1
|
Hasnain N, Arif TB, Shafaut R, Zakaria F, Fatima SZ, Haque IU. Association between sex and Huntington's disease: an updated review on symptomatology and prognosis of neurodegenerative disorders. Wien Med Wochenschr 2024; 174:87-94. [PMID: 35723821 DOI: 10.1007/s10354-022-00941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Huntington's disease is a rare autosomal dominant disorder presenting with chorea, rigidity, hypo-/akinesia, cognitive decline, and psychiatric disturbances. Numerous risk factors have been defined in the onset of this disease. However, the number of CAG repeats in the genes are the most crucial factor rendering patients susceptible to the disease. Studies have shown significant differences in onset and disease presentation among the sexes, which prompts analysis of the impact of different sexes on disease etiology and progression. This article therefore discusses the evidence-based role of sex in aspects of symptomatology, pathogenesis, biomarkers, progression, and prognosis of Huntington's disease, with a secondary review of sex-linked differences in Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Nimra Hasnain
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
- Department of Medicine, Dr. Ruth K. M. Pfao Civil Hospital, Karachi, Pakistan
| | - Taha Bin Arif
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan.
- Department of Medicine, Dr. Ruth K. M. Pfao Civil Hospital, Karachi, Pakistan.
| | - Roha Shafaut
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Faiza Zakaria
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Ibtehaj Ul Haque
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
- Department of Medicine, Dr. Ruth K. M. Pfao Civil Hospital, Karachi, Pakistan
| |
Collapse
|
2
|
Li SH, Colson TLL, Chen J, Abd-Elrahman KS, Ferguson SSG. Comparison of Huntington's disease phenotype progression in male and female heterozygous FDNQ175 mice. Mol Brain 2023; 16:67. [PMID: 37726802 PMCID: PMC10508000 DOI: 10.1186/s13041-023-01054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023] Open
Abstract
Huntington's Disease (HD) is an inherited autosomal dominant neurodegenerative disorder that leads to progressive motor and cognitive impairment due to the expansion of a polyglutamine (CAG) repeat in the N-terminal region of the huntingtin (Htt) protein. The creation of HD mouse models represents a critical step in the research for HD treatment. Among the currently available HD mouse models, the zQ175 knock-in mouse line is the first to display robust disease phenotype on a heterozygous background. The newer FDNQ175 mouse model is derived from the zQ175 mouse line and presents a more aggressive phenotype. Moreover, increasing evidence has implicated sex as a contributing factor in the progression of HD symptoms. Here, we compared the progression of HD phenotypes in male and female heterozygous FDNQ175 mice. We found that both male and female heterozygous mice showed deficits in forelimb grip strength and cognition as early as 6 months of age. However, female FDNQ175 mice were less vulnerable to HD-associated decline in limb coordination and movement. Neither male nor female FDNQ175 mice exhibited reduced locomotor activity in the open field or exhibit consistent differences in anxiety at 6-12 months of age. Both male and female FDNQ175 mice exhibited increased numbers of huntingtin aggregates with age and 8-month-old female FDNQ175 mice had significantly more aggregates than their male counterparts. Taken together, our results provide further evidence that sex can influence the progression of HD phenotype in preclinical animal models and must be taken into consideration for future HD research.
