1
|
Felton EK, Kulesz PA, Leasure JL, Rodgers SP. Effects of exercise and transient estradiol exposure in middle-aged female rats. Horm Behav 2025; 168:105690. [PMID: 39864230 DOI: 10.1016/j.yhbeh.2025.105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
The benefits of estrogen treatment on cognition in middle-aged and older women are dependent on many factors, including the timing of treatment. Moreover, the potential interactive effects with other lifestyle factors, such as exercise, are poorly understood. In this study, we tested for lasting benefits of independent and combined treatment with estrogen and voluntary exercise initiated in midlife, using a rat model of menopause. Twelve-month-old, retired female breeders were bilaterally ovariectomized and received six weeks of 17β-estradiol (E2) treatment via subcutaneous implant, with or without access to running wheels. After E2 treatment, animals in the exercise groups had running wheel access for seven additional weeks, including a two-week period of cognitive and affective testing. Thereafter, hippocampal neuronal and cellular plasticity were assessed. E2 and exercise independently exerted effects on behavioral and cellular outcome measures. Transient E2 treatment enduringly increased motor output, lowered body weight, and increased behavioral plasticity. Exercise decreased total hippocampal microglia number and increased brain weight. No additive effects of exercise and E2 treatment were observed. E2 treatment may provide a means by which to enduringly increase physical activity in middle age, but combined E2 and exercise do not produce additive benefits on hippocampal behavioral or cellular plasticity.
Collapse
Affiliation(s)
- Emily K Felton
- Department of Psychology, University of Houston, Houston, TX 77204-5022, United States
| | - Paulina A Kulesz
- Department of Psychology, University of Houston, Houston, TX 77204-5022, United States
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX 77204-5022, United States; Department of Biology & Biochemistry, University of Houston, Houston, TX 77204-5022, United States.
| | - Shaefali P Rodgers
- Department of Psychology, University of Houston, Houston, TX 77204-5022, United States; Houston Methodist Research Institute, Houston, TX 77030, United States
| |
Collapse
|
2
|
Shafia S, Nikkhah F, Akhoundzadeh K. Effect of combination fluoxetine and exercise on prefrontal BDNF, anxiety-like behavior and fear extinction in a female rat model of post-traumatic stress disorder (PTSD): a comparison with male animals. Behav Brain Funct 2023; 19:1. [PMID: 36647145 PMCID: PMC9843848 DOI: 10.1186/s12993-023-00204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023] Open
Abstract
Despite significant differences between men and women in the symptoms of PTSD and the response to therapeutic interventions, most PTSD studies have been done on male subjects. Continuing our previous study in male rats, this study aimed at better understanding the effect of a combination therapy of exercise with fluoxetine on female PTSD rats. The results were then compared with our past findings in male animals. Female adult Wistar rats subjected to PTSD were treated with moderate treadmill exercise or fluoxetine, or a combination of both. PTSD was induced by the single prolonged stress (SPS) model. Elevated plus-maze (EPM), serum and prefrontal BDNF, and fear extinctions were evaluated. The results showed that exercise plus fluoxetine decreased anxiety-like behavior, improved fear extinction, and increased BDNF changes in female rats. The effects of exercise alone were comparable with those of combination therapy except that combination therapy was more effective on OAT (open arm entry). The majority of results in female rats, except for those of prefrontal BDNF, 4th extinction, and OAT, were similar to those of male rats as shown in our previous study. According to our findings, exercise as a safe and cost-effective intervention can be considered as a complementary efficient option for PTSD treatment in both sexes. To achieve better treatment outcomes in PTSD patient, considering sex differences is recommended.
Collapse
Affiliation(s)
- Sakineh Shafia
- grid.411623.30000 0001 2227 0923Immunogenetics Research Center, Department of Physiology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farkhonde Nikkhah
- grid.411623.30000 0001 2227 0923Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kobra Akhoundzadeh
- grid.444830.f0000 0004 0384 871XFaculty of Nursing and Midwifery, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
3
|
Yakhkeshi R, Roshani F, Akhoundzadeh K, Shafia S. Effect of treadmill exercise on serum corticosterone, serum and hippocampal BDNF, hippocampal apoptosis and anxiety behavior in an ovariectomized rat model of post-traumatic stress disorder (PTSD). Physiol Behav 2022; 243:113629. [PMID: 34743976 DOI: 10.1016/j.physbeh.2021.113629] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
There is a sex difference in vulnerability to PTSD and in response to therapeutic interventions. Since relation between gonadal hormones and PTSD has been revealed, this study aimed to understand the severity of PTSD-induced impairments after ovarian hormone deficiency and the influence of exercise on PTSD accompanied by ovarian hormone deficiency. Female adult Wistar rats were subjected to ovariectomy, PTSD, or combination ovariectomy plus PTSD. Twenty days after ovariectomy, PTSD was induced by single prolonged stress (SPS) model. The exercise started 14 days after SPS and continued for 4 weeks. Thirty minutes moderate treadmill exercise was planned for 5 days per week. On day 65, after assessing rats using the elevated plus-maze (EPM) test, corticosterone, BDNF, and apoptotic markers were tested. p < 0.05 was considered as significant level. The results showed that ovariectomy worsened the effect of SPS on hippocampal BDNF and led to greater increase in serum corticosterone and hippocampal caspase 3 and BAX in SPS rats. Also, ovariectomy exacerbated anxiety-like behavior in SPS rats. Exercise improved the alterations of hippocampal BDNF, corticosterone, caspase 3, and BAX in SPS ovariectomized rats. However, exercise had no statistically significant effect on anxiety-like behavior in this group. According to the results, exercise is effective to attenuate SPS-induced impairments in molecular and cellular responses even when the condition becomes more complicated due to ovarian hormone deficiency. However, exercise alone cannot help to improve behavior impairments in PTSD combined with an ovarian hormone deficiency. Therefore, exercise could likely be considered as a complementary intervention to strengthen other treatments.
Collapse
Affiliation(s)
- Reza Yakhkeshi
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Roshani
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kobra Akhoundzadeh
- PhD of physiology, Faculty of Nursing and Midwifery, Qom University of Medical Sciences, Qom, Iran.
| | - Sakineh Shafia
- PhD of physiology, Department of Physiology, Molecular and Cell Biology Research Center and Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
4
|
Moraes AB, Giacomini ACVV, Genario R, Marcon L, Scolari N, Bueno BW, Demin KA, Amstislavskaya TG, Strekalova T, Soares MC, de Abreu MS, Kalueff AV. Pro-social and anxiolytic-like behavior following a single 24-h exposure to 17β-estradiol in adult male zebrafish. Neurosci Lett 2020; 747:135591. [PMID: 33359732 DOI: 10.1016/j.neulet.2020.135591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/30/2020] [Accepted: 12/18/2020] [Indexed: 01/06/2023]
Abstract
Estradiol (17β-estradiol, E2) is a crucial estrogen hormone that regulates sexual, cognitive, social and affective behaviors in various species. However, complex central nervous system (CNS) effects of E2, including its activity in males, remain poorly understood. The zebrafish (Danio rerio) is rapidly becoming a powerful novel model system in translational neuroscience research. Here, we evaluate the effects of a single 24-h exposure to 20 μg/L of E2 on behavioral and endocrine (cortisol) responses in adult male zebrafish. Overall, E2 exerted pro-social effect in the social preference test, reduced whole-body cortisol levels, elevated exploration in the novel tank test and increased the shoal size in the shoaling test, indicative of an anxiolytic-like profile of this hormone in male zebrafish. Supporting mounting human and rodent evidence on the role of E2 in behavioral regulation, the observed pro-social and anxiolytic-like effects of E2 in male zebrafish reinforce the use of this aquatic organism in studying steroid-mediated CNS mechanisms of complex affective and social behaviors.
Collapse
Affiliation(s)
- Andréia B Moraes
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Ana C V V Giacomini
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Leticia Marcon
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Naiara Scolari
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Barbara W Bueno
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medcial Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neuroscience Program, Sirius University, Sochi, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Zelman Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, Maastricht University, Netherlands; Laboratory of Psychiatric Neurobiology, Sechenov 1st Moscow State Medical University, Moscow, Russia; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Marta C Soares
- CIBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
5
|
Holleran KM, Rose JH, Fordahl SC, Benton KC, Rohr KE, Gasser PJ, Jones SR. Organic cation transporter 3 and the dopamine transporter differentially regulate catecholamine uptake in the basolateral amygdala and nucleus accumbens. Eur J Neurosci 2020; 52:4546-4562. [PMID: 32725894 DOI: 10.1111/ejn.14927] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/28/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
Regional alterations in kinetics of catecholamine uptake are due in part to variations in clearance mechanisms. The rate of clearance is a critical determinant of the strength of catecholamine signaling. Catecholamine transmission in the nucleus accumbens core (NAcc) and basolateral amygdala (BLA) is of particular interest due to involvement of these regions in cognition and motivation. Previous work has shown that catecholamine clearance in the NAcc is largely mediated by the dopamine transporter (DAT), but clearance in the BLA is less DAT-dependent. A growing body of literature suggests that organic cation transporter 3 (OCT3) also contributes to catecholamine clearance in both regions. Consistent with different clearance mechanisms between regions, catecholamine clearance is more rapid in the NAcc than in the BLA, though mechanisms underlying this have not been resolved. We compared the expression of DAT and OCT3 and their contributions to catecholamine clearance in the NAcc and BLA. We found DAT protein levels were ~ 4-fold higher in the NAcc than in the BLA, while OCT3 protein expression was similar between the two regions. Immunofluorescent labeling of the two transporters in brain sections confirmed these findings. Ex vivo voltammetry demonstrated that the magnitude of catecholamine release was greater, and the clearance rate was faster in the NAcc than in the BLA. Additionally, catecholamine clearance in the BLA was more sensitive to the OCT3 inhibitor corticosterone, while clearance in the NAcc was more cocaine sensitive. These distinctions in catecholamine clearance may underlie differential effects of catecholamines on behavioral outputs mediated by these regions.
Collapse
Affiliation(s)
- Katherine M Holleran
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jamie H Rose
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Steven C Fordahl
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kelsey C Benton
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Kayla E Rohr
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Paul J Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
6
|
Fallon IP, Tanner MK, Greenwood BN, Baratta MV. Sex differences in resilience: Experiential factors and their mechanisms. Eur J Neurosci 2020; 52:2530-2547. [PMID: 31800125 PMCID: PMC7269860 DOI: 10.1111/ejn.14639] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Adverse life events can lead to stable changes in brain structure and function and are considered primary sources of risk for post-traumatic stress disorder, depression and other neuropsychiatric disorders. However, most individuals do not develop these conditions following exposure to traumatic experiences, and research efforts have identified a number of experiential factors associated with an individual's ability to withstand, adapt to and facilitate recovery from adversity. While multiple animal models of stress resilience exist, so that the detailed biological mechanisms can be explored, studies have been disproportionately conducted in male subjects even though the prevalence and presentation of stress-linked disorders differ between sexes. This review focuses on (a) the mechanisms by which experiential factors (behavioral control over a stressor, exercise) reduce the impact of adverse events as studied in males; (b) whether other manipulations (ketamine) that buffer against stress-induced sequelae engage the same circuit features; and (c) whether these processes operate similarly in females. We argue that investigation of experiential factors that produce resistance/resilience rather than vulnerability to adversity will generate a unique set of biological mechanisms that potentially underlie sex differences in mood disorders.
Collapse
Affiliation(s)
- Isabella P. Fallon
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Margaret K. Tanner
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80217, USA
| | | | - Michael V. Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| |
Collapse
|
7
|
Rauf S, Soesatyo MH, Agustiningsih D, Partadiredja G. Moderate intensity intermittent exercise upregulates neurotrophic and neuroprotective genes expression and inhibits Purkinje cell loss in the cerebellum of ovariectomized rats. Behav Brain Res 2020; 382:112481. [PMID: 31954098 DOI: 10.1016/j.bbr.2020.112481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
Abstract
Decreases in estrogen levels due to menopause or ovariectomy may disrupt cerebellar motor functions. This study aimed at investigating the effects of Moderate Intensity Intermittent Exercise (MIEx) on the cerebellum of ovariectomized rats by analyzing neurotrophic and neuroprotective markers, as well as cerebellar motor functions. Thirty-two female Sprague Dawley rats were divided into four groups, i.e. Sham and ovariectomy (Ovx) of non-MIEx (NMIEx) groups, and Sham and Ovx with MIEx groups. MIEx was performed 5 days a week on treadmill for 6 weeks. Motor functions were assessed using rotarod, footprint, open field, and wire hanging tests. Real-time polymerase chain reaction was performed to determine messenger RNA (mRNA) expressions of Pgc-1α, BDNF, synaptophysin, Bcl-2, and Bax. Unbiased stereology was used to estimate the total number of cerebellar Purkinje cells. The Ovx MIEx group had higher Pgc-1α and Bcl-2 mRNA expressions, and number of Purkinje cells, but lower Bax mRNA expression than the Ovx NMIEx group. All motor functions of MIEx groups were better than the Sham and Ovx groups without MIEx. Motor functions on rotarod task, OFT, and FPT correlated significantly with the mRNAs expression of Bcl-2, Bax, BDNF, synaptophysin, Pgc-1α, and the number of cerebellar Purkinje cells in ovariectomized rats. MIEx improves cerebellar neurotrophic and neuroprotective markers, as well as motor functions of ovariectomized rats.
Collapse
Affiliation(s)
- Saidah Rauf
- Doctoral Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Masohi Nursing Study Program, Maluku Health Polytechnic, Maluku, Indonesia.
| | - Marsetyawan Hne Soesatyo
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Denny Agustiningsih
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ginus Partadiredja
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
8
|
Xu H, Li W, Zhang B, Huang S, Liu X. Long-term estrogen deprivation changes the response to antianxiety drugs in mice in the elevated plus maze test. Gynecol Endocrinol 2019; 35:1054-1058. [PMID: 31192745 DOI: 10.1080/09513590.2019.1617266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Estrogen deficiency increases the incidence of female anxiety disorders; however, whether estrogen deficiency alters responses to anxiolytic drugs is unknown. We studied whether long-term estrogen deprivation (ovariectomy, OVX) changes the behavior of mice to anxiolytic drugs (buspirone, diazepam, and venlafaxine), using the elevated plus maze (EPM) test. The percentages of EPM open-arm time and EPM open-arm entries of the OVX mice decreased significantly compared to control, and sham mice 2 months after OVX. The response to buspirone increased in the OVX mice at 1 week, while OVX decreased the response to diazepam at 2 months. Moreover, we found the efficacy of diazepam was significantly decreased, compared to buspirone and venlafaxine, at 2 months. These results suggest that OVX may change responses to different anxiolytic drugs. Not all anti-anxiety drugs appear to be suitable for anxiety caused by estrogen deficiency.
Collapse
Affiliation(s)
- Hongdan Xu
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Wei Li
- Medical college, Hubei University of Arts and Sciences, Xiangyang, China
| | - Bo Zhang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuming Huang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuewei Liu
- Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
9
|
Espinosa E, Curtis KS. Increased locomotor activity in estrogen-treated ovariectomized rats is associated with nucleus accumbens dopamine and is not reduced by dietary sodium deprivation. Integr Zool 2019; 13:783-794. [PMID: 29851282 DOI: 10.1111/1749-4877.12333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Estrogens are well known to increase locomotor activity in laboratory rodents; however, the underlying mechanism remains unclear. We used voluntary wheel running by female rats as an index of locomotor behavior to investigate this issue. We first determined whether the estrogen-induced increase in locomotion was susceptible to inhibition by a physiological challenge, and next whether it was associated with dopaminergic activation in the central reward area, nucleus accumbens. Ovariectomized rats were given estradiol or the oil vehicle and housed in cages with or without running wheels. All rats were given regular rodent chow for 1 week, a sodium-deficient diet for the next week, and then were returned to a regular diet for another week. At the end of the last week, all rats were killed, brains were extracted and dopamine levels in the nucleus accumbens were measured. As expected, estradiol treatment increased distance run. Surprisingly, dietary sodium deprivation further increased running, but this appeared to be related to experience with wheel running, rather than to sodium deprivation, per se. Dopamine was greater in the nucleus accumbens of estradiol-treated rats that ran compared to all other groups. Thus, the estrogen-induced increase in locomotion is a robust phenomenon that is not inhibited by a body sodium challenge and is associated with elevated levels of dopamine in reward pathways. These findings raise the possibility that the estrogen-induced increase in locomotor activity, which occurs during a hormonal milieu conducive to reproduction, may reflect mate-seeking behavior and, thereby, maximize reproductive success.
Collapse
Affiliation(s)
- Enith Espinosa
- Oklahoma State University - Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Kathleen S Curtis
- Oklahoma State University - Center for Health Sciences, Tulsa, Oklahoma, USA
| |
Collapse
|
10
|
Arnold MR, Thallon CL, Pitkofsky JA, Meerts SH. Sexual experience confers resilience to restraint stress in female rats. Horm Behav 2019; 107:61-66. [PMID: 30528557 DOI: 10.1016/j.yhbeh.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/13/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022]
Abstract
During paced mating, sexually experienced female rats spend more time with the male, return to the male more quickly after intromission, and exhibit shorter interintromission intervals as compared to sexually naïve rats. Factors that trigger the shift in paced mating behavior are unknown. The present study used the elevated plus maze to test whether anxiety-like behavior differs as a function of sexual experience. Ovariectomized, Long-Evans female rats were primed with estradiol benzoate plus progesterone (EB + P) and then either received four, twice weekly, paced mating treatments to gain sexual experience (Experienced) or remained sexually naïve (Naïve) but were exposed to an empty mating apparatus. In Experiment 1, anxiety-like behavior was compared between Experienced or Naïve female rats that were primed with either EB + P or oil. Significantly more time was spent in open arms under EB + P vs. oil, independent of sexual history. To test whether exposure to an acute stressor before elevated plus maze testing affected anxiety-like behavior, EB + P treated, Experienced or Naïve rats received paced mating (Experiment 2) or restraint (Experiment 3) immediately prior to the elevated plus maze task. Restraint, but not mating, led to less anxiety-like behaviors for Experienced rats compared to Naïve rats. Collectively, our data shows that one component of the shift in paced mating behavior that occurs with sexual experience appears to be altered stress responsiveness. We propose that mating is a beneficial stressor that, when repeated, increases the ability to cope with anxiety-producing events such as aversive components of mating or non-voluntary stressors.
Collapse
Affiliation(s)
- Moriah R Arnold
- Department of Psychology, Carleton College, Northfield, MN 55057, United States of America
| | - Claire L Thallon
- Department of Psychology, Carleton College, Northfield, MN 55057, United States of America
| | - Joshua A Pitkofsky
- Department of Psychology, Carleton College, Northfield, MN 55057, United States of America
| | - Sarah H Meerts
- Department of Psychology, Carleton College, Northfield, MN 55057, United States of America.
| |
Collapse
|
11
|
Robinson S, Christ CC, Cahill MM, Aldrich SJ, Taylor-Yeremeeva E. Voluntary exercise or systemic propranolol ameliorates stress-related maladaptive behaviors in female rats. Physiol Behav 2018; 198:120-133. [PMID: 30336229 DOI: 10.1016/j.physbeh.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 12/21/2022]
Abstract
Many people will experience at least one traumatic event in their lifetime, with up to 20% developing Post-Traumatic Stress Disorder (PTSD) or PTSD-like symptoms. In addition, the likelihood that females will develop PTSD after trauma is more than twice that of males. Despite its prevalence, current treatment strategies for trauma victims are limited and substantial portions of affected individuals remain resistant to treatment, suggesting that additional interventions are necessary. Using an animal model of traumatic stress, the present studies tested the hypothesis that either voluntary exercise and/or administration of the adrenergic beta-receptor antagonist propranolol, would ameliorate stress-related maladaptive behaviors. In Study 1 four groups of female rats were exposed to a sequence of stressors that included anesthesia, restraint, forced swim, exposure to predator scent and fear conditioning. Rats then underwent re-exposure sessions in which stress-related conditioned stimuli were presented. In addition to re-exposure, stressed rats were treated with propranolol (10 mg/kg) and/or given the opportunity to engage in voluntary wheel running intermittently for 4 weeks. Stress-associated maladaptive behavior was assessed using the elevated plus and open field mazes and fear memory tests. Cognitive ability was assessed using a novel odor recognition task. A main effect of exercise on behaviors related to anxiety and resilience was observed, but neither a main effect of propranolol nor a synergistic effect of propranolol and exercise were observed. Neither stress induction nor treatment influenced recognition memory. In contrast, in Study 2 in which the timing and dosage of propranolol (0.25-2.0 mg/kg), and the number and timing of re-exposure sessions were adjusted, propranolol produced both a reduction in anxiety-like behaviors as well as resilience to a subsequent stressor. These results are consistent with the notion that combining re-exposure therapy with additional interventions is beneficial for female trauma victims. Furthermore, the findings support the view that in pre-clinical models, voluntary exercise, which bolsters hippocampal function and propranolol, which affects amygdala-dependent memory reconsolidation and peripheral noradrenergic signaling, can ameliorate stress-related symptoms.
Collapse
Affiliation(s)
- Siobhan Robinson
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY 13323, United States.
| | - Christa C Christ
- Department of Psychology, University of South Carolina Upstate, Spartanburg, SC 29303, United States
| | - Margaret M Cahill
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY 13323, United States
| | - Sara J Aldrich
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY 13323, United States
| | - Elisa Taylor-Yeremeeva
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY 13323, United States
| |
Collapse
|
12
|
Khamphukdee C, Monthakantirat O, Chulikhit Y, Buttachon S, Lee M, Silva AMS, Sekeroglu N, Kijjoa A. Chemical Constituents and Antidepressant-Like Effects in Ovariectomized Mice of the Ethanol Extract of Alternanthera philoxeroides. Molecules 2018; 23:E2202. [PMID: 30200295 PMCID: PMC6225253 DOI: 10.3390/molecules23092202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/30/2023] Open
Abstract
The previously unreported flavone glycoside, demethyltorosaflavone B (2) and the E-propenoic acid substituted flavone, torosaflavone E (3a), were isolated together with nine previously reported metabolites, including indole-3-carbaldehyde, oleanonic acid, vanillic acid, p-hydroxybenzoic acid, altheranthin (1a), alternanthin B (1b), demethyltorosaflavone D (3b), luteolin 8-C-E-propenoic acid (4) and chrysoeriol 7-O-rhamnoside (5), from the ethanol extract of the aerial part of Althernanthera philoxeroides. The crude ethanol extract was evaluated for its in vitro estrogenic activity in MCF-7 breast cancer cell line. The crude ethanol extract was also investigated in vivo for its antidepressant-like effects on ovariectomized mice using tail suspension and forced swimming tests, while its effect on the locomotor activity was evaluated by a Y-maze test. The effect of the crude extract on the serum corticosterone level, size and volume of uterus of the ovariectomized mice were also investigated. The expression of the mouse cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF) and β-actin mRNAs in hippocampus and frontal cortex was also evaluated, using semiquantitative reverse transcription-polymerase chain reaction. The crude extract and the isolated compounds 1a, 1b, 3a, 3b and 5, were evaluated for their inhibitory effects on monoamine oxidases (MAOs)-A and -B.
Collapse
Affiliation(s)
- Charinya Khamphukdee
- Graduate School of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Suradet Buttachon
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Michael Lee
- Department of Chemistry, University of Leicester, University Road, Leicester LE 7 RH, UK.
| | - Artur M S Silva
- Departamento de Química & QOPNA, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Nazim Sekeroglu
- Department of Food Engineering, Faculty of Architecture and Engineering, Kilis 7 Aralık University, Kilis 79000, Turkey.
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
13
|
Gheorghe A, Qiu W, Galea LAM. Hormonal Regulation of Hippocampal Neurogenesis: Implications for Depression and Exercise. Curr Top Behav Neurosci 2018; 43:379-421. [PMID: 30414016 DOI: 10.1007/7854_2018_62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adult hippocampal neurogenesis exists in all mammalian species, including humans, and although there has been considerable research investigating the function and regulation of neurogenesis, there remain many open questions surrounding the complexity of this phenomenon. This stems partially from the fact that neurogenesis is a multistage process that involves proliferation, differentiation, migration, survival, and eventual integration of new cells into the existing hippocampal circuitry, each of which can be independently influenced. The function of adult neurogenesis in the hippocampus is related to stress regulation, behavioral efficacy of antidepressants, long-term spatial memory, forgetting, and pattern separation. Steroid hormones influence the regulation of hippocampal neurogenesis, stress regulation, and cognition and differently in males and females. In this chapter, we will briefly tap into the complex network of steroid hormone modulation of neurogenesis in the hippocampus with specific emphasis on stress, testosterone, and estrogen. We examine the possible role of neurogenesis in the etiology of depression and influencing treatment by examining the influence of both pharmacological (selective serotonin reuptake inhibitors, tricyclic antidepressants) treatments and non-pharmacological (exercise) remedies.
Collapse
Affiliation(s)
- Ana Gheorghe
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. .,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada. .,Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Morgan JA, Singhal G, Corrigan F, Jaehne EJ, Jawahar MC, Baune BT. The effects of aerobic exercise on depression-like, anxiety-like, and cognition-like behaviours over the healthy adult lifespan of C57BL/6 mice. Behav Brain Res 2018; 337:193-203. [DOI: 10.1016/j.bbr.2017.09.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/20/2022]
|
15
|
Morimoto M, Amano Y, Oka M, Harada A, Fujita H, Hikichi Y, Tozawa R, Yamaoka M, Hara T. Amelioration of sexual behavior and motor activity deficits in a castrated rodent model with a selective androgen receptor modulator SARM-2f. PLoS One 2017; 12:e0189480. [PMID: 29216311 PMCID: PMC5720794 DOI: 10.1371/journal.pone.0189480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/27/2017] [Indexed: 02/02/2023] Open
Abstract
Sarcopenia and cachexia present characteristic features of a decrease in skeletal muscle mass and strength, anorexia, and lack of motivation. Treatments for these diseases have not yet been established, although selective androgen receptor modulators (SARMs) are considered as therapeutic targets. We previously reported that a novel SARM compound, SARM-2f, exhibits anabolic effect on muscles, with less stimulatory effect on prostate weight compared with testosterone, in rat Hershberger assays and cancer cachexia models. In this study, we studied the mechanism of action for SARM-2f selectivity and also assessed whether the muscle increase by this compound might lead to improvement of muscle function and physical activity. First, we examined the tissue distribution of SARM-2f. Tissue concentration was 1.2-, 1.6-, and 1.9-fold as high as the plasma concentration in the levator ani muscle, brain, and prostate, respectively. This result showed that the tissue-selective pharmacological effect did not depend on SARM-2f concentration in the tissues. The ability of SARM-2f to influence androgen receptor (AR)-mediated transcriptional activation was examined by reporter assays using human normal prostate epithelial cells (PrEC) and skeletal muscle cells (SKMC). SARM-2f exerted higher activity against AR in SKMC than in PrEC. Mammalian two hybrid assays showed different co-factor recruitment patterns between SARM-2f and dihydrotestosterone. Next, we studied the effect of SARM-2f on motivation and physical functions such as sexual behavior and motor activities in castrated rat or mouse models. SARM-2f restored the sexual behavior that was lost by castration in male rats. SARM-2f also increased voluntary running distance and locomotor activities. These results suggest that tissue-specific AR regulation by SARM-2f, but not tissue distribution, might account for its tissue specific androgenic effect, and that the muscle mass increase by SARM-2f leads to improvement of physical function. Together, these findings suggest that SARM-2f might represent an effective treatment for sarcopenia and cachexia.
Collapse
Affiliation(s)
- Megumi Morimoto
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yuichiro Amano
- CVM Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Masahiro Oka
- CVM Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Ayako Harada
- CVM Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Hisashi Fujita
- DMPK Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yukiko Hikichi
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Ryuichi Tozawa
- CVM Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Masuo Yamaoka
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Takahito Hara
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| |
Collapse
|
16
|
Effects of high-intensity interval versus mild-intensity endurance training on metabolic phenotype and corticosterone response in rats fed a high-fat or control diet. PLoS One 2017; 12:e0181684. [PMID: 28727846 PMCID: PMC5519214 DOI: 10.1371/journal.pone.0181684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to compare the effects of high-intensity interval training (HI) to mild-intensity endurance training (ME), combined with a high-fat diet (HFD) or control diet (CD) on metabolic phenotype and corticosterone levels in rats. Fifty-three rats were randomized to 6 groups according to diet and training regimen as follows: CD and sedentary (CS, n = 11), CD and ME (CME, n = 8), CD and HI (CHI, n = 8), HFD and sedentary (HS, n = 10), HFD and ME (HME, n = 8), and HFD and HI (HHI, n = 8). All exercise groups were trained for 10 weeks and had matched running distances. Dietary intake, body composition, blood metabolites, and corticosterone levels were measured. Histological lipid droplets were observed in the livers. The HFD led to hyperglycemia, hyperlipidemia and higher body fat (all, P < 0.01, η2 > 0.06), as well as higher corticosterone levels (P < 0.01, η2 = 0.09) compared with the CD groups. Exercise training improved fat weight, glucose, and lipid profiles, and reduced corticosterone levels (P < 0.01, η2 = 0.123). Furthermore, body and fat weight, serum glucose and triglycerides, lipid content in the liver, and corticosterone levels (P < 0.05) were lower with HI training compared to ME training. Reductions in HFD-induced body weight gain, blood glucose and lipid profiles, and corticosterone levels, as well as improvements in QUICKI were better with HHI compared to HME. Correlation analyses revealed that corticosterone levels were significantly associated with phenotype variables (P < 0.01). Corticosterone level was inversely correlated with QUICKI (r = −0.38, P < 0.01). Altogether, these results indicate that HFD may elicit an exacerbated basal serum corticosterone level and thus producing a metabolic imbalance. Compared with ME training, HI training contributes to greater improvements in metabolic and corticosterone responses, leading to a greater reduction in susceptibility to HFD-induced disorders.
Collapse
|