolescence (daily, postnatal days 30-44) would interact to increase neuroendocrine stress responses and anxiety when investigated a minimum of 24 h after drug and stress treatments; these treatment effects were independent of each other. Changes in homecage behaviour and in weight gain confirmed that both males and females were sensitive to the treatments. Nevertheless, in males, repeated AM251 administration was without effect on any of the measures investigated in days post-treatment. Males had reduced corticosterone release to the repeated stress and had increased GAD67 expression in the ventral hippocampus under baseline conditions. In females, AM251 also reduced weight gain and increased stereotypic behaviours in the homecage; these same females showed increased sociality, reduced CB1 receptor expression in the dorsal hippocampus, and increased GAD67 expression in the prefrontal cortex. Further, females exposed to repeated stress had enhanced recovery to baseline corticosterone concentrations after stress. The inclusion of a non-injected comparison group also revealed stress of injection effects in both sexes that otherwise would have been masked. Together, the findings demonstrate effects of CB1 receptor antagonism and stress that were more evident in females than males, suggesting that females may be more vulnerable to the consequences of disrupted endocannabinoid signalling during adolescence.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Jennet L Baumbach
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Cheryl M McCormick
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada; Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada; Centre for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
16
|
Brancato A, Lavanco G, Cavallaro A, Plescia F, Cannizzaro C. The use of the Emotional-Object Recognition as an assay to assess learning and memory associated to an aversive stimulus in rodents. J Neurosci Methods 2016; 274:106-115. [DOI: 10.1016/j.jneumeth.2016.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/14/2016] [Accepted: 09/28/2016] [Indexed: 12/25/2022]
|
17
|
Korem N, Zer-Aviv TM, Ganon-Elazar E, Abush H, Akirav I. Targeting the endocannabinoid system to treat anxiety-related disorders. J Basic Clin Physiol Pharmacol 2016; 27:193-202. [PMID: 26426887 DOI: 10.1515/jbcpp-2015-0058] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/05/2015] [Indexed: 06/05/2023]
Abstract
The endocannabinoid system plays an important role in the control of emotions, and its dysregulation has been implicated in several psychiatric disorders. The most common self-reported reason for using cannabis is rooted in its ability to reduce feelings of stress, tension, and anxiety. Nevertheless, there are only few studies in controlled clinical settings that confirm that administration of cannabinoids can benefit patients with a post-traumatic stress disorder (PTSD). There are considerable encouraging preclinical data to suggest that endocannabinoid-targeted therapeutics for anxiety disorders should continue. In this review, we will describe data supporting a role for the endocannabinoid system in preventing and treating anxiety-like behavior in animal models and PTSD patients. Cannabinoids have shown beneficial outcomes in rat and mouse models of anxiety and PTSD, but they also may have untoward effects that discourage their chronic usage, including anxiogenic effects. Hence, clinical and preclinical research on the endocannabinoid system should further study the effects of cannabinoids on anxiety and help determine whether the benefits of using exogenous cannabinoids outweigh the risks. In general, this review suggests that targeting the endocannabinoid system represents an attractive and novel approach to the treatment of anxiety-related disorders and, in particular, PTSD.
Collapse
|
18
|
Tran S, Chatterjee D, Facciol A, Gerlai R. Concentration, population, and context-dependent effects of AM251 in zebrafish. Psychopharmacology (Berl) 2016; 233:1445-54. [PMID: 26883874 DOI: 10.1007/s00213-016-4240-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/07/2016] [Indexed: 01/03/2023]
Abstract
RATIONALE The function of the cannabinoid type 1 receptor (CB1-R) is poorly understood in zebrafish, and numerous inconsistent effects have been reported on it in the literature. OBJECTIVE The objective of the present study is to determine whether differences in the reported effects of CB1-R antagonism on anxiety-like behavioural responses, dopaminergic and serotonergic responses are due to concentration, context-dependent and/or population (genotype-related) effects. METHOD Two genetically distinct populations of zebrafish (AB and short fin (SF)) were treated with different concentrations of AM251 (0, 0.1, 1mg/L), and behavioural responses were quantified under two different contexts: one, following habituation and two, subsequently in a novel environment. The levels of dopamine, serotonin and their metabolites 3,4-dihydroxyindole acetic acid (DOPAC) and 5-hydroxyindoleacetic acid (5-HIAA) were quantified from whole-brain tissue. RESULTS We demonstrate that a 60-min exposure to AM251 (0, 0.1, 1mg/L) does not alter behavioural performance following habituation in either populations. However, when subsequently transferred to a novel environment, zebrafish that were pre-treated with the highest dose of AM251 (1mg/L) exhibited increased anxiety-like behavioural responses including elevated absolute turn angle, freezing and bottom dwelling. We found that exposure to the highest dose of AM251 (1mg/L) for 60min increased serotonin in fish of both populations tested. In contrast, exposure to 0.1mg/L AM251 decreased, whereas to 1mg/L AM251 increased dopamine, DOPAC and 5-HIAA in fish of both populations. CONCLUSION Our results demonstrate a genotype-independent effect of AM251 but imply that the inconsistent findings obtained after pharmacological blockade of CB1-Rs in zebrafish may be due to a combination of concentration- and environmental context-dependent effects.
Collapse
Affiliation(s)
- Steven Tran
- Department of Cell & Systems Biology, University of Toronto, 3359 Mississauga Road North, DV 1022D, Mississauga, Ontario, L5L 1C6, Canada.
| | - Diptendu Chatterjee
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, CC4004, Mississauga, Ontario, L5L 1C6, Canada
| | - Amanda Facciol
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, CC4004, Mississauga, Ontario, L5L 1C6, Canada
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, 3359 Mississauga Road North, DV 1022D, Mississauga, Ontario, L5L 1C6, Canada.
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, CC4004, Mississauga, Ontario, L5L 1C6, Canada.
| |
Collapse
|
19
|
Lee TTY, Hill MN, Lee FS. Developmental regulation of fear learning and anxiety behavior by endocannabinoids. GENES, BRAIN, AND BEHAVIOR 2016; 15:108-24. [PMID: 26419643 PMCID: PMC4713313 DOI: 10.1111/gbb.12253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid (eCB) system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress- and anxiety-related disorders. During early life and adolescence, corticolimbic eCB signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that eCB signaling underlies age-specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic eCB signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the eCB system and discuss clinical and rodent models showing eCB regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the eCB system in the central nervous system, and models of pharmacological augmentation of eCB signaling during development in the context of fear learning and anxiety.
Collapse
Affiliation(s)
- Tiffany T.-Y. Lee
- Dept. of Psychology, University of British Columbia, Vancouver, Canada, V6T 1Z4
| | - Matthew N. Hill
- Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary AB, Canada T2N4N1
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
| |
Collapse
|
20
|
Simone JJ, Malivoire BL, McCormick CM. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats. Neuroscience 2015; 306:123-37. [PMID: 26311003 DOI: 10.1016/j.neuroscience.2015.08.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/29/2015] [Accepted: 08/15/2015] [Indexed: 12/16/2022]
Abstract
There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol.
Collapse
Affiliation(s)
- J J Simone
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada.
| | - B L Malivoire
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada.
| | - C M McCormick
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|