1
|
Lee CM, Nguyen J, Pope B, Imami AS, Ryan VWG, Sahay S, Mathis V, Pulvender P, Eby HM, Arvay T, Alganem K, Wegman-Points L, McCullunsmith R, Yuan LL. Functional kinome profiling reveals brain protein kinase signaling pathways and gene networks altered by acute voluntary exercise in rats. PLoS One 2025; 20:e0321596. [PMID: 40233052 PMCID: PMC11999169 DOI: 10.1371/journal.pone.0321596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Regular exercise confers numerous physical and mental health benefits, yet individual variability in exercise participation and outcomes is still poorly understood. Uncovering the neurobiological mechanisms governing exercise behavior is essential for promoting physical activity and developing targeted interventions for related disorders. While genetic studies have provided insights, they often cannot account for protein-level alterations, such as changes in kinase activity. Here, we employ protein kinase activity profiling to delineate brain protein kinase activity and signaling networks modulated by acute voluntary exercise in rats. Focusing on the dorsal striatum, which governs voluntary exercise, as well as the hippocampus, which is susceptible to modulation by physical activity, we aim to understand the molecular basis of exercise behavior. Utilizing high throughput kinome array profiling and advanced pathway analyses, we identified protein kinase signaling pathways implicated in regulating voluntary exercise. Pathway analysis using Gene Ontology (GO) revealed significant alterations in 155 GO terms in the dorsal striatum and 206 GO terms in the hippocampus. Changes in kinase activity were observed in the striatum and hippocampus between the exercise (voluntary wheel running, VWR) and sedentary control rats. In both regions, global serine-threonine kinase (STK) activity was decreased, while global phospho-tyrosine kinase (PTK) activity was increased in VWR rats compared to control rats. We also identified specific kinases altered in VWR rats, including the IKappaB Kinase (IKK) and protein kinase delta (PKD) families. C-terminal src Kinase (CSK), epidermal growth factor (EGFR), and vascular endothelial growth factor receptor (VEGFR) tyrosine kinase were also enriched. These findings suggest regional heterogeneity of kinase activity following voluntary exercise, emphasizing potential molecular mechanisms underlying exercise behavior. This exploratory study lays the groundwork for future investigations into the causality of variations in exercise outcomes among individuals and different sexes, as well as the development of targeted interventions to promote physical activity and combat associated chronic diseases.
Collapse
Affiliation(s)
- Chia-Ming Lee
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| | - Jennifer Nguyen
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Brock Pope
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| | - Ali Sajid Imami
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - V. William George Ryan
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Smita Sahay
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Victoria Mathis
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| | - Priyanka Pulvender
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Hunter Michael Eby
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Taylen Arvay
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Khaled Alganem
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Lauren Wegman-Points
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| | - Robert McCullunsmith
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
- ProMedica, Neurosciences Institute, Toledo, Ohio, United States of America
| | - Li-Lian Yuan
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| |
Collapse
|
2
|
Matsunaga D, Nakagawa H, Ishiwata T. Comparison of forced and voluntary exercise types on male rat brain monoamine levels, anxiety-like behaviour, and physiological indexes under light and dark phases. Behav Brain Res 2025; 479:115321. [PMID: 39510330 DOI: 10.1016/j.bbr.2024.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE Physical exercise improves physical and mental health; however, the differences between voluntary and forced exercise protocols are unclear. In addition, knowledge regarding the consequences of differences in testing timing, such as light and dark phases, in response to exercise type is limited. We investigated the effects of chronic forced and voluntary wheel running on the changes in brain monoamine levels (5-HT: serotonin, DA: dopamine, NA: noradrenaline), anxiety-like behaviours, and physiological stress responses in the light and dark phases. METHODS Adult male Wistar rats were equally and randomly assigned to four groups: sedentary control, voluntary exercise (free running on a wheel, V-EX), voluntary limited exercise (wheel available only 1 h/day, VL-EX), and forced exercise (running on a motorised wheel, F-EX). Each group was further divided into dark- or light-experimental condition groups. After 4 weeks, the rats underwent an open-field test. The monoamines and their metabolite levels were measured in the major neural cell bodies and the projection areas related to behaviour, cognition, anxiety, and stress in the brain. RESULTS Adrenal hypertrophy and elevated body temperature, except during the exercise period, were observed in the F-EX rats that exhibited anxiety-like behaviour. The levels of monoamines and their metabolites, particularly the 5-HTergic and DAergic systems, in specific areas, were significantly altered in the rats in the V-EX group compared to those in the VL-EX and other groups. These differences were observed only in the dark phase. CONCLUSION The results suggest that V-EX mainly stimulates the 5-HTergic and DAergic systems, while F-EX induces physiological stress and increases anxiety-like behaviour during the dark phase. This study highlights the importance of accounting for exercise types and light/dark phases in behavioural neuroscience experiments.