Collapse
Affiliation(s)
- Si Han Li
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Tash-Lynn L Colson
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jingwei Chen
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Department of Neuroscience, Faculty of Health Sciences, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
3
|
Li SH, Colson TLL, Abd-Elrahman KS, Ferguson SSG. Metabotropic Glutamate Receptor 5 Antagonism Reduces Pathology and Differentially Improves Symptoms in Male and Female Heterozygous zQ175 Huntington’s Mice. Front Mol Neurosci 2022; 15:801757. [PMID: 35185467 PMCID: PMC8847794 DOI: 10.3389/fnmol.2022.801757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease (HD) is an inherited autosomal dominant neurodegenerative disorder that leads to progressive motor and cognitive impairment. There are currently no available disease modifying treatments for HD patients. We have previously shown that pharmacological blockade of metabotropic glutamate receptor 5 (mGluR5) signaling rescues motor deficits, improves cognitive impairments and mitigates HD neuropathology in male zQ175 HD mice. Mounting evidence indicates that sex may influence HD progression and we have recently reported a sex-specific pathological mGluR5 signaling in Alzheimer’s disease (AD) mice. Here, we compared the outcomes of treatment with the mGluR5 negative allosteric modulator CTEP (2-chloro-4-[2-[2,5-dimethyl-1-[4-(trifluoromethoxy)phenyl]imidazol-4-yl]ethynyl]pyridine) in both male and female symptomatic zQ175 mice. We found that female zQ175 mice required a longer treatment duration with CTEP than male mice to show improvement in their rotarod performance. Unlike males, chronic CTEP treatment did not improve the grip strength nor reverse the cognitive decline of female zQ175 mice. However, CTEP reduced the number of huntingtin aggregates, improved neuronal survival and decreased microglia activation in the striatum of both male and female zQ175 mice. Together, our results indicate that mGluR5 antagonism can reduce HD neuropathology in both male and female zQ175 HD mice, but sex has a clear impact on the efficacy of the treatment and must be taken into consideration for future HD drug development.
Collapse
Affiliation(s)
- Si Han Li
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Tash-Lynn L. Colson
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Khaled S. Abd-Elrahman
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Stephen S. G. Ferguson
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Stephen S. G. Ferguson,
| |
Collapse
|
4
|
Deng L, Viray K, Singh S, Cravatt B, Stella N. ABHD6 Controls Amphetamine-Stimulated Hyperlocomotion: Involvement of CB 1 Receptors. Cannabis Cannabinoid Res 2021; 7:188-198. [PMID: 34705543 PMCID: PMC9070749 DOI: 10.1089/can.2021.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction: Activation of cannabinoid 1 receptors (CB1Rs) by endocannabinoids (eCBs) is controlled by both eCB production and eCB inactivation. Accordingly, inhibition of eCB hydrolyzing enzymes, monoacylglycerol lipase (MAGL) and α/β-hydrolase domain containing 6 (ABHD6), enhances eCB accumulation and CB1R activation. It is known that inhibition of MAGL regulates select CB1R-dependent behaviors in mice, including locomotor behaviors and their modulation by psychostimulants, but much less is known about the effect of inhibiting ABHD6 activity on such behaviors. Methods: We report a new mouse line that carries a genetic deletion of Abhd6 and evaluated its effect on spontaneous locomotion measured in a home cage monitoring system, motor coordination measured on a Rotarod, and amphetamine-stimulated hyperlocomotion and amphetamine sensitization (AS) measured in an open-field chamber. Results: ABHD6 knockout (KO) mice reached adulthood without exhibiting overt behavioral impairment, and we measured only mild reduction in spontaneous locomotion and motor coordination in adult ABHD6 KO mice compared to wild-type (WT) mice. Significantly, amphetamine-stimulated hyperlocomotion was enhanced by twofold in ABHD6 KO mice compared to WT mice and yet ABHD6 KO mice expressed AS to the same extent as WT mice. A twofold increase in amphetamine-stimulated hyperlocomotion was also measured in ABHD6 heterozygote mice and in WT mice treated with the ABHD6 inhibitor KT-182. It is known that amphetamine-stimulated hyperlocomotion is not affected by the CB1R antagonist, SR141617, and we discovered that the enhanced amphetamine-stimulated hyperlocomotion resulting from ABHD6 inhibition is blocked by SR141617. Conclusions: Our study suggests that ABHD6 controls amphetamine-stimulated hyperlocomotion by a mechanistic switch to a CB1R-dependent mechanism.
Collapse
Affiliation(s)
- Liting Deng
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Katie Viray
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Simar Singh
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ben Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
5
|
Grieco F, Bernstein BJ, Biemans B, Bikovski L, Burnett CJ, Cushman JD, van Dam EA, Fry SA, Richmond-Hacham B, Homberg JR, Kas MJH, Kessels HW, Koopmans B, Krashes MJ, Krishnan V, Logan S, Loos M, McCann KE, Parduzi Q, Pick CG, Prevot TD, Riedel G, Robinson L, Sadighi M, Smit AB, Sonntag W, Roelofs RF, Tegelenbosch RAJ, Noldus LPJJ. Measuring Behavior in the Home Cage: Study Design, Applications, Challenges, and Perspectives. Front Behav Neurosci 2021; 15:735387. [PMID: 34630052 PMCID: PMC8498589 DOI: 10.3389/fnbeh.2021.735387] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The reproducibility crisis (or replication crisis) in biomedical research is a particularly existential and under-addressed issue in the field of behavioral neuroscience, where, in spite of efforts to standardize testing and assay protocols, several known and unknown sources of confounding environmental factors add to variance. Human interference is a major contributor to variability both within and across laboratories, as well as novelty-induced anxiety. Attempts to reduce human interference and to measure more "natural" behaviors in subjects has led to the development of automated home-cage monitoring systems. These systems enable prolonged and longitudinal recordings, and provide large continuous measures of spontaneous behavior that can be analyzed across multiple time scales. In this review, a diverse team of neuroscientists and product developers share their experiences using such an automated monitoring system that combines Noldus PhenoTyper® home-cages and the video-based tracking software, EthoVision® XT, to extract digital biomarkers of motor, emotional, social and cognitive behavior. After presenting our working definition of a "home-cage", we compare home-cage testing with more conventional out-of-cage tests (e.g., the open field) and outline the various advantages of the former, including opportunities for within-subject analyses and assessments of circadian and ultradian activity. Next, we address technical issues pertaining to the acquisition of behavioral data, such as the fine-tuning of the tracking software and the potential for integration with biotelemetry and optogenetics. Finally, we provide guidance on which behavioral measures to emphasize, how to filter, segment, and analyze behavior, and how to use analysis scripts. We summarize how the PhenoTyper has applications to study neuropharmacology as well as animal models of neurodegenerative and neuropsychiatric illness. Looking forward, we examine current challenges and the impact of new developments. Examples include the automated recognition of specific behaviors, unambiguous tracking of individuals in a social context, the development of more animal-centered measures of behavior and ways of dealing with large datasets. Together, we advocate that by embracing standardized home-cage monitoring platforms like the PhenoTyper, we are poised to directly assess issues pertaining to reproducibility, and more importantly, measure features of rodent behavior under more ethologically relevant scenarios.
Collapse
Affiliation(s)
| | - Briana J Bernstein
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | | | - Lior Bikovski
- Myers Neuro-Behavioral Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- School of Behavioral Sciences, Netanya Academic College, Netanya, Israel
| | - C Joseph Burnett
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jesse D Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | | | - Sydney A Fry
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Bar Richmond-Hacham
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | | | - Michael J Krashes
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Vaishnav Krishnan
- Laboratory of Epilepsy and Emotional Behavior, Baylor Comprehensive Epilepsy Center, Departments of Neurology, Neuroscience, and Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Sreemathi Logan
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Maarten Loos
- Sylics (Synaptologics BV), Amsterdam, Netherlands
| | - Katharine E McCann
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | | | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv, Israel
| | - Thomas D Prevot
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lianne Robinson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Mina Sadighi
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - William Sonntag
- Department of Biochemistry & Molecular Biology, Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | | | - Lucas P J J Noldus
- Noldus Information Technology BV, Wageningen, Netherlands
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
6
|
Cao JK, Viray K, Shin M, Hsu KL, Mackie K, Westenbroek R, Stella N. ABHD6 Inhibition Rescues a Sex-Dependent Deficit in Motor Coordination in The HdhQ200/200 Mouse Model of Huntington's Disease. JOURNAL OF NEUROLOGY AND NEUROLOGICAL DISORDERS 2021; 7:106. [PMID: 37720694 PMCID: PMC10503675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Huntington's Disease is associated with motor behavior deficits that are lessened by few therapeutic options. This preliminary study tested if pharmacological inhibition of α/β-hydrolase domain containing 6 (ABHD6), a multifunctional enzyme expressed in the striatum, rescues behavioral deficits in HdhQ200/200 mice. Previous work has shown that this model exhibits a reduction in spontaneous locomotion and motor coordination at 8 and 10 months of age, with a more severe phenotype in female mice. Semi-quantitative immunohistochemistry analysis indicated no change in striatal ABHD6 expression at 8 months of age, but a 40% reduction by 10 months in female HdhQ200/200 mice compared to female wild-type (WT) littermates. At 8 months of age, acute ABHD6 inhibition rescued motor coordination deficits in female HdhQ200/200 mice without affecting WT performance. ABHD6 inhibition did not impact spontaneous locomotion, grip strength, or overall weight in either group, showing that effects were specific to motor coordination. At 10 months of age, semi-chronic ABHD6 inhibition by osmotic pump delivery also rescued motor coordination deficits in female HdhQ200/200 mice without affecting female WT littermates. Our preliminary study suggests that ABHD6 inhibition improves motor performance in female HdhQ200/200 mice.
Collapse
Affiliation(s)
- JK Cao
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - K Viray
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - M Shin
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - K-L Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - K Mackie
- Department of Psychological and Brain Sciences, Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405, USA
| | - R Westenbroek
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - N Stella
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
7
|
de Oliveira Filho JWG, Andrade TDJADS, de Lima RMT, Dos Reis AC, Silva DHS, Santos JVDO, de Menezes AAPM, da Mata AMO, Dias ACS, de Alencar MVOB, Paz MFCJ, Moreno LCGEAI, Islam MT, Mubarak MS, Sousa JMDCE, Melo Cavalcante AADC. Citrinin against breast cancer: A cytogenotoxicological study. Phytother Res 2020; 35:504-516. [PMID: 32869401 DOI: 10.1002/ptr.6830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/30/2020] [Accepted: 07/11/2020] [Indexed: 11/10/2022]
Abstract
Breast cancer is one of the most lethal types of cancer and a leading cause of mortality among Women worldwide. Citrinin (CIT), a polyketide extracted from the fungus Penicillium citrinum, exhibits a wide range of biological activities such as antibacterial, antifungal, and cytotoxic effects. The aim of the current study was to evaluate the antitumoral effects of CIT against 7,12-dimethylbenzanthracene (DMBA)-induced mammary carcinoma in Swiss mice For this, CIT, DMBA and the standard cyclophosphamide (CPA) induced behavioral changes in experimental animals, and these changes were screened by using the rota rod and open field tests. Additionally, hematological, biochemical, immuno-histochemical, and histopathological analyses were carried out. Results suggest that CIT did not alter behavioral, hematological, and biochemical parameters in mice. DMBA induced invasive mammary carcinoma and showed genotoxic effects in the breasts, bone marrow, lymphocytes, and hepatic cells. It also caused mutagenic effects in the formation of micronuclei, bridges, shoots, and binucleate cells in bone marrow and liver. CIT and CPA genotoxic effects were observed after 3 weeks of therapy, where CIT exhibited a repair capacity and induced significant apoptotic damage in mouse lymphocytes. In conclusion, CIT showed antitumoral effects in Swiss mice, possibly through induction of apoptosis.
Collapse
Affiliation(s)
- José Williams Gomes de Oliveira Filho
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí - UFPI, Teresina, Piauí, Brazil.,Laboratory of Research in Toxicological Genetics - LAPGENIC, Federal University of Piauí, Teresina, Piauí, Brazil.,Federal Institute of Piauí (IFPI), Teresina, Piauí, Brazil
| | | | - Rosália Maria Tôrres de Lima
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí - UFPI, Teresina, Piauí, Brazil
| | - Antonielly Campinho Dos Reis
- Laboratory of Research in Toxicological Genetics - LAPGENIC, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Dulce Helena Siqueira Silva
- Nucleus of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | | | - Ana Maria Oliveira da Mata
- Laboratory of Research in Toxicological Genetics - LAPGENIC, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Ana Carolina Soares Dias
- Laboratory of Genetics and Molecular Biology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | | | | | - Muhammad Torequl Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | | - João Marcelo de Castro E Sousa
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí - UFPI, Teresina, Piauí, Brazil.,Laboratory of Pharmaceutical Nanosystems - NANOSFAR, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Ana Amélia de Carvalho Melo Cavalcante
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí - UFPI, Teresina, Piauí, Brazil.,Laboratory of Pharmaceutical Nanosystems - NANOSFAR, Federal University of Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
8
|
Sex-dependent impaired locomotion and motor coordination in the HdhQ200/200 mouse model of Huntington's Disease. Neurobiol Dis 2019; 132:104607. [PMID: 31499139 DOI: 10.1016/j.nbd.2019.104607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/02/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
Huntington's Disease (HD) is a fatal neurodegenerative disease characterized by severe loss of medium spiny neuron (MSN) function and striatal-dependent behaviors. We report that female HdhQ200/200 mice display an earlier onset and more robust deterioration in spontaneous locomotion and motor coordination measured at 8 months of age compared to male HdhQ200/200 mice. Remarkably, HdhQ200/200 mice of both sexes exhibit comparable impaired spontaneous locomotion and motor coordination at 10 months of age and reach moribund stage by 12 months of age, demonstrating reduced life span in this model system. Histopathological analysis revealed enhanced mutant huntingtin protein aggregation in male HdhQ200/200 striatal tissue at 8 months of age compared to female HdhQ200/200. Functional analysis of calcium dynamics in MSNs of female HdhQ200/200 mice using GCaMP6m imaging revealed elevated responses to excitatory cortical-striatal stimulation suggesting increased MSN excitability. Although there was no down-regulation of the expression of common HD biomarkers (DARPP-32, enkephalin and CB1R), we measured a sex-dependent reduction of the astrocytic glutamate transporter, GLT-1, in female HdhQ200/200 mice that was not detected in male HdhQ200/200 mice when compared to respective wild-type littermates. Our study outlines a sex-dependent rapid deterioration of striatal-dependent behaviors occurring in the HdhQ200/200 mouse line that does not involve alterations in the expression of common HD biomarkers and yet includes impaired MSN function.
Collapse
|
9
|
Valadão PAC, de Aragão BC, Andrade JN, Magalhães-Gomes MPS, Foureaux G, Joviano-Santos JV, Nogueira JC, Machado TCG, de Jesus ICG, Nogueira JM, de Paula RS, Peixoto L, Ribeiro FM, Tapia JC, Jorge ÉC, Guatimosim S, Guatimosim C. Abnormalities in the Motor Unit of a Fast-Twitch Lower Limb Skeletal Muscle in Huntington's Disease. ASN Neuro 2019; 11:1759091419886212. [PMID: 31818120 PMCID: PMC6904785 DOI: 10.1177/1759091419886212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
Huntington’s disease (HD) is a disorder characterized by chronic involuntary movements, dementia, and psychiatric symptoms. It is caused by a mutation in the gene that encodes for huntingtin protein (HTT), leading to the formation of mutant proteins expressed in various tissues. Although brain pathology has become the hallmark for HD, recent studies suggest that damage of peripheral structures also contributes to HD progression. We previously identified severe alterations in the motor units that innervate cervical muscles in 12-month-old BACHD (Bacterial Artificial Chromosome Huntington’s Disease) mice, a well-established mouse model for HD. Here, we studied lumbar motoneurons and their projections onto hind limb fast-twitch skeletal muscles (tibialis anterior), which control balance and gait in HD patients. We found that lumbar motoneurons were altered in the HD mouse model; the number and size of lumbar motoneurons were reduced in BACHD. Structural alterations were also present in the sciatic nerve and neuromuscular junctions. Acetylcholine receptors were organized in several small patches (acetylcholine receptor fragmentation), many of which were partially innervated. In BACHD mice, we observed atrophy of tibialis anterior muscles, decreased expression of glycolytic fast Type IIB fibers, and at the ultrastructural level, alterations of sarcomeres and mitochondria. Corroborating all these findings, BACHD animals performed worse on motor behavior tests. Our results provide additional evidences that nerve–muscle communication is impaired in HD and that motoneurons from distinct spinal cord locations are similarly affected in the disease.
Collapse
Affiliation(s)
| | | | - Jéssica Neves Andrade
- Departamento de Morfologia, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
| | | | - Giselle Foureaux
- Departamento de Morfologia, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
| | | | - José Carlos Nogueira
- Departamento de Morfologia, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Rayan Silva de Paula
- Departamento de Morfologia, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
| | - Luisa Peixoto
- Departamento de Morfologia, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
| | - Fabíola Mara Ribeiro
- Departamento de Bioquímica e Imunologia, Universidade
Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - ÉriKa Cristina Jorge
- Departamento de Morfologia, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
| | - Silvia Guatimosim
- Departamento de Fisiologia e Biofísica, Universidade
Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristina Guatimosim
- Departamento de Morfologia, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|