1
|
何 存, 杨 绍, 朱 国. [4‑(Arylethyl)‑pyrrolo[2,3-d] pyrimidine improves post-traumatic stress disorder in mice by inhibiting mGluR5-regulated ERK1/2-SGK1 signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:765-773. [PMID: 40294927 PMCID: PMC12037296 DOI: 10.12122/j.issn.1673-4254.2025.04.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Indexed: 04/30/2025]
Abstract
OBJECTIVES To observe the effect of 4-(arylethynyl)-pyrrolo[2,3-d] pyrimidine (10b) on post-traumatic stress disorder (PTSD)-like behaviors and ERK1/2-SGK1 signaling pathway in mice. METHODS C57BL/6 mouse models exposed to single prolonged stress (SPS) were treated with daily gavage of saline, 10b at low, moderate and high doses, or paroxetine for 14 days. The changes in PTSD-like behaviors of SPS mice with different treatments were observed using behavioral tests. Western blotting and immunofluorescence assay were used to detect the protein expression levels of mGluR5, p-ERK, and SGK1 in the hippocampus of the mice. Pathological changes in the liver and kidney tissues of the mice were examined using HE staining. Molecular docking and molecular dynamics analyses were employed to evaluate the binding stability between the compound 10b and mGluR5. RESULTS Compared to the normal control mice, the SPS mice exhibited obvious PTSD-like behaviors with increased hippocampal expressions of mGluR5 and p-ERK proteins and decreased SGK1 protein expression. Compound 10b significantly ameliorated behavioral abnormalities in SPS mice, inhibited mGluR5 expression, and reversed the dysregulation of p-ERK and SGK1. No obvious liver or kidney toxicity was observed after 10b treatment. Molecular docking and dynamics studies demonstrated a stable interaction between 10b and mGluR5. CONCLUSIONS The compound 10b ameliorates PTSD-like behaviors induced by SPS in mice possibly by inhibiting mGluR5 expression to modulate the ERK1/2-SGK1 signaling pathway.
Collapse
|
2
|
Faccidomo S, Hoffman JL, Lee J, Whindleton CM, Kim M, Taylor SM, Kim A, Richter C, Seiters HL, Bryant JM, Chang A, Smith EN, Agoglia AE, Tomita S, Herman MA, Hodge CW. TARP ɣ-8 is a target of ethanol that regulates self-administration and relapse in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645788. [PMID: 40236160 PMCID: PMC11996309 DOI: 10.1101/2025.03.27.645788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background Behavioral pathologies that characterize alcohol use disorder (AUD) are driven by the powerful reinforcing, or rewarding, properties of the drug. We have shown that glutamate AMPA receptor (AMPAR) activity is both necessary and sufficient for alcohol (ethanol) reinforcement. Transmembrane AMPAR regulatory protein (TARP) γ-8 is an essential auxiliary protein that regulates AMPAR expression and activity; however, the role of TARP ɣ-8 in AUD or other forms of addiction remains largely unexplored. Objectives This study investigated the mechanistic role of TARP γ-8 in operant ethanol self-administration (model of primary reinforcement) and cue-induced reinstatement of ethanol-seeking behavior (model of conditioned reinforcement) using TARP ɣ-8 heterozygous null (+/-) mice. To determine if TARP ɣ-8 signaling is targeted by ethanol use, we evaluated protein expression of TARP γ-8, GluA1, CaMKII, and PSD-95 following ethanol self-administration. Results A battery of tests evaluating food and water intake, taste reactivity, anxiety-like behavior, and object recognition memory showed no fundamental behavioral deficits in TARP γ-8 (+/-) mice, and no differences in response to acute ethanol or home-cage drinking as compared to wild-types. However, TARP γ-8 (+/-) mice exhibited significantly reduced acquisition and escalation of operant ethanol self-administration and reduced cue-induced reinstatement of ethanol-seeking behavior, with no differences in parallel sucrose-only controls. In wild-type mice, ethanol self-administration increased TARP γ-8 expression in the amygdala, nucleus accumbens, and hippocampus, and increased GluA1 expression in the amygdala and prefrontal cortex, compared to sucrose controls. Conclusion These findings highlight the specificity of TARP ɣ-8 regulation of ethanol reinforcement mechanisms and identify this crucial AMPAR auxiliary protein as a target of ethanol in reward-related brain regions, highlighting its potential for development of novel pharmacotherapies for AUD.
Collapse
|
3
|
Giatti S, Cioffi L, Diviccaro S, Chrostek G, Piazza R, Melcangi RC. Transcriptomic Profile of the Male Rat Hypothalamus and Nucleus Accumbens After Paroxetine Treatment and Withdrawal: Possible Causes of Sexual Dysfunction. Mol Neurobiol 2025; 62:4935-4951. [PMID: 39495228 DOI: 10.1007/s12035-024-04592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Paroxetine, a selective serotonin reuptake inhibitor (SSRI), may induce sexual dysfunction during treatment and upon discontinuation. The mechanisms involved have been poorly explored so far. We have analyzed, by RNA sequencing, the whole transcriptomic profile in the hypothalamus and nucleus accumbens (NAc) (two brain regions involved in sexual behavior) of male rats daily treated for 2 weeks with paroxetine (T0) and at 1 month of withdrawal (T1). Data here reported show seven differentially expressed genes (DEGs) at T0 and 1 at T1 in the hypothalamus and 245 at T0 and 6 at T1 in the NAc. In addition, Gene-Set Enrichment, Gene Ontology, and Reactome analyses confirm that inflammatory signature and immune system activation were present at T0 in both brain areas. Considering that inflammation is generally associated with depression and that no paradigms inducing the pathology were here applied, these SSRI pro-depressive effects should be considered in patients without a clear indication of depression. Moreover, DEGs related to neurotransmitters with a role in sexual behavior and the reward system, such as dopamine (e.g., sialyltransferase 8B-ST8SIA3), glutamate (e.g., glutamate receptor ionotropic delta-2-GRID2) and GABA (e.g., glutamate decarboxylase type 2-GAD2) or associated with neurexin and neuroligin pathways and brain-derived neurotrophic factor (BDNF) signaling, were reported to be dysregulated in the NAc, further confirming dysfunction in this brain area. Interestingly, the analysis of DEGs altered at T1 in the NAc confirms the persistence of some of these side effects providing further information for post-SSRI sexual dysfunction (PSSD) etiopathogenesis.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Lucia Cioffi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Gabriela Chrostek
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Rocco Piazza
- Dipartimento Di Medicina E Chirurgia, Università Di Milano-Bicocca, Milan, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
4
|
Faccidomo S, Eastman VR, Santanam TS, Swaim KS, Taylor SM, Hodge CW. Distinct sex differences in ethanol consumption and operant self-administration in C57BL/6J mice with uniform regulation by glutamate AMPAR activity. Front Behav Neurosci 2025; 18:1498201. [PMID: 39911242 PMCID: PMC11794300 DOI: 10.3389/fnbeh.2024.1498201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/27/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Considering sex as a biological variable (SABV) in preclinical research can enhance understanding of the neurobiology of alcohol use disorder (AUD). However, the behavioral and neural mechanisms underlying sex-specific differences remain unclear. This study aims to elucidate SABV in ethanol (EtOH) consumption by evaluating its reinforcing effects and regulation by glutamate AMPA receptor activity in male and female mice. Methods C57BL/6J mice (male and female) were assessed for EtOH intake under continuous and limited access conditions in the home cage. Acute sensitivity to EtOH sedation and blood clearance were evaluated as potential modifying factors. Motivation to consume EtOH was measured using operant self-administration procedures. Sex-specific differences in neural regulation of EtOH reinforcement were examined by testing the effects of a glutamate AMPA receptor antagonist on operant EtOH self-administration. Results Female C57BL/6J mice exhibited a time-dependent escalation in EtOH intake under both continuous and limited access conditions. They were less sensitive to EtOH sedation and had lower blood levels post-EtOH administration (4 g/kg) despite similar clearance rates. Females also showed increased operant EtOH self-administration and progressive ratio performance over a 30-day baseline period compared to males. The AMPAR antagonist GYKI 52466 (0-10 mg/kg, IP) dose-dependently reduced EtOH-reinforced lever pressing in both sexes, with no differences in potency or efficacy. Discussion These findings confirm that female C57BL/6J mice consume more EtOH than males in home-cage conditions and exhibit reduced acute sedation, potentially contributing to higher EtOH intake. Females demonstrated increased operant EtOH self-administration and motivation, indicating higher reinforcing efficacy. The lack of sex differences in the relative effects of GYKI 52466 suggests that AMPAR activity is equally required for EtOH reinforcement in both sexes.
Collapse
Affiliation(s)
- Sara Faccidomo
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Vallari R. Eastman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Taruni S. Santanam
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Katarina S. Swaim
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Seth M. Taylor
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clyde W. Hodge
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Faccidomo S, Eastman VR, Santanam TS, Swaim KS, Taylor SM, Hodge CW. Sex Differences in Home-Cage Ethanol Drinking and Operant Self-Administration in C57BL/6J Mice with Equivalent Regulation by Glutamate AMPAR Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613920. [PMID: 39386480 PMCID: PMC11463694 DOI: 10.1101/2024.09.19.613920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Introduction Considering sex as a biological variable (SABV) in preclinical research can enhance understanding of the neurobiology of alcohol use disorder (AUD). However, the behavioral and neural mechanisms underlying sex-specific differences remain unclear. This study aims to elucidate SABV in ethanol (EtOH) consumption by evaluating its reinforcing effects and regulation by glutamate AMPA receptor activity in male and female mice. Methods C57BL/6J mice (male and female) were assessed for EtOH intake under continuous and limited access conditions in the home cage. Acute sensitivity to EtOH sedation and blood clearance were evaluated as potential modifying factors. Motivation to consume EtOH was measured using operant self-administration procedures. Sex-specific differences in neural regulation of EtOH reinforcement were examined by testing the effects of a glutamate AMPA receptor antagonist on operant EtOH self-administration. Results Female C57BL/6J mice exhibited a time-dependent escalation in EtOH intake under both continuous and limited access conditions. They were less sensitive to EtOH sedation and had lower blood levels post-EtOH administration (4 g/kg) despite similar clearance rates. Females also showed increased operant EtOH self-administration and progressive ratio performance over a 30-day baseline period compared to males. The AMPAR antagonist GYKI 52466 (0-10 mg/kg, IP) dose-dependently reduced EtOH-reinforced lever pressing in both sexes, with no differences in potency or efficacy. Discussion These findings confirm that female C57BL/6J mice consume more EtOH than males in home-cage conditions and exhibit reduced acute sedation, potentially contributing to higher EtOH intake. Females demonstrated increased operant EtOH self-administration and motivation, indicating higher reinforcing efficacy. The lack of sex differences in the relative effects of GYKI 52466 suggests that AMPAR activity is equally required for EtOH reinforcement in both sexes.
Collapse
|
6
|
Fabian CB, Jordan ND, Cole RH, Carley LG, Thompson SM, Seney ML, Joffe ME. Parvalbumin interneuron mGlu 5 receptors govern sex differences in prefrontal cortex physiology and binge drinking. Neuropsychopharmacology 2024; 49:1861-1871. [PMID: 38773314 PMCID: PMC11473522 DOI: 10.1038/s41386-024-01889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
Despite established sex differences in the prevalence and presentation of psychiatric disorders, little is known about the cellular and synaptic mechanisms that guide these differences under basal conditions. The proper function of the prefrontal cortex (PFC) is essential for the top-down regulation of motivated behaviors. The activity of the PFC is tightly controlled by parvalbumin-expressing interneurons (PV-INs), a key subpopulation of fast-spiking GABAergic cells that regulate cortical excitability through direct innervations onto the perisomatic regions of nearby pyramidal cells. Recent rodent studies have identified notable sex differences in PV-IN activity and adaptations to experiences such as binge drinking. Here, we investigated the cellular and molecular mechanisms that underlie sex-specific regulation of PFC PV-IN function. Using whole-cell patch-clamp electrophysiology and selective pharmacology, we report that PV-INs from female mice are more excitable than those from males. Moreover, we find that mGlu1 and mGlu5 metabotropic glutamate receptors regulate cell excitability, excitatory drive, and endocannabinoid signaling at PFC PV-INs in a sex-dependent manner. Genetic deletion of mGlu5 receptors from PV-expressing cells abrogates all sex differences observed in PV-IN membrane and synaptic physiology. Lastly, we report that female, but not male, PV-mGlu5-/- mice exhibit decreased voluntary drinking on an intermittent access schedule, which could be related to changes in ethanol's stimulant properties. Importantly, these studies identify mGlu1 and mGlu5 receptors as candidate signaling molecules involved in sex differences in PV-IN activity and behaviors relevant to alcohol use.
Collapse
Affiliation(s)
- Carly B Fabian
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nilah D Jordan
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lily G Carley
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shannon M Thompson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
van Ingelgom T, Didone V, Godefroid L, Quertemont É. Effects of social housing conditions on ethanol-induced behavioral sensitization in Swiss mice. Psychopharmacology (Berl) 2024; 241:987-1000. [PMID: 38206359 DOI: 10.1007/s00213-024-06527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
RATIONALE In previous animal model studies, it was shown that drug sensitization is dependent upon physical environmental conditions. However, the effects of social housing conditions on drug sensitization is much less known. OBJECTIVE The aim of the present study was to investigate the effects of social conditions, through the size of housing groups, on ethanol stimulant effects and ethanol-induced behavioral sensitization in mice. MATERIALS AND METHODS Male and female Swiss mice were housed in groups of different sizes (isolated mice, two mice per cage, four mice per cage and eight mice per cage) during a six-week period. A standard paradigm of ethanol-induced locomotor sensitization was then started with one daily injection of 2.5 g/kg ethanol for 8 consecutive days. RESULTS The results show that social housing conditions affect the acute stimulant effects of ethanol. The highest stimulant effects were observed in socially isolated mice and then gradually decreased as the size of the group increased. Although the rate of ethanol sensitization did not differ between groups, the ultimate sensitized levels of ethanol-induced stimulant effects were significantly reduced in mice housed in groups of eight. CONCLUSIONS These results are consistent with the idea that higher levels of acute and sensitized ethanol stimulant effects are observed in mice housed in stressful housing conditions, such as social isolation.
Collapse
Affiliation(s)
- Théo van Ingelgom
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Vincent Didone
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Leeloo Godefroid
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Étienne Quertemont
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium.
| |
Collapse
|
8
|
Fabian CB, Jordan ND, Cole RH, Carley LG, Thompson SM, Seney ML, Joffe ME. Parvalbumin interneuron mGlu 5 receptors govern sex differences in prefrontal cortex physiology and binge drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567903. [PMID: 38045379 PMCID: PMC10690210 DOI: 10.1101/2023.11.20.567903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Despite established sex differences in the prevalence and presentation of psychiatric disorders, little is known about the cellular and synaptic mechanisms that guide these differences under basal conditions. Proper function of the prefrontal cortex (PFC) is essential for the top-down regulation of motivated behaviors. Activity of the PFC is tightly controlled by parvalbumin-expressing interneurons (PV-INs), a key subpopulation of fast-spiking GABAergic cells that regulate cortical excitability through direct innervations onto the perisomatic regions of nearby pyramidal cells. Recent rodent studies have identified notable sex differences in PV-IN activity and adaptations to experiences such as binge drinking. Here, we investigated the cellular and molecular mechanisms that underlie sex-specific regulation of PFC PV-IN function. Using whole-cell patch clamp electrophysiology and selective pharmacology, we report that PV-INs from female mice are more excitable than those from males. Moreover, we find that mGlu1 and mGlu5 metabotropic glutamate receptors regulate cell excitability, excitatory drive, and endocannabinoid signaling at PFC PV-INs in a sex-dependent manner. Genetic deletion of mGlu5 receptors from PV-expressing cells abrogates all sex differences observed in PV-IN membrane and synaptic physiology. Lastly, we report that female, but not male, PV-mGlu5-/- mice exhibit decreased voluntary drinking on an intermittent access schedule, which could be related to changes in ethanol's stimulant properties. Importantly, these studies identify mGlu1 and mGlu5 receptors as candidate signaling molecules involved in sex differences in PV-IN activity and behaviors relevant for alcohol use.
Collapse
Affiliation(s)
- Carly B. Fabian
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Nilah D. Jordan
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Rebecca H. Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Lily G. Carley
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Shannon M. Thompson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Marianne L. Seney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Max E. Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
9
|
Gerace E, Curti L, Caffino L, Bigagli E, Mottarlini F, Castillo Díaz F, Ilari A, Luceri C, Dani C, Fumagalli F, Masi A, Mannaioni G. Ethanol-induced AMPA alterations are mediated by mGLU5 receptors through miRNA upregulation in hippocampal slices. Eur J Pharmacol 2023; 955:175878. [PMID: 37433363 DOI: 10.1016/j.ejphar.2023.175878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Prenatal alcohol exposure (PAE) affects neuronal networks and brain development causing a range of physical, cognitive and behavioural disorders in newborns that persist into adulthood. The array of consequences associated with PAE can be grouped under the umbrella-term 'fetal alcohol spectrum disorders' (FASD). Unfortunately, there is no cure for FASD as the molecular mechanisms underlying this pathology are still unknown. We have recently demonstrated that chronic EtOH exposure, followed by withdrawal, induces a significant decrease in AMPA receptor (AMPAR) expression and function in developing hippocampus in vitro. Here, we explored the EtOH-dependent pathways leading to hippocampal AMPAR suppression. Organotypic hippocampal slices (2 days in cultures) were exposed to EtOH (150 mM) for 7 days followed by 24 h EtOH withdrawal. Then, the slices were analysed by means of RT-PCR for miRNA content, western blotting for AMPA and NMDA related-synaptic proteins expression in postsynaptic compartment and electrophysiology to record electrical properties from CA1 pyramidal neurons. We observed that EtOH induces a significant downregulation of postsynaptic AMPA and NMDA subunits and relative scaffolding protein expression and, accordingly, a decrease of AMPA-mediated neurotransmission. Simultaneously, we found that chronic EtOH induced-upregulation of miRNA 137 and 501-3p and decreased AMPA-mediated neurotransmission are prevented by application of the selective mGlu5 antagonist MPEP during EtOH withdrawal. Our data indicate mGlu5 via miRNA137 and 501-3p expression as key factors in the regulation of AMPAergic neurotransmission that may contribute, at least in part, to the pathogenesis of FASD.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Department of Health Sciences (DSS), University of Florence, Florence, Italy.
| | - Lorenzo Curti
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Elisabetta Bigagli
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Alice Ilari
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Carlo Dani
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Sauchinone Blocks Ethanol Withdrawal-Induced Anxiety but Spares Locomotor Sensitization: Involvement of Nitric Oxide in the Bed Nucleus of the Stria Terminalis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6670212. [PMID: 34035825 PMCID: PMC8116157 DOI: 10.1155/2021/6670212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022]
Abstract
Both the positive (manifested by locomotor sensitization) and negative (withdrawal symptoms) reinforcing effects of ethanol (EtOH) involve central nitric oxide (NO) signaling. Sauchinone (a bioactive lignan in Saururus chinensis) has been shown to improve methamphetamine-induced behavioral and neurochemical changes via the NO signaling pathway. Thus, this study evaluated the effects of sauchinone on locomotor sensitization and anxiety during EtOH withdrawal (EtOHW). Male adult Sprague-Dawley rats were treated with 1.5 g/kg/day of EtOH (20%, vol/vol) via intraperitoneal injection for 28 days, followed by a 3-day withdrawal. During withdrawal, the rats were given intragastric sauchinone (2.5, 7.5, or 25 mg/kg/day) once a day. EtOH locomotor sensitization was determined by challenging EtOHW rats with 0.75 g/kg EtOH, while EtOHW-induced anxiety was assessed using the elevated plus maze (EPM). None of the three doses of sauchinone affected EtOH locomotor sensitization. However, in the EPM, treatment of EtOHW rats with sauchinone at 7.5 or 25 mg/kg/day increased both the number of entries into and the time spent in the open arms. Moreover, the two doses of sauchinone inhibited the oversecretion of plasma corticosterone during EtOHW. In the bed nucleus of the stria terminalis (BNST), EtOHW increased NO production, enhanced gene and protein expression of both inducible nitric oxide synthase (iNOS) and neuronal NOS (nNOS), and also elevated protein levels of corticotropin-releasing factor, which were all inhibited by 25 mg/kg/day sauchinone. In an in vitro experiment, sauchinone (3, 10, and 30 μM) inhibited H2O2-stimulated nNOS protein expression in neuronal PC12 cells. Finally, intra-BNST infusion of sodium nitroprusside, a NO donor, after sauchinone (25 mg/kg/day) administration, abolished its expected anxiolytic effect. Taken together, these results indicate that sauchinone attenuates anxiety-like behavior in rats during EtOHW but spares EtOH locomotor sensitization, and the anxiolytic effect is mediated via the NO signaling pathway in the BNST.
Collapse
|
11
|
Kryszkowski W, Boczek T. The G Protein-Coupled Glutamate Receptors as Novel Molecular Targets in Schizophrenia Treatment-A Narrative Review. J Clin Med 2021; 10:jcm10071475. [PMID: 33918323 PMCID: PMC8038150 DOI: 10.3390/jcm10071475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/02/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology.
Collapse
Affiliation(s)
- Waldemar Kryszkowski
- General Psychiatric Ward, Babinski Memorial Hospital in Lodz, 91229 Lodz, Poland;
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92215 Lodz, Poland
- Correspondence:
| |
Collapse
|
12
|
Huang G, Thompson SL, Taylor JR. MPEP Lowers Binge Drinking in Male and Female C57BL/6 Mice: Relationship with mGlu5/Homer2/Erk2 Signaling. Alcohol Clin Exp Res 2021; 45:732-742. [PMID: 33587295 PMCID: PMC8076072 DOI: 10.1111/acer.14576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Metabotropic glutamate receptor 5 (mGlu5) plays an important role in excessive alcohol use and the mGlu5/Homer2/Erk2 signaling pathway has been implicated in binge drinking. The mGlu5 negative allosteric modulator (NAM) 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) has been shown to reduce binge drinking in male mice, but less is known about its effect on female mice. Here, we sought to determine whether sex differences exists in the effects of MPEP on binge drinking and whether they relate to changes in the MPEP mGlu5/Homer2/Erk2 signaling. METHODS We measured the dose-response effect of MPEP on alcohol consumption in male and female mice using the Drinking in the Dark (DID) paradigm to assess potential sex differences. To rule out possible confounds of MPEP on locomotion, we measured the effects of MPEP on locomotor activity and drinking simultaneously during DID. Lastly, to test whether MPEP-induced changes in alcohol consumption were related to changes in Homer2 or Erk2 expression, we performed qPCR using brain tissue acquired from mice that had undergone 7 days of DID. RESULTS 30 mg/kg MPEP reduced binge alcohol consumption across female and male mice, with no sex differences in the dose-response relationship. Locomotor activity did not mediate the effects of MPEP on alcohol intake, but activity correlated with alcohol intake independent of MPEP. MPEP did not change the expression of Homer2 and Erk2 mRNA in the bed nucleus of the stria terminalis (BNST) or nucleus accumbens in mice whose drinking was reduced by MPEP, relative to saline. There was a positive relationship between alcohol intake and Homer2 expression in the BNST. CONCLUSIONS MPEP reduced alcohol consumption during DID in male and female C57BL/6 mice but did not change Homer2/Erk2 expression. Locomotor activity did not mediate the effects of MPEP on alcohol intake, though it correlated with alcohol intake. Alcohol intake during DID predicted BNST Homer2 expression. These data provide support for the regulation of alcohol consumption by mGlu5 across sexes.
Collapse
Affiliation(s)
- Gan Huang
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Summer L. Thompson
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jane R. Taylor
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University Graduate School of Arts and Sciences, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
The Role of CaMKII and ERK Signaling in Addiction. Int J Mol Sci 2021; 22:ijms22063189. [PMID: 33804804 PMCID: PMC8004038 DOI: 10.3390/ijms22063189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nicotine is the predominant addictive compound of tobacco and causes the acquisition of dependence through its interactions with nicotinic acetylcholine receptors and various neurotransmitter releases in the central nervous system. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) play a pivotal role in synaptic plasticity in the hippocampus. CaMKII is involved in long-term potentiation induction, which underlies the consolidation of learning and memory; however, the roles of CaMKII in nicotine and other psychostimulant-induced addiction still require further investigation. This article reviews the molecular mechanisms and crucial roles of CaMKII and ERK in nicotine and other stimulant drug-induced addiction. We also discuss dopamine (DA) receptor signaling involved in nicotine-induced addiction in the brain reward circuitry. In the last section, we introduce the association of polyunsaturated fatty acids and cellular chaperones of fatty acid-binding protein 3 in the context of nicotine-induced addiction in the mouse nucleus accumbens and provide a novel target for the treatment of drug abuse affecting dopaminergic systems.
Collapse
|
14
|
Yang JH, Sohn S, Kim S, Kim J, Oh JH, Ryu IS, Go BS, Choe ES. Repeated nicotine exposure increases the intracellular interaction between ERK-mGluR5 in the nucleus accumbens more in adult than adolescent rats. Addict Biol 2021; 26:e12913. [PMID: 32339332 DOI: 10.1111/adb.12913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/20/2020] [Accepted: 04/09/2020] [Indexed: 11/27/2022]
Abstract
Intracellular interactions between protein kinases and metabotropic receptors in the striatum regulate behavioral changes in response to drug exposure. We investigated the difference in the degree of interaction between extracellular signal-regulated kinase (ERK) and metabotropic glutamate receptor subtype 5 (mGluR5) in the nucleus accumbens (NAc) after repeated exposure to nicotine in adult and adolescent rats. The results showed that repeated exposure to nicotine (0.5 mg/kg/day, s.c.) for seven consecutive days increased ERK phosphorylation more in adults than in adolescents. Furthermore, membrane expression of mGluR5 in gamma-aminobutyric acid (GABA) medium spiny neurons was higher in adults than adolescents as a result of repeated exposure to nicotine. Blockade of mGluR5 with MPEP (0.5 nmol/side) decreased the repeated nicotine-induced increase in ERK phosphorylation. Either blockade of mGluR5 or inhibition of ERK with SL327 (150 nmol/side) decreased the repeated nicotine-induced increase in the level of inositol-1,4,5-triphosphate (IP3 ), a key transducer associated with mGluR5-coupled signaling cascades. Similarly, interference of binding between activated ERK and mGluR5 by the blocking peptide, Tat-mGluR5-i (2 nmol/side), decreased the repeated nicotine-induced increases in IP3 and locomotor activity in adults. These findings suggest that the intracellular interaction between ERK and mGluR5 in the NAc is stronger in adult than in adolescent rats, which enhances the understanding of age-associated behavioral changes that occur after repeated exposure to nicotine.
Collapse
Affiliation(s)
- Ju Hwan Yang
- Department of Biological Sciences Pusan National University Busan South Korea
| | - Sumin Sohn
- Department of Biological Sciences Pusan National University Busan South Korea
| | - Sunghyun Kim
- Department of Biological Sciences Pusan National University Busan South Korea
| | - Jieun Kim
- Department of Biological Sciences Pusan National University Busan South Korea
| | - Jeong Hwan Oh
- Department of Biological Sciences Pusan National University Busan South Korea
- Institute of Fisheries Sciences Pukyong National University Busan South Korea
| | - In Soo Ryu
- Department of Biological Sciences Pusan National University Busan South Korea
- Korea Institute of Toxicology Daejeon South Korea
| | - Bok Soon Go
- Department of Biological Sciences Pusan National University Busan South Korea
| | - Eun Sang Choe
- Department of Biological Sciences Pusan National University Busan South Korea
| |
Collapse
|
15
|
Akkus F, Terbeck S, Haggarty CJ, Treyer V, Dietrich JJ, Hornschuh S, Hasler G. The role of the metabotropic glutamate receptor 5 in nicotine addiction. CNS Spectr 2020; 26:1-6. [PMID: 32713396 DOI: 10.1017/s1092852920001704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review summarizes the evidence for the potential involvement of metabotropic glutamate receptor 5 (mGluR5) in the development of nicotine addiction. Nicotine is consumed worldwide and is highly addictive. Previous research has extensively investigated the role of dopamine in association with reward learning and addiction, which has provided strong evidence for the involvement of dopaminergic neuronal circuitry in nicotine addiction. More recently, researchers focused on glutamatergic transmission after nicotine abuse, and its involvement in the reinforcing and rewarding effects of nicotine addiction. A number of robust preclinical and clinical studies have shown mGluR5 signaling as a facilitating mechanism of nicotine addiction and nicotine withdrawal. Specifically, clinical studies have illustrated lower cortical mGluR5 density in smokers compared to nonsmokers in the human brain. In addition, mGluR5 might selectively regulate craving and withdrawal. This suggests that mGluR5 could be a key receptor in the development of nicotine addiction and therefore clinical trials to examine the therapeutic potential of mGluR5 agents could help to contribute to reduce nicotine addiction in society.
Collapse
Affiliation(s)
- Funda Akkus
- Department of Psychiatry, University of Fribourg, Fribourg, Switzerland
- Psychiatrie St. Gallen Nord, Wil, Switzerland
| | - Sylvia Terbeck
- School of Psychology, Liverpool John Moores University, LiverpoolUnited Kingdom
| | - Connor J Haggarty
- School of Psychology, Liverpool John Moores University, LiverpoolUnited Kingdom
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Janan J Dietrich
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stefanie Hornschuh
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gregor Hasler
- Department of Psychiatry, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Wen D, Hui R, Liu Y, Luo Y, Wang J, Shen X, Xie B, Yu F, Cong B, Ma C. Molecular hydrogen attenuates methamphetamine-induced behavioral sensitization and activation of ERK-ΔFosB signaling in the mouse nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109781. [PMID: 31629777 DOI: 10.1016/j.pnpbp.2019.109781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022]
Abstract
Methamphetamine (METH) is one of the most prevalently used illegal psychostimulants in many countries. Continuous exposure to METH leads to behavioral sensitization in animals, which can be used as a behavioral model with many mechanisms in common with relapse in humans. Molecular hydrogen has recently gained attention for its potential as a novel healthcare product with preventive and therapeutic applicability to a wide range of pathological conditions. However, it remains unclear whether and, if so, how hydrogen regulates METH-induced behavioral abnormalities. In the present study, we investigated the roles of molecular hydrogen on the acquisition and transfer of METH-induced behavioral sensitization and the accompanying changes in ERK phosphorylation and ΔFosB activation in the nucleus accumbens (NAc) of mice. To this end, male C57BL/6 mice received METH (0.1, 0.5 and 1.0 mg/kg, i.p.) injections for 7 days followed by a METH challenge (0.1, 0.5 and 1.0 mg/kg, i.p.) after a 7-day transfer period. Molecular hydrogen, delivered through a hydrogen-rich saline (HRS) injection (10 mL/kg, i.p., 3-h interval), was administered during the acquisition and transfer periods. We found that HRS administration was able to inhibit the acquisition and transfer of 0.1 and 0.5 mg/kg METH-induced behavioral sensitization to a certain extent, thereby attenuating the expression of behavioral sensitization. The HRS injections alone did not induce any obvious changes in locomotor activity in mice. Intriguingly, the increases in pERK and ΔFosB in the NAc, which accompanied the METH-induced behavioral sensitization, were also attenuated by the HRS treatments. Due to the anti-oxidative function of molecular hydrogen, the HRS injections reduced METH-induced reactive oxygen species and malondialdehyde generation in the NAc. These results suggest that molecular hydrogen serves as an anti-oxidative agent with potentially therapeutic applicability to the treatment of METH addicts.
Collapse
Affiliation(s)
- Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Rongji Hui
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Yi Liu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081,China
| | - Jian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Xi Shen
- College of Public Health, Hebei Medical University, Hebei Province, Shijiazhuang 050017, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Feng Yu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China.
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
17
|
Cofresí RU, Bartholow BD, Piasecki TM. Evidence for incentive salience sensitization as a pathway to alcohol use disorder. Neurosci Biobehav Rev 2019; 107:897-926. [PMID: 31672617 PMCID: PMC6878895 DOI: 10.1016/j.neubiorev.2019.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
The incentive salience sensitization (ISS) theory of addiction holds that addictive behavior stems from the ability of drugs to progressively sensitize the brain circuitry that mediates attribution of incentive salience (IS) to reward-predictive cues and its behavioral manifestations. In this article, we establish the plausibility of ISS as an etiological pathway to alcohol use disorder (AUD). We provide a comprehensive and critical review of evidence for: (1) the ability of alcohol to sensitize the brain circuitry of IS attribution and expression; and (2) attribution of IS to alcohol-predictive cues and its sensitization in humans and non-human animals. We point out gaps in the literature and how these might be addressed. We also highlight how individuals with different alcohol subjective response phenotypes may differ in susceptibility to ISS as a pathway to AUD. Finally, we discuss important implications of this neuropsychological mechanism in AUD for psychological and pharmacological interventions attempting to attenuate alcohol craving and cue reactivity.
Collapse
Affiliation(s)
- Roberto U Cofresí
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States.
| | - Bruce D Bartholow
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States
| | - Thomas M Piasecki
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States
| |
Collapse
|