Collapse
Affiliation(s)
- Daisuke Matsunaga
- Department of Health-Promotion and Sports Science, Osaka Electro-Communication University, 1130-70 Kiyotaki, Shijonawate-shi, Osaka 575-0063, Japan; Graduate School of Community & Human Services, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama 352-8558, Japan.
| | - Hikaru Nakagawa
- College of Sport &Wellness, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama 352-8558, Japan
| | - Takayuki Ishiwata
- Graduate School of Community & Human Services, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama 352-8558, Japan; College of Sport &Wellness, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama 352-8558, Japan
| |
Collapse
|
3
|
Tucker R, Williams C, Reed P. Association of exercise and ADHD symptoms: Analysis within an adult general population sample. PLoS One 2025; 20:e0314508. [PMID: 39932962 PMCID: PMC11813077 DOI: 10.1371/journal.pone.0314508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/11/2024] [Indexed: 02/13/2025] Open
Abstract
Given the limitations associated with existing treatments for Attention Deficit/Hyperactive disorder (ADHD), Physical Activity (PA) has been considered as an adjunct therapeutic option. Previous research has generally found that PA reduces ADHD symptoms in children. However, much less research has explored the same effects in adults, and especially females, with ADHD. This cross-sectional study investigated the relationship between PA and ADHD in adults, and whether any relationship was moderated by proxy diagnostic ADHD group, as well as exploring the roles of motivation and forms of exercise. 268 participants completed an online survey measuring proxy ADHD diagnosis; ADHD symptomatology; PA level; forms of exercise performed, and motivation for exercise. In contrast to previous research performed with child participants (which frequently found significant negative correlations), there was no significant relationship between PA level and total ADHD symptomatology in adults, but there was a significant negative correlation between PA level and inattentive ADHD symptomatology. The strength of relationship between PA level and ADHD symptomatology did not differ based on ADHD proxy diagnostic grouping; PA level based on motivation type; or PA level based on total forms of exercise performed. However, it may be that clear relationships between PA and ADHD symptomatology are not easily identifiable in adult populations when only broad, nonspecific variables/measures are used (e.g., only measuring ADHD symptoms as a continuous total score, rather than considering inattentive/hyperactive symptoms separately). Therefore, greater differentiation between ADHD symptoms and subject characteristics (such as gender) might be required to better establish potential relationships and effects in this area, and better inform any potential PA based treatments.
Collapse
Affiliation(s)
- Rory Tucker
- School of Psychology, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, United Kingdom
| | - Claire Williams
- School of Psychology, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, United Kingdom
- Elysium Neurological Services, Elysium Healthcare, The Avalon Centre, Swindon, United Kingdom
| | - Phil Reed
- School of Psychology, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, United Kingdom
| |
Collapse
|
4
|
Wilson KF, Fox AE. Exercise recovers weight gain, but not increased impulsive choice, caused by a high-fat diet. Appetite 2024; 203:107668. [PMID: 39245366 DOI: 10.1016/j.appet.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
A high-fat diet has negative effects on physical, neurological, and behavioral outcomes. One consistent finding is that a diet high in fat increases impulsive choice behavior-behavior that is linked to a wide range of other negative health behaviors. While the mechanism for this increase in impulsive choice is not well understood, exercise, with its well-known and many benefits, may serve as an effective and accessible way to combat increased impulsive choice associated with a high-fat diet. The goal of this work was to test this possibility. Rats were divided into four groups in a two-by-two factorial design: exercise and control diet, sedentary and control diet, exercise and high-fat diet, sedentary and high-fat diet. Rats in the exercise groups engaged in 30-min of forced, moderate intensity wheel-running exercise five days per week. Rats in the high-fat diet groups ate a diet high in fat. Impulsive choice was measured using a delay discounting task. Exercise prevented weight gain associated with the high-fat diet. Exercise also preserved relative motivation for food reinforcement. However, exercise did not prevent increases in impulsive choice observed for rats that consumed a high-fat diet relative to the rats that consumed the control diet. This work rules out several possible mechanisms by which a high-fat diet may increase impulsive choice behavior. It makes clear that exercise alone may not stave off increases in impulsive choice caused by a high-fat diet. Future work is necessary to uncover the underlying mechanism for this effect and discover interventions, perhaps ones that combine both physically and cognitively demanding activities, to improve health and behavior as it relates to decision making processes.
Collapse
Affiliation(s)
- Keenan F Wilson
- Department of Psychology, St. Lawrence University, United States
| | - Adam E Fox
- Department of Psychology, St. Lawrence University, United States.
| |
Collapse
|
5
|
Maleki S, Hendrikse J, Chye Y, Caeyenberghs K, Coxon JP, Oldham S, Suo C, Yücel M. Associations of cardiorespiratory fitness and exercise with brain white matter in healthy adults: A systematic review and meta-analysis. Brain Imaging Behav 2022; 16:2402-2425. [PMID: 35773556 PMCID: PMC9581839 DOI: 10.1007/s11682-022-00693-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
Magnetic resonance imaging (MRI) studies have revealed positive associations between brain structure and physical activity, cardiorespiratory fitness, and exercise (referred to here as PACE). While a considerable body of research has investigated the effects of PACE on grey matter, much less is known about effects on white matter (WM). Hence, we conducted a systematic review of peer-reviewed literature published prior to 5th July 2021 using online databases (PubMed and Scopus) and PRISMA guidelines to synthesise what is currently known about the relationship between PACE and WM in healthy adults. A total of 60 studies met inclusion criteria and were included in the review. Heterogeneity across studies was calculated using Qochran's q test, and publication bias was assessed for each meta-analysis using Begg and Mazumdar rank correlation test. A meta-regression was also conducted to explore factors contributing to any observed heterogeneity. Overall, we observed evidence of positive associations between PACE and global WM volume (effect size (Hedges's g) = 0.137, p < 0.001), global WM anomalies (effect size = 0.182, p < 0.001), and local microstructure integrity (i.e., corpus callosum: effect size = 0.345, p < 0.001, and anterior limb of internal capsule: effect size = 0.198, p < 0.001). These findings suggest that higher levels of PACE are associated with improved global WM volume and local integrity. We appraise the quality of evidence, and discuss the implications of these findings for the preservation of WM across the lifespan. We conclude by providing recommendations for future research in order to advance our understanding of the specific PACE parameters and neurobiological mechanisms underlying these effects.
Collapse
Affiliation(s)
- Suzan Maleki
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia
| | - Joshua Hendrikse
- Movement and Exercise Neuroscience Laboratory, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Yann Chye
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - James P Coxon
- Movement and Exercise Neuroscience Laboratory, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Stuart Oldham
- Neural Systems and Behaviour, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Chao Suo
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia.
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia.
| |
Collapse
|
6
|
Rojas-Carvajal M, Sequeira-Cordero A, Brenes JC. The environmental enrichment model revisited: A translatable paradigm to study the stress of our modern lifestyle. Eur J Neurosci 2021; 55:2359-2392. [PMID: 33638921 DOI: 10.1111/ejn.15160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 02/14/2021] [Indexed: 01/31/2023]
Abstract
Mounting evidence shows that physical activity, social interaction and sensorimotor stimulation provided by environmental enrichment (EE) exert several neurobehavioural effects traditionally interpreted as enhancements relative to standard housing (SH) conditions. However, this evidence rather indicates that SH induces many deficits, which could be ameliorated by exposing animals to an environment vaguely mimicking some features of their wild habitat. Rearing rodents in social isolation (SI) can aggravate such deficits, which can be restored by SH or EE. It is not surprising, therefore, that most preclinical stress models have included severe and unnatural stressors to produce a stress response prominent enough to be distinguishable from SH or SI-frequently used as control groups. Although current stress models induce a stress-related phenotype, they may fail to represent the stress of our urban lifestyle characterized by SI, poor housing and working environments, sedentarism, obesity and limited access to recreational activities and exercise. In the following review, we discuss the stress of living in urban areas and how exposures to and performing activities in green environments are stress relievers. Based on the commonalities between human and animal EE, we discuss how models of housing conditions (e.g., SI-SH-EE) could be adapted to study the stress of our modern lifestyle. The housing conditions model might be easy to implement and replicate leading to more translational results. It may also contribute to accomplishing some ethical commitments by promoting the refinement of procedures to model stress, diminishing animal suffering, enhancing animal welfare and eventually reducing the number of experimental animals needed.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Andrey Sequeira-Cordero
- Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica.,Instituto de Investigaciones en Salud, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Juan C Brenes
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
7
|
Buhr TJ, Reed CH, Shoeman A, Bauer EE, Valentine RJ, Clark PJ. The Influence of Moderate Physical Activity on Brain Monoaminergic Responses to Binge-Patterned Alcohol Ingestion in Female Mice. Front Behav Neurosci 2021; 15:639790. [PMID: 33716684 PMCID: PMC7947191 DOI: 10.3389/fnbeh.2021.639790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/25/2021] [Indexed: 01/16/2023] Open
Abstract
Monoamine neurotransmitter activity in brain reward, limbic, and motor areas play key roles in the motivation to misuse alcohol and can become modified by exercise in a manner that may affect alcohol craving. This study investigated the influence of daily moderate physical activity on monoamine-related neurochemical concentrations across the mouse brain in response to high volume ethanol ingestion. Adult female C57BL/6J mice were housed with or without 2.5 h of daily access to running wheels for 30 days. On the last 5 days, mice participated in the voluntary binge-like ethanol drinking procedure, “Drinking in the dark” (DID). Mice were sampled immediately following the final episode of DID. Monoamine-related neurochemical concentrations were measured across brain regions comprising reward, limbic, and motor circuits using ultra High-Performance Liquid Chromatography (UHPLC). The results suggest that physical activity status did not influence ethanol ingestion during DID. Moreover, daily running wheel access only mildly influenced alcohol-related norepinephrine concentrations in the hypothalamus and prefrontal cortex, as well as serotonin turnover in the hippocampus. However, access to alcohol during DID eliminated wheel running-related decreases of norepinephrine, serotonin, and 5-HIAA content in the hypothalamus, but also to a lesser extent for norepinephrine in the hippocampus and caudal cortical areas. Finally, alcohol access increased serotonin and dopamine-related neurochemical turnover in the striatum and brainstem areas, regardless of physical activity status. Together, these data provide a relatively thorough assessment of monoamine-related neurochemical levels across the brain in response to voluntary binge-patterned ethanol drinking, but also adds to a growing body of research questioning the utility of moderate physical activity as an intervention to curb alcohol abuse.
Collapse
Affiliation(s)
- Trevor J Buhr
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Neuroscience Program, Iowa State University, Ames, IA, United States
| | - Carter H Reed
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States.,Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Allyse Shoeman
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Neuroscience Program, Iowa State University, Ames, IA, United States
| | - Ella E Bauer
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Neuroscience Program, Iowa State University, Ames, IA, United States.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States
| | - Rudy J Valentine
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States.,Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Peter J Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Neuroscience Program, Iowa State University, Ames, IA, United States.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Garrigos D, Martínez-Morga M, Toval A, Kutsenko Y, Barreda A, Do Couto BR, Navarro-Mateu F, Ferran JL. A Handful of Details to Ensure the Experimental Reproducibility on the FORCED Running Wheel in Rodents: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:638261. [PMID: 34040580 PMCID: PMC8141847 DOI: 10.3389/fendo.2021.638261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
A well-documented method and experimental design are essential to ensure the reproducibility and reliability in animal research. Experimental studies using exercise programs in animal models have experienced an exponential increase in the last decades. Complete reporting of forced wheel and treadmill exercise protocols would help to ensure the reproducibility of training programs. However, forced exercise programs are characterized by a poorly detailed methodology. Also, current guidelines do not cover the minimum data that must be included in published works to reproduce training programs. For this reason, we have carried out a systematic review to determine the reproducibility of training programs and experimental designs of published research in rodents using a forced wheel system. Having determined that most of the studies were not detailed enough to be reproducible, we have suggested guidelines for animal research using FORCED exercise wheels, which could also be applicable to any form of forced exercise.
Collapse
Affiliation(s)
- Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Marta Martínez-Morga
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Alberto Barreda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Fernando Navarro-Mateu
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Unidad de Docencia, Investigación y Formación en Salud Mental (UDIF-SM), Servicio Murciano de Salud, Murcia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Departamento de Psicología Básica y Metodología, Universidad de Murcia, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- *Correspondence: José Luis Ferran,
| |
Collapse
|
9
|
Matsunaga D, Nakagawa H, Ishiwata T. Difference in the brain serotonin and its metabolite level and anxiety-like behavior between forced and voluntary exercise conditions in rats. Neurosci Lett 2020; 744:135556. [PMID: 33373674 DOI: 10.1016/j.neulet.2020.135556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Physical exercise is beneficial to both physical and mental health, though it is unclear whether voluntary and forced exercise have the same effects. We investigated the effects of chronic forced and voluntary wheel running on brain levels of serotonin (5-HT), its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and anxiety-like behavioral change in rats. Forty-eight rats were randomly assigned to standard cages (sedentary control: SC); voluntary exercise (free running on a wheel, V-EX); voluntary limited exercise (wheel available only 1 h per day, VL-EX); and forced exercise (running on a motorized wheel, F-EX). After 4 weeks, rats either underwent the open field test (OFT) or their 5-HT and 5-HIAA levels were measured in the major serotonergic neural cell bodies and projection areas. 5-HT and 5-HIAA levels in the dorsal and median raphe nuclei were increased in the V-EX, but not in the VL-EX and F-EX groups, compared with the SC group. In the paraventricular hypothalamic nucleus and caudate putamen, only 5-HT levels were increased in the V-EX group. Interestingly, in the amygdala, only 5-HIAA levels were significantly increased in the V-EX group. Conversely, we found that F-EX rats showed no significant 5-HT changes and increased anxiety-like behavior. VL-EX did not have significant beneficial effects on any of the experimental parameters. These data suggest that only unlimited voluntary exercise stimulates the serotonergic system and suppresses anxiety-like behavior.
Collapse
Affiliation(s)
- Daisuke Matsunaga
- Graduate School of Community & Human Services, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama, 352-8558, Japan
| | - Hikaru Nakagawa
- Graduate School of Community & Human Services, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama, 352-8558, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda, Tokyo, 102-0083, Japan
| | - Takayuki Ishiwata
- Graduate School of Community & Human Services, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama, 352-8558, Japan.
| |
Collapse
|
10
|
Maejima H, Kitahara M, Takamatsu Y, Mani H, Inoue T. Effects of exercise and pharmacological inhibition of histone deacetylases (HDACs) on epigenetic regulations and gene expressions crucial for neuronal plasticity in the motor cortex. Brain Res 2020; 1751:147191. [PMID: 33152341 DOI: 10.1016/j.brainres.2020.147191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023]
Abstract
The objective of this study was to examine the effect of epigenetic treatment using an histone deacetylases (HDