1
|
Ma Y, Wang K, Jiao Y, Li Y, Hu R, Li Y, Shi G, Huang M. Atrazine exposure induces TDP-43 protein translocation: A potential mechanism for prefrontal cortical neurodegeneration induced by environmental pollutants. Toxicology 2025; 515:154128. [PMID: 40194585 DOI: 10.1016/j.tox.2025.154128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Atrazine (ATR) is a widely utilized herbicide that has been demonstrated to exert a multitude of deleterious effects on the environment, particularly with regard to water and soil contamination. Moreover, its disruption of endocrine function and implications for antibiotic resistance underscore the urgent need to prioritize alternative solutions for both ecosystems and human health. Therefore, the objective of this study was to investigate a range of neurotoxic effects associated with atrazine-induced damage in the prefrontal lobe of mice. The results of this study indicate that treatment with ATR in C57BL/6 J mice resulted in cognitive-related behavioral deficits, including anxiety and depression, as well as motor impairments. In vivo analyses demonstrated that ATR exposure resulted in a reduction in neuronal synapse density at the microstructural level, while also compromising prefrontal morphological integrity, nociceptor count, and overall neuronal health within the brain. These findings collectively suggest that synaptic deficits are implicated in ATR-induced behavioral abnormalities observed in these mice. Furthermore, our findings revealed that ATR exposure resulted in elevated TDP-43 expression levels that were ectopically localized within the cytoplasm. This alteration led to impaired functionality of mRNP granules and contributed to the development of abnormal synaptic defects. Conversely, TDP-43 has the potential to localize ectopically to mitochondria, where it activates the mitochondrial unfolded protein response (UPRmt), which ultimately results in mitochondrial dysfunction. These findings collectively indicate a strong correlation between TDP-43 dysregulation and the progression of neurodegenerative diseases. Further investigation into the potential neurotoxicity of atrazine may foster heightened awareness, leading to more stringent regulatory measures, research into safer alternatives, and the adoption of sustainable practices, which are essential for safeguarding environmental integrity alongside human health.
Collapse
Affiliation(s)
- Yuan Ma
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Kaidong Wang
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yuxuan Jiao
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yujing Li
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Rong Hu
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yang Li
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Min Huang
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
2
|
Wang YL, Wang JG, Guo S, Guo FL, Liu EJ, Yang X, Feng B, Wang JZ, Vreugdenhil M, Lu CB. Oligomeric β-Amyloid Suppresses Hippocampal γ-Oscillations through Activation of the mTOR/S6K1 Pathway. Aging Dis 2023:AD.2023.0123. [PMID: 37163441 PMCID: PMC10389838 DOI: 10.14336/ad.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/23/2023] [Indexed: 05/12/2023] Open
Abstract
Neuronal synchronization at gamma frequency (30-100 Hz: γ) is impaired in early-stage Alzheimer's disease (AD) patients and AD models. Oligomeric Aβ1-42 caused a concentration-dependent reduction of γ-oscillation strength and regularity while increasing its frequency. The mTOR1 inhibitor rapamycin prevented the Aβ1-42-induced suppression of γ-oscillations, whereas the mTOR activator leucine mimicked the Aβ1-42-induced suppression. Activation of the downstream kinase S6K1, but not inhibition of eIF4E, was required for the Aβ1-42-induced suppression. The involvement of the mTOR/S6K1 signaling in the Aβ1-42-induced suppression was confirmed in Aβ-overexpressing APP/PS1 mice, where inhibiting mTOR or S6K1 restored degraded γ-oscillations. To assess the network changes that may underlie the mTOR/S6K1 mediated γ-oscillation impairment in AD, we tested the effect of Aβ1-42 on IPSCs and EPSCs recorded in pyramidal neurons. Aβ1-42 reduced EPSC amplitude and frequency and IPSC frequency, which could be prevented by inhibiting mTOR or S6K1. These experiments indicate that in early AD, oligomer Aβ1-42 impairs γ-oscillations by reducing inhibitory interneuron activity by activating the mTOR/S6K1 signaling pathway, which may contribute to early cognitive decline and provides new therapeutic targets.
Collapse
Affiliation(s)
- Ya-Li Wang
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| | - Jian-Gang Wang
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| | - Shuling Guo
- Department of Cardiovascular Medicine, Luminghu District, Xuchang Central Hospital, Xuchang, China
| | - Fang-Li Guo
- Department of Neurology, Anyang District Hospital of Puyang City, Anyang, China
| | - En-Jie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Yang
- Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bingyan Feng
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Martin Vreugdenhil
- Department of Life Sciences, Birmingham City University, Birmingham, UK
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Cheng-Biao Lu
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
3
|
Ruggiero RN, Rossignoli MT, Marques DB, de Sousa BM, Romcy-Pereira RN, Lopes-Aguiar C, Leite JP. Neuromodulation of Hippocampal-Prefrontal Cortical Synaptic Plasticity and Functional Connectivity: Implications for Neuropsychiatric Disorders. Front Cell Neurosci 2021; 15:732360. [PMID: 34707481 PMCID: PMC8542677 DOI: 10.3389/fncel.2021.732360] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 01/11/2023] Open
Abstract
The hippocampus-prefrontal cortex (HPC-PFC) pathway plays a fundamental role in executive and emotional functions. Neurophysiological studies have begun to unveil the dynamics of HPC-PFC interaction in both immediate demands and long-term adaptations. Disruptions in HPC-PFC functional connectivity can contribute to neuropsychiatric symptoms observed in mental illnesses and neurological conditions, such as schizophrenia, depression, anxiety disorders, and Alzheimer's disease. Given the role in functional and dysfunctional physiology, it is crucial to understand the mechanisms that modulate the dynamics of HPC-PFC communication. Two of the main mechanisms that regulate HPC-PFC interactions are synaptic plasticity and modulatory neurotransmission. Synaptic plasticity can be investigated inducing long-term potentiation or long-term depression, while spontaneous functional connectivity can be inferred by statistical dependencies between the local field potentials of both regions. In turn, several neurotransmitters, such as acetylcholine, dopamine, serotonin, noradrenaline, and endocannabinoids, can regulate the fine-tuning of HPC-PFC connectivity. Despite experimental evidence, the effects of neuromodulation on HPC-PFC neuronal dynamics from cellular to behavioral levels are not fully understood. The current literature lacks a review that focuses on the main neurotransmitter interactions with HPC-PFC activity. Here we reviewed studies showing the effects of the main neurotransmitter systems in long- and short-term HPC-PFC synaptic plasticity. We also looked for the neuromodulatory effects on HPC-PFC oscillatory coordination. Finally, we review the implications of HPC-PFC disruption in synaptic plasticity and functional connectivity on cognition and neuropsychiatric disorders. The comprehensive overview of these impairments could help better understand the role of neuromodulation in HPC-PFC communication and generate insights into the etiology and physiopathology of clinical conditions.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Monteiro de Sousa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Xi K, Huang X, Liu T, Liu Y, Mao H, Wang M, Feng D, Wang W, Guo B, Wu S. Translational relevance of behavioral, neural, and electroencephalographic profiles in a mouse model of post-traumatic stress disorder. Neurobiol Stress 2021; 15:100391. [PMID: 34541263 PMCID: PMC8435698 DOI: 10.1016/j.ynstr.2021.100391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe, long-term psychological disorder triggered by distressing events. The neural basis and underlying mechanisms of PTSD are not completely understood. Therefore, it is important to determine the pathology of PTSD using reliable animal models that mimic the symptoms of patients. However, the lack of evidence on the clinical relevance of PTSD animal models makes it difficult to interpret preclinical studies from a translational perspective. In this study, we performed a comprehensive screening of the behavioral, neuronal, glial, and electroencephalographic (EEG) profiles in the single prolonged stress and electric foot shock (SPS&S) mouse model. Based on the clinical features of PTSD, we observed fearful and excessive responses to trauma-related environments in the SPS&S mouse model that lasted longer than 14 days. The mice exhibited a defective and strong resistance to the extinction of fear memories caused by auditory cues and also showed enhanced innate fear induced by visual stimuli with concomitant phobias and anxiety. Furthermore, neurons, astrocytes, and microglia in PTSD-related brain regions were activated, supporting abnormal brain activation and neuroimmune changes. EEG assessment also revealed decreased power and impaired coupling strength between cortical regions. These results demonstrated that the SPS&S mouse model recapitulates the behavioral symptoms as well as neural and EEG profiles of PTSD patients, justifying the preclinical use of this mouse model.
Collapse
Affiliation(s)
- Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xin Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mengmeng Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Dayun Feng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Bao X, Qi C, Liu T, Zheng X. Information transmission in mPFC-BLA network during exploratory behavior in the open field. Behav Brain Res 2021; 414:113483. [PMID: 34302874 DOI: 10.1016/j.bbr.2021.113483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
Exploratory behavior plays a fundamental role in motivation, learning, and well-being of organisms. The open field test (OFT) is a classic method to investigate the exploratory behavior in rodents, also a widely adopted and pharmacologically validated procedure for evaluating anxiety and depression. Several lines of evidence have shown that medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) play crucial roles in anxiety-like or depression-like exploratory behavior. However, the dynamic characterization of the mPFC-BLA network in exploratory behavior is less well understood. Therefore, this study aimed to investigate the information transmission mechanism in the mPFC-BLA network during exploratory behavior. Local field potentials (LFPs) from mPFC and BLA were simultaneously recorded while the rats performed the OFT. Directed transfer function (DTF), which was derived from Granger causal connectivity analysis, was applied to measure the functional connectivity among LFPs. Information flow (IF) was calculated to explore the dynamics of information transmission in the mPFC-BLA network. Our results revealed that, for both mPFC and BLA, the theta-band functional connectivity in periphery was significantly higher than that in center of the open field. The IF from BLA to mPFC in the open field task was significantly higher than that from mPFC to BLA. These results suggest that the functional connectivity and IF in the mPFC-BLA network are related to the exploratory behavior, and information transmission from BLA to mPFC could be predominant for exploratory behavior.
Collapse
Affiliation(s)
- Xuehui Bao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Chengxi Qi
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
6
|
Chen M, Chen Y, Huo Q, Wang L, Tan S, Misrani A, Jiang J, Chen J, Chen S, Zhang J, Tabassum S, Wang J, Chen X, Long C, Yang L. Enhancing GABAergic signaling ameliorates aberrant gamma oscillations of olfactory bulb in AD mouse models. Mol Neurodegener 2021; 16:14. [PMID: 33663578 PMCID: PMC7934466 DOI: 10.1186/s13024-021-00434-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Before the deposition of amyloid-beta plaques and the onset of learning memory deficits, patients with Alzheimer’s disease (AD) experience olfactory dysfunction, typified by a reduced ability to detect, discriminate, and identify odors. Rodent models of AD, such as the Tg2576 and APP/PS1 mice, also display impaired olfaction, accompanied by aberrant in vivo or in vitro gamma rhythms in the olfactory pathway. However, the mechanistic relationships between the electrophysiological, biochemical and behavioral phenomena remain unclear. Methods To address the above issues in AD models, we conducted in vivo measurement of local field potential (LFP) with a combination of in vitro electro-olfactogram (EOG), whole-cell patch and field recordings to evaluate oscillatory and synaptic function and pharmacological regulation in the olfactory pathway, particularly in the olfactory bulb (OB). Levels of protein involved in excitation and inhibition of the OB were investigated by western blotting and fluorescence staining, while behavioral studies assessed olfaction and memory function. Results LFP measurements demonstrated an increase in gamma oscillations in the OB accompanied by altered olfactory behavior in both APP/PS1 and 3xTg mice at 3–5 months old, i.e. an age before the onset of plaque formation. Fewer olfactory sensory neurons (OSNs) and a reduced EOG contributed to a decrease in the excitatory responses of M/T cells, suggesting a decreased ability of M/T cells to trigger interneuron GABA release indicated by altered paired-pulse ratio (PPR), a presynaptic parameter. Postsynaptically, there was a compensatory increase in levels of GABAAR α1 and β3 subunits and subsequent higher amplitude of inhibitory responses. Strikingly, the GABA uptake inhibitor tiagabine (TGB) ameliorated abnormal gamma oscillations and levels of GABAAR subunits, suggesting a potential therapeutic strategy for early AD symptoms. These findings reveal increased gamma oscillations in the OB as a core indicator prior to onset of AD and uncover mechanisms underlying aberrant gamma activity in the OB. Conclusions This study suggests that the concomitant dysfunction of both olfactory behavior and gamma oscillations have important implications for early AD diagnosis: in particular, awareness of aberrant GABAergic signaling mechanisms might both aid diagnosis and suggest therapeutic strategies for olfactory damage in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00434-7.
Collapse
Affiliation(s)
- Ming Chen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.,Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yunan Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Qingwei Huo
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Shuyi Tan
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jinxiang Jiang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jian Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shiyuan Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiawei Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jichen Wang
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Xi Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Li Q, Che H, Wang C, Zhang L, Ding L, Xue C, Zhang T, Wang Y. Cerebrosides from Sea Cucumber Improved Aβ1–42‐Induced Cognitive Deficiency in a Rat Model of Alzheimer's Disease. Mol Nutr Food Res 2018; 63:e1800707. [DOI: 10.1002/mnfr.201800707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/23/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Qian Li
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Hong‐Xia Che
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- College of Marine Science and Biological EngineeringQingdao University of Science and Technology Qingdao 266042 Shandong China
| | - Cheng‐Cheng Wang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Ling‐Yu Zhang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Lin Ding
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Chang‐Hu Xue
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- Qingdao National Laboratory for Marine Science and TechnologyLaboratory of Marine Drugs and Biological Products Qingdao 266237 Shandong China
| | - Tian‐Tian Zhang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Yu‐Ming Wang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- Qingdao National Laboratory for Marine Science and TechnologyLaboratory of Marine Drugs and Biological Products Qingdao 266237 Shandong China
| |
Collapse
|
8
|
Directional hippocampal-prefrontal interactions during working memory. Behav Brain Res 2018; 338:1-8. [DOI: 10.1016/j.bbr.2017.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 01/18/2023]
|
9
|
Zhao Z, Gong R, Zheng L, Wang J. In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity. SENSORS (BASEL, SWITZERLAND) 2016; 16:E1851. [PMID: 27827893 PMCID: PMC5134510 DOI: 10.3390/s16111851] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/18/2016] [Accepted: 10/28/2016] [Indexed: 11/16/2022]
Abstract
In order to reduce the impedance and improve in vivo neural recording performance of our developed Michigan type silicon electrodes, rough-surfaced AuPt alloy nanoparticles with nanoporosity were deposited on gold microelectrode sites through electro-co-deposition of Au-Pt-Cu alloy nanoparticles, followed by chemical dealloying Cu. The AuPt alloy nanoparticles modified gold microelectrode sites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and in vivo neural recording experiment. The SEM images showed that the prepared AuPt alloy nanoparticles exhibited cauliflower-like shapes and possessed very rough surfaces with many different sizes of pores. Average impedance of rough-surfaced AuPt alloy nanoparticles modified sites was 0.23 MΩ at 1 kHz, which was only 4.7% of that of bare gold microelectrode sites (4.9 MΩ), and corresponding in vitro background noise in the range of 1 Hz to 7500 Hz decreased to 7.5 μ V rms from 34.1 μ V rms at bare gold microelectrode sites. Spontaneous spike signal recording was used to evaluate in vivo neural recording performance of modified microelectrode sites, and results showed that rough-surfaced AuPt alloy nanoparticles modified microelectrode sites exhibited higher average spike signal-to-noise ratio (SNR) of 4.8 in lateral globus pallidus (GPe) due to lower background noise compared to control microelectrodes. Electro-co-deposition of Au-Pt-Cu alloy nanoparticles combined with chemical dealloying Cu was a convenient way for increasing the effective surface area of microelectrode sites, which could reduce electrode impedance and improve the quality of in vivo spike signal recording.
Collapse
Affiliation(s)
- Zongya Zhao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
- National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an 710049, China.
| | - Ruxue Gong
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
- National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an 710049, China.
| | - Liang Zheng
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
- National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an 710049, China.
| | - Jue Wang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
- National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an 710049, China.
| |
Collapse
|
10
|
Naro A, Corallo F, De Salvo S, Marra A, Di Lorenzo G, Muscarà N, Russo M, Marino S, De Luca R, Bramanti P, Calabrò RS. Promising Role of Neuromodulation in Predicting the Progression of Mild Cognitive Impairment to Dementia. J Alzheimers Dis 2016; 53:1375-88. [DOI: 10.3233/jad-160305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Aβ1-42-induced dysfunction in synchronized gamma oscillation during working memory. Behav Brain Res 2016; 307:112-9. [DOI: 10.1016/j.bbr.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 01/11/2023]
|
12
|
DHA-PC and DHA-PS improved Aβ1–40 induced cognitive deficiency uncoupled with an increase in brain DHA in rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|