1
|
Ghimire S, Kreilaus F, Rosa Porto R, Anderson LL, Yerbury JJ, Arnold JC, Karl T. Behavioural effects of oral cannabidiol (CBD) treatment in the superoxide dismutase 1 G93 A (SOD1 G93 A) mouse model of amyotrophic lateral sclerosis. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06785-z. [PMID: 40229540 DOI: 10.1007/s00213-025-06785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting voluntary muscle movement as well as cognitive and other behavioural domains at later disease stages. No effective treatment for ALS is currently available. Elevated neuroinflammation, oxidative stress and alterations to the endocannabinoid system are evident in ALS. The phytocannabinoid cannabidiol (CBD) has anti-inflammatory and anti-oxidant properties. Thus, we evaluated the remedial effects of chronic oral cannabidiol (CBD) treatment on ALS-relevant behavioural domains in the copper-zinc superoxide dismutase 1 (SOD1) mouse model of ALS that carries a G93A mutation (SOD1G93A). METHODS Male and female SOD1G93A and wild type-like (WT) littermates were fed either a control (CHOW) or CBD-enriched chow diet (equivalent to a dose of 36 mg/kg per day) beginning from 10 weeks of age. Bodyweight and motor performance were recorded weekly from 11 to 19 weeks and open field behaviours at 12 and 18 weeks. Mice were also tested for prepulse inhibition (PPI), social behaviours, as well as fear-associated memory. RESULTS CBD treatment ameliorated the bodyweight loss in female SOD1G93A mice, tended to reinstate sociability in SOD1G93A males, strengthened social recognition memory in SOD1G93A females, and improved the PPI response in younger SOD1G93A females at higher prepulse intensities. CBD had no effect on motor impairments but instead reversed the anxiolytic-like phenotype of 12-week-old male SOD1G93A mice and decreased the acoustic startle response and strengthened cue freezing in male mice. CONCLUSION Thus, the current remedial oral dose of CBD delayed disease progression (inferred by bodyweight) in both male and female mice and improve specific cognitive deficits of SOD1G93A mice in a sex specific manner without altering the motor phenotype.
Collapse
Affiliation(s)
- Sandip Ghimire
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Fabian Kreilaus
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Rossana Rosa Porto
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Lyndsey L Anderson
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.
| |
Collapse
|
2
|
Wang X, Zhou J, Ding S, Zhang J, Liu Y, Liu Y, Zhao J, Shi H, Liu Q, Song M, Lv L, Li W, Yang Y. Neuregulin-1 immunoreactivity in peripheral plasma is associated with rs6982890 polymorphism-mediated psychotic symptoms in schizophrenia. Brain Res Bull 2024; 217:111075. [PMID: 39255944 DOI: 10.1016/j.brainresbull.2024.111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVES Neuregulin 1 (NRG1) is a risk gene for schizophrenia and involved in neurodevelopment and synaptic plasticity. Polymorphisms in NRG1 may affect psychotic symptoms in schizophrenia. This study investigated the effects of the single nucleotide polymorphism (SNP) rs6982890 on peripheral plasma NRG1 immunoreactivity, clinical symptoms and cognitive functions in schizophrenia patients. MATERIAL AND METHODS We recruited subjects from the Han population of northern China from 2010 to 2022. We first genotyped and analyzed 6 NRG1 SNPS in 1304 patients with schizophrenia and 871 healthy controls. Then, 91 patients with schizophrenia and 40 healthy controls were selected to detect the peripheral plasma NRG1 immunoreactivity by ELISA. Among them, 84 patients were divided into rs6982890 genotypes to analyze the correlation between NRG1 immunoreactivity and clinical symptoms. RESULTS Rs6982890 allelic frequencies were statistically significant between patients and controls. Baseline peripheral plasma NRG1 immunoreactivity in patients were significantly lower than controls. NRG1 immunoreactivity in patients were significantly increased after 8 weeks of antipsychotic treatment and significantly correlated with clinical symptoms and cognitive function. Genotyping of patients with SNP rs6982890 indicated NRG1 immunoreactivity in CC genotype increased significantly after treatment, while CT genotype had no significant change. Baseline NRG1 immunoreactivity with the CT genotype were significantly higher than CC genotype. CONCLUSIONS NRG1 SNP rs6982890 is significantly associated with schizophrenia in the Han population of northern China, and it may affect the effect of antipsychotic drug treatment by regulating the peripheral plasma NRG1 immunoreactivity.
Collapse
Affiliation(s)
- Xiujuan Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, China
| | - Jiahui Zhou
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, China
| | - Shuang Ding
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China
| | - Jianhong Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China
| | - Yiliang Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China
| | - Ya Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, China
| | - Jingyuan Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China
| | - Han Shi
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China
| | - Qing Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, China
| | - Meng Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, China
| | - Luxian Lv
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, China
| | - Wenqiang Li
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, China.
| | - Yongfeng Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, China.
| |
Collapse
|
3
|
Wang Y, Zhang Y, Wang Y, Chen H, Pan L, Liao X, Wang S. A Novel Form of Neuregulin 1 Type III Caused by N-Terminal Processing. Biomolecules 2023; 13:1756. [PMID: 38136627 PMCID: PMC10741733 DOI: 10.3390/biom13121756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Nrg1 (Neuregulin 1) type III, a susceptible gene of schizophrenia, exhibits a critical role in the central nervous system and is essential at each stage of Schwann's cell development. Nrg1 type III comprises double-pass transmembrane domains, with the N-terminal and C-terminal localizing inside the cells. The N-terminal transmembrane helix partially overlaps with the cysteine-rich domain (CRD). In this study, Nrg1 type III constructs with different tags were transformed into cultured cells to verify whether CRD destroyed the transmembrane helix formation. We took advantage of immunofluorescent and immunoprecipitation assays on whole cells and analyzed the N-terminal distribution. Astonishingly, we found that a novel form of Nrg1 type III, about 10% of Nrg1 type III, omitted the N-terminal transmembrane helix, with the N-terminal positioning outside the membrane. The results indicated that the novel single-pass transmembrane status was a minor form of Nrg1 type III caused by N-terminal processing, while the major form was a double-pass transmembrane status.
Collapse
Affiliation(s)
- Yukai Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yu Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yingxing Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Hong Chen
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Liangjing Pan
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xufeng Liao
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Shunqi Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
4
|
Vincent B, Maitra S. BACE1-dependent metabolism of neuregulin 1: Bridging the gap in explaining the occurrence of schizophrenia-like symptoms in Alzheimer's disease with psychosis? Ageing Res Rev 2023; 89:101988. [PMID: 37331479 DOI: 10.1016/j.arr.2023.101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Alzheimer's disease is a neurodegenerative disease mainly characterized by cortico-neuronal atrophy, impaired memory and other cognitive declines. On the other hand, schizophrenia is a neuro-developmental disorder with an overtly active central nervous system pruning system resulting into abrupt connections with common symptoms including disorganised thoughts, hallucination and delusion. Nevertheless, the fronto-temporal anomaly presents itself as a common denominator for the two pathologies. There is even a strong presumption of increased risk of developing co-morbid dementia for schizophrenic individuals and psychosis for Alzheimer's disease patients, overall leading to a further deteriorated quality of life. However, convincing proofs of how these two disorders, although very distant from each other when considering their aetiology, develop coexisting symptoms is yet to be resolved. At the molecular level, the two primarily neuronal proteins β-amyloid precursor protein and neuregulin 1 have been considered in this relevant context, although the conclusions are for the moment only hypotheses. In order to propose a model for explaining the psychotic schizophrenia-like symptoms that sometimes accompany AD-associated dementia, this review projects out on the similar sensitivity shared by these two proteins regarding their metabolism by the β-site APP cleaving enzyme 1.
Collapse
Affiliation(s)
- Bruno Vincent
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560 Valbonne, France.
| | - Subhamita Maitra
- Department of Molecular Biology, Umeå University, Umeå 90736, Sweden
| |
Collapse
|
5
|
Cloutier MÈ, Srivastava LK, Cermakian N. Exposure to Circadian Disruption During Adolescence Interacts With a Genetic Risk Factor to Modify Schizophrenia-relevant Behaviors in a Sex-dependent Manner. J Biol Rhythms 2022; 37:655-672. [PMID: 36168739 PMCID: PMC9749568 DOI: 10.1177/07487304221125363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DTNBP1 is a gene associated with schizophrenia. Postmortem studies found a reduced expression of DTNBP1 in regions associated with schizophrenia in patients' brains. Sandy (Sdy) mice have a loss-of-function mutation in Dtnbp1 gene, resulting in behavioral deficits and brain changes similar to those seen in patients with schizophrenia. We previously showed that exposing adult Sdy mice to circadian disruption led to an exacerbation of schizophrenia-relevant behaviors. Here we asked whether the interaction between this genetic risk factor and circadian disruption occurs during adolescence, a period when environmental insults can promote schizophrenia symptoms, and whether sex affects this interaction. Starting at postnatal day 21, wild-type (WT) and Sdy males and females were housed for 4 weeks either in a 12 h light:12 h dark (LD 12:12) cycle or under chronic jetlag (CJL). Then, after 2 weeks in LD 12:12, behavioral assessments were conducted, including elevated plus maze (EPM), novel object recognition (NOR), social interaction, and prepulse inhibition (PPI) of acoustic startle. NOR and social novelty tests showed that, surprisingly, CJL during adolescence had opposite effects on WT and Sdy males, that is, behavioral deficits in WT males while rescuing preexisting deficits in Sdy mice. CJL led to decreased sociability in WT and Sdy mice while decreasing PPI only in females. Sdy mice showed decreased anxiety-like behavior compared with wild-type (WT), which was further accentuated by CJL in males. Thus, circadian disruption during adolescence, on its own or in association with Dtnbp1 mutation, can influence cognition, sociability, sensorimotor gating, and anxiety-like behaviors in a sex-dependent manner.
Collapse
Affiliation(s)
- Marie-Ève Cloutier
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada,Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Lalit K. Srivastava
- Douglas Mental Health University Institute, Montreal, QC, Canada,Department of Psychiatry, McGill University, Montreal, QC, Canada,Lalit K. Srivastava, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada; e-mail:
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montreal, QC, Canada,Department of Psychiatry, McGill University, Montreal, QC, Canada,Nicolas Cermakian, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada; e-mail:
| |
Collapse
|
6
|
Elevated peripheral Neuregulin-1 protein levels in non-medicated focal epilepsy patients. J Clin Neurosci 2022; 102:1-4. [DOI: 10.1016/j.jocn.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022]
|
7
|
Abstract
Most psychiatric illnesses, such as schizophrenia, show profound sex differences in incidence, clinical presentation, course, and outcome. Fortunately, more recently the literature on sex differences and (to a lesser extent) effects of sex steroid hormones is expanding, and in this review we have focused on such studies in psychosis, both from a clinical/epidemiological and preclinical/animal model perspective. We begin by briefly describing the clinical evidence for sex differences in schizophrenia epidemiology, symptomatology, and pathophysiology. We then detail sex differences and sex hormone effects in behavioral animal models of psychosis, specifically psychotropic drug-induced locomotor hyperactivity and disruption of prepulse inhibition. We expand on the preclinical data to include developmental and genetic models of psychosis, such as the maternal immune activation model and neuregulin transgenic animals, respectively. Finally, we suggest several recommendations for future studies, in order to facilitate a better understanding of sex differences in the development of psychosis.
Collapse
|
8
|
Kreilaus F, Przybyla M, Ittner L, Karl T. Cannabidiol (CBD) treatment improves spatial memory in 14-month-old female TAU58/2 transgenic mice. Behav Brain Res 2022; 425:113812. [PMID: 35202719 DOI: 10.1016/j.bbr.2022.113812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022]
Abstract
Frontotemporal dementia (FTD) and Alzheimer's disease (AD) share the pathological hallmark of intracellular neurofibrillary tangles, which result from the hyperphosphorylation of microtubule associated protein tau. The P301S mutation in human tau carried by TAU58/2 transgenic mice results in brain pathology and behavioural deficits relevant to FTD and AD. The phytocannabinoid cannabidiol (CBD) exhibits properties beneficial for multiple pathological processes evident in dementia. Therefore, 14-month-old female TAU58/2 transgenic and wild type-like (WT) littermates were treated with 100mg/kg CBD or vehicle i.p. starting three weeks prior to conducting behavioural paradigms relevant to FTD and AD. TAU58/2 females exhibited impaired motor function, reduced bodyweight and less anxiety behaviour compared to WT. An impaired spatial reference memory of vehicle-treated transgenic mice were restored by chronic CBD treatment. Chronic CBD also reduced anxiety-like behaviors and decreased contextual fear-associated freezing in all mice. Chronic remedial CBD treatment ameliorated several disease-relevant phenotypes in 14-month-old TAU58/2 transgenic mice, suggesting potential for the treatment of tauopathy-related behavioural impairments including cognitive deficits.
Collapse
Affiliation(s)
- Fabian Kreilaus
- School of Medicine, Western Sydney University, NSW 2560, Australia
| | - Magdalena Przybyla
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Lars Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, NSW 2560, Australia; Neuroscience Research Australia (NeuRA), NSW 2031, Australia; School of Medical Sciences, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
9
|
What Can We Learn from Animal Models to Study Schizophrenia? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:15-33. [DOI: 10.1007/978-3-030-97182-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Yang H, Xiao W, Yang M, Wang Y, Zhang X. Decreased neuregulin1β1 in first episode and drug-naïve patients with schizophrenia: Negative correlation with cognitive impairment. Psychiatry Res 2021; 304:114164. [PMID: 34388510 DOI: 10.1016/j.psychres.2021.114164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Neuregulin1β1 (NRG1β1) is essential for neuronal migration during development and for the ongoing neural plasticity underlying cognitive function. This study investigated the relationship between cognitive impairment and serum NRG1β1 concentration in first-episode drug-naïve (FEDN) patients with schizophrenia. METHOD We measured serum NRG1β1 from 65 FEDN schizophrenia patients and 67 healthy matched controls. Cognitive function was evaluated using the Hopkins Vocabulary Learning Test-Revised (HVLT-R), Verbal Fluency Test (VFT), Trail Making Test (TMT), Digit Span Test (DST), and Stroop Test. RESULTS Serum NRG1β1 concentration was significantly lower in the FEDN patient group than the control group (7.25±0.49 vs. 12.52±0.77 ng/mL; F=23.716, P<0.0001, Cohen's d=1.00). Further, serum NRG1β1 concentration in FEDN schizophrenia patients was negatively correlated with TMT-part A score (r=-0.408, P=0.001) and positively correlated with Stroop color subtest score (r=0.246, P=0.048). Multiple regression analysis also revealed weak correlations among FEDN patients between TMT-part A score and both serum NRG1β1 concentration (R2=0.116, F=8.235, P=0.011) and duration of untreated psychosis (R2=0.193, F=5.969, P=0.017). CONCLUSION This preliminary study suggests that serum NRG1β1 levels are reduced in FEDN patients with schizophrenia and that NRG1β1 may be involved in the cognitive function.
Collapse
Affiliation(s)
- Haidong Yang
- Medical College of Yangzhou University, Yangzhou 225003, PR China; Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China
| | - Wenhuan Xiao
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Man Yang
- Medical College of Yangzhou University, Yangzhou 225003, PR China; Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China
| | - Yili Wang
- Department of Clinical Laboratory, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China
| | - Xiaobin Zhang
- Medical College of Yangzhou University, Yangzhou 225003, PR China; Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215137, PR China.
| |
Collapse
|
11
|
Guerra S, Chung R, Yerbury J, Karl T. Behavioural effects of cage systems on the G93A Superoxide Dismutase 1 transgenic mouse model for amyotrophic lateral sclerosis. GENES BRAIN AND BEHAVIOR 2021; 20:e12735. [PMID: 33871173 DOI: 10.1111/gbb.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022]
Abstract
Environmental factors inherent to animal facilities can impact on the neuro-behavioural phenotype of laboratory mice and genetic mouse models for human diseases. Many facilities have upgraded from traditional 'open filter top' cages (FT) to individually ventilated cage (IVC) systems, which have been shown to modify various behavioural responses of laboratory mice. Importantly, the impact of IVC housing on the G93A superoxide dismutase 1 mouse model of amyotrophic lateral sclerosis (ALS) is currently unknown. Male and female wild type-like (WT) and heterozygous SOD1G93A mice were group-housed in FT or IVC systems from PND 30 ± 5 onwards. Body weight and motor function were assessed weekly from 15 weeks onward. Mice were also tested for cognitive abilities (i.e., fear conditioning and social recognition memory) and sensorimotor gating (i.e., prepulse inhibition: PPI). SOD1G93A mice lost body weight, and their motor function degenerated over time compared with control littermates. Motor impairments developed faster when SOD1G93A females were housed in IVCs. Context and cue freezing were increased in SOD1G93A females compared with controls, whereas all SOD1G93A mice exhibited lower acoustic startle and PPI than WT mice. IVC housing led to an increase in cue freezing in males and reduced the severity of PPI deficits in SOD1G93A females. Overall, IVC housing impacted moderately on the SOD1G93A phenotype but central behavioural deficits were still evident across housing conditions. Nonetheless, our findings indicate the importance of assessing the effect of cage system in genetic mouse models as these systems can modulate the magnitude and onset of genotypic differences.
Collapse
Affiliation(s)
- Stefan Guerra
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Roger Chung
- Centre for MND Research, Macquarie University, Sydney, New South Wales, Australia
| | - Justin Yerbury
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia.,Neuroscience Research Australia, Randwick, New South Wales, Australia
| |
Collapse
|
12
|
Wang P, Li M, Zhao A, Ma J. Application of animal experimental models in the research of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2021; 186:209-227. [PMID: 34155806 DOI: 10.1002/ajmg.b.32863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/04/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a relatively common but serious mental illness that results in a heavy burden to patients, their families, and society. The disease can be triggered by multiple factors, while the specific pathogenesis remains unclear. The development of effective therapeutic drugs for schizophrenia relies on a comprehensive understanding of the basic biology and pathophysiology of the disease. Therefore, effective animal experimental models play a vital role in the study of schizophrenia. Based on different molecular mechanisms and modeling methods, the currently used experimental animal experimental models of schizophrenia can be divided into four categories that can better simulate the clinical symptoms and the interplay between susceptible genes and the environment: neurodevelopmental, drug-induced, genetic-engineering, and genetic-environmental interaction of animal experimental models. Each of these categories contains multiple subtypes, which has its own advantages and disadvantages and therefore requires careful selection in a research application. The emergence and utilization of these models are promising in the prediction of the risk of schizophrenia at the molecular level, which will shed light on effective and targeted treatment at the genetic level.
Collapse
Affiliation(s)
- Pengjie Wang
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.,Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Manling Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Gui Yang, Guizhou, China
| | - Aizhen Zhao
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Jie Ma
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.,Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Effects of handling on the behavioural phenotype of the neuregulin 1 type III transgenic mouse model for schizophrenia. Behav Brain Res 2021; 405:113166. [PMID: 33588020 DOI: 10.1016/j.bbr.2021.113166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/14/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Handling of laboratory mice affects animal wellbeing and behavioural test outcomes. However, present research has focused on handling effects in common strains of laboratory mice despite the knowledge that environmental factors can modify established phenotypes of genetic mouse models. Thus, we examined the impact of handling on the face validity of a transgenic mouse model for the schizophrenia risk gene neuregulin 1 (i.e. Nrg1 type III overexpression). Nrg1 III tg and wild type-like (WT) control mice of both sexes underwent tail or tunnel handling before being assessed in the open field (OF), elevated plus maze (EPM), social preference/novelty, prepulse inhibition, and fear conditioning tests. Tunnel-handling reduced the startle response in all mice, increased OF locomotion and exploration in males and reduced anxiety in males (OF) and females (EPM) compared to tail-handling. Importantly, tunnel handling induced a more pronounced startle response to increasing startle stimuli in Nrg1 III tg females compared to respective controls, a phenomenon absent in tail-handled females. Finally, Nrg1 III tg males displayed reduced OF exploration and centre locomotion and Nrg1 III tg females displayed increased cue freezing over time compared to controls. In conclusion, handling methods have a significant impact on a variety of behavioural domains thus the impact of routine handling procedures need be considered when testing behavioural phenotypes. Handling did not change the main schizophrenia-relevant characteristics of Nrg1 III tg mice but affected the acoustic startle-response in a genotype- and sex-specific manner. Future research should evaluate the effect of handling on other genetic models.
Collapse
|
14
|
Kreilaus F, Masanetz R, Watt G, Przybyla M, Ittner A, Ittner L, Karl T. The behavioural phenotype of 14-month-old female TAU58/2 transgenic mice. Behav Brain Res 2021; 397:112943. [PMID: 33017638 DOI: 10.1016/j.bbr.2020.112943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/20/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
Frontotemporal dementia (FTD) and Alzheimer's disease (AD) exhibit intracellular inclusions [neurofibrillary tangles (NFT's)] of microtubule-associated protein tau that contributes to neuronal dysfunction and death. Mutations in the microtubule-associated protein tau (MAPT) gene leads to tau hyperphosphorylation and promotes NFT formation. The TAU58/2 transgenic mouse model expresses mutant human tau (P301S mutation) and exhibits behavioural abnormalities relevant to dementia in early adulthood. Here we comprehensively determined the behavioural phenotype of TAU58/2 transgenic female mice at 14 months of age using test paradigms relevant to FTD and AD. TAU58/2 females showed a significant motor deficit and lower bodyweight compared to WT littermates. Transgenic females failed to habituate to the test arena in the light-dark test. Interestingly, transgenics did not exhibit an anxiolytic-like phenotype and intermediate-term spatial learning in the cheeseboard test was intact. However, a significant learning deficit was detected in the 1st trial across test days indicating impaired long-term spatial memory. In addition, the preference for a previously rewarded location was absent in transgenic females during probe trial testing. Finally, TAU58/2 mice had a defective acoustic startle response and impaired sensorimotor gating. In conclusion TAU58/2 mice exhibit several behavioural deficits that resemble those observed in human FTD and AD. Additionally, we observed a novel startle response deficit in these mice. At 14 months of age, TAU58/2 females represent a later disease stage and are therefore a potentially useful model to test efficacy of therapeutics to reverse or ameliorate behavioural deficits in post-onset tauopapthy-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Fabian Kreilaus
- School of Medicine, Western Sydney University, NSW 2560, Australia
| | - Rebecca Masanetz
- School of Medicine, Western Sydney University, NSW 2560, Australia; Faculty of Medical and Life Sciences, Hochschule Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Georgia Watt
- School of Medicine, Western Sydney University, NSW 2560, Australia
| | - Magdalena Przybyla
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Lars Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, NSW 2560, Australia; Neuroscience Research Australia (NeuRA), NSW 2031, Australia; School of Medical Sciences, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
15
|
Chesworth R, Rosa-Porto R, Yao S, Karl T. Sex-specific sensitivity to methamphetamine-induced schizophrenia-relevant behaviours in neuregulin 1 type III overexpressing mice. J Psychopharmacol 2021; 35:50-64. [PMID: 33274671 DOI: 10.1177/0269881120967870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Gene-environment interactions contribute to schizophrenia aetiology. Neuregulin 1 is a well-established genetic risk factor for schizophrenia, and elevated expression of type III neuregulin 1 mRNA in the dorsolateral prefrontal cortex is observed in patients with a core risk haplotype. A mouse model of type III Nrg1 overexpression (Nrg1 III tg) possesses face and construct validity for schizophrenia; however, the sensitivity of these transgenic mice to environmental risk factors relevant to schizophrenia is unknown. AIMS To determine sensitivity of Nrg1 III tg mice to the psychostimulant methamphetamine (METH) in schizophrenia and addiction-relevant behavioural tests. METHODS We examined behavioural responses of adult male and female Nrg1 III tg mice METH (1-3 mg/kg) in schizophrenia-relevant paradigms (drug-induced locomotion, sensorimotor gating) and drug reward (conditioned place preference). RESULTS Male Nrg1 III tg mice were less sensitive to METH-induced stereotypies, yet showed a greater negative impact of METH on prepulse inhibition compared with wild type-like males. In contrast, female Nrg1 III tg mice were less sensitive to METH-induced locomotion than wild type-like females, while sensorimotor gating was similarly impaired by METH between the genotypes. There were no genotype differences for METH reward, or anxiety-like and exploratory behaviours. CONCLUSIONS These results indicate that overexpression of Nrg1 type III modulates schizophrenia-relevant behaviours, and may help to explain increased sensitivity to the psychoactive effects of METH in patients with schizophrenia.
Collapse
Affiliation(s)
- Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | | | - Sofia Yao
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, Australia.,Neuroscience Research Australia, Randwick, Australia
| |
Collapse
|
16
|
Koszła O, Targowska-Duda KM, Kędzierska E, Kaczor AA. In Vitro and In Vivo Models for the Investigation of Potential Drugs Against Schizophrenia. Biomolecules 2020; 10:biom10010160. [PMID: 31963851 PMCID: PMC7022578 DOI: 10.3390/biom10010160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SZ) is a complex psychiatric disorder characterized by positive, negative, and cognitive symptoms, and is not satisfactorily treated by current antipsychotics. Progress in understanding the basic pathomechanism of the disease has been hampered by the lack of appropriate models. In order to develop modern drugs against SZ, efficient methods to study them in in vitro and in vivo models of this disease are required. In this review a short presentation of current hypotheses and concepts of SZ is followed by a description of current progress in the field of SZ experimental models. A critical discussion of advantages and limitations of in vitro models and pharmacological, genetic, and neurodevelopmental in vivo models for positive, negative, and cognitive symptoms of the disease is provided. In particular, this review concerns the important issue of how cellular and animal systems can help to meet the challenges of modeling the disease, which fully manifests only in humans, as experimental studies of SZ in humans are limited. Next, it is emphasized that novel clinical candidates should be evaluated in animal models for treatment-resistant SZ. In conclusion, the plurality of available in vitro and in vivo models is a consequence of the complex nature of SZ, and there are extensive possibilities for their integration. Future development of more efficient antipsychotics reflecting the pleiotropy of symptoms in SZ requires the incorporation of various models into one uniting model of the multifactorial disorder and use of this model for the evaluation of new drugs.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
| | - Katarzyna M. Targowska-Duda
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence:
| |
Collapse
|
17
|
Behavioural effects of high fat diet in adult Nrg1 type III transgenic mice. Behav Brain Res 2020; 377:112217. [DOI: 10.1016/j.bbr.2019.112217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/22/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
18
|
Zieba J, Morris MJ, Karl T. Behavioural effects of high fat diet exposure starting in late adolescence in neuregulin 1 transmembrane domain mutant mice. Behav Brain Res 2019; 373:112074. [DOI: 10.1016/j.bbr.2019.112074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022]
|
19
|
Nakazawa K, Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol Ther 2019; 205:107426. [PMID: 31629007 DOI: 10.1016/j.pharmthera.2019.107426] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
N-methyl-d-aspartate (NMDA) receptor (NMDAR) hypofunction plays a key role in pathophysiology of schizophrenia. Since NMDAR hypofunction has also been reported in autism, Alzheimer's disease and cognitive dementia, it is crucial to identify the location, timing, and mechanism of NMDAR hypofunction for schizophrenia for better understanding of disease etiology and for novel therapeutic intervention. In this review, we first discuss the shared underlying mechanisms of NMDAR hypofunction in NMDAR antagonist models and the anti-NMDAR autoantibody model of schizophrenia and suggest that NMDAR hypofunction could occur in GABAergic neurons in both models. Preclinical models using transgenic mice have shown that NMDAR hypofunction in cortical GABAergic neurons, in particular parvalbumin-positive fast-spiking interneurons, in the early postnatal period confers schizophrenia-related phenotypes. Recent studies suggest that NMDAR hypofunction can also occur in PV-positive GABAergic neurons with alterations of NMDAR-associated proteins, such as neuregulin/ErbB4, α7nAChR, and serine racemase. Furthermore, several environmental factors, such as oxidative stress, kynurenic acid and hypoxia, may also potentially elicit NMDAR hypofunction in GABAergic neurons in early postnatal period. Altogether, the studies discussed here support a central role for GABAergic abnormalities in the context of NMDAR hypofunction. We conclude by suggesting potential therapeutic strategies to improve the function of fast-spiking neurons.
Collapse
|
20
|
Kreilaus F, Guerra S, Masanetz R, Menne V, Yerbury J, Karl T. Novel behavioural characteristics of the superoxide dismutase 1 G93A (SOD1 G93A ) mouse model of amyotrophic lateral sclerosis include sex-dependent phenotypes. GENES BRAIN AND BEHAVIOR 2019; 19:e12604. [PMID: 31412164 DOI: 10.1111/gbb.12604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) involves the rapid degeneration of upper and lower motor neurons leading to weakening and paralysis of voluntary movements. Mutations in copper-zinc superoxide dismutase 1 (SOD1) are a known genetic cause of ALS, and the SOD1 G93A mouse has been used extensively to investigate molecular mechanisms in ALS. In recent years, evidence suggests that ALS and frontotemporal dementia form a spectrum disorder ranging from motor to cognitive dysfunctions. Thus, we tested male and female SOD1 G93A mice for the first time before the onset of debilitating motor impairments in behavioural domains relevant to both ALS and frontotemporal dementia. SOD1 G93A males displayed reduced locomotion, exploration and increased anxiety-like behaviours compared with control males. Intermediate-term spatial memory was impaired in SOD1 G93A females, whereas long-term spatial memory deficits as well as lower acoustic startle response, and prepulse inhibition were identified in SOD1 G93A mice of both sexes compared with respective controls. Interestingly, SOD1 G93A males exhibited an increased conditioned cue freezing response. Nosing behaviours were also elevated in both male and female SOD1 G93A when assessed in social paradigms. In conclusion, SOD1 G93A mice exhibit a variety of sex-specific behavioural deficits beyond motor impairments supporting the notion of an ALS-frontotemporal spectrum disorder. Thus, SOD1 G93A mice may represent a useful model to test the efficacy of therapeutic interventions on clinical symptoms in addition to declining motor abilities.
Collapse
Affiliation(s)
- Fabian Kreilaus
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Stefan Guerra
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Rebecca Masanetz
- Faculty of Medical and Life Sciences, Hochschule Furtwangen University, Villingen-Schwenningen, Germany
| | - Victoria Menne
- Institute of Psychology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Justin Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, New South Wales, Australia.,Neuroscience Research Australia (NeuRA), New South Wales, Australia.,School of Medical Sciences, University of New South Wales, New South Wales, Australia
| |
Collapse
|
21
|
Clozapine-dependent inhibition of EGF/neuregulin receptor (ErbB) kinases. Transl Psychiatry 2019; 9:181. [PMID: 31371697 PMCID: PMC6675791 DOI: 10.1038/s41398-019-0519-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/01/2019] [Indexed: 12/20/2022] Open
Abstract
Clozapine is an antipsychotic agent prescribed to psychotic patients exhibiting tolerance and/or resistance to the conventional antipsychotic medications that mainly drive monoamine antagonism. As the pharmacological fundamentals of its unique antipsychotic profile have been unrevealed, here, we attempted to obtain hints at this question. Here, we found that clozapine directly acts on ErbB kinases to downregulate epidermal growth factor (EGF)/neuregulin signaling. In cultured cell lines and cortical neurons, EGF-triggered ErbB1 phosphorylation was diminished by 30 μM clozapine, but not haloperidol, risperidone, or olanzapine. The neuregulin-1-triggered ErbB4 phosphorylation was attenuated by 10 μM clozapine and 30 μM haloperidol. We assumed that clozapine may directly interact with the ErbB tyrosine kinases and affect their enzyme activity. To test this assumption, we performed in vitro kinase assays using recombinant truncated ErbB kinases. Clozapine (3-30 μM) significantly decreased the enzyme activity of the truncated ErbB1, B2, and B4 kinases. Acute in vivo administration of clozapine (20 mg/kg) to adult rats significantly suppressed the basal phosphorylation levels of ErbB4 in the brain, although we failed to detect effects on basal ErbB1 phosphorylation. Altogether with the previous findings that quinazoline inhibitors for ErbB kinases harbor antipsychotic potential in animal models for schizophrenia, our present observations suggest the possibility that the micromolar concentrations of clozapine can attenuate the activity of ErbB receptor kinases, which might illustrate a part of its unique antipsychotic psychopharmacology.
Collapse
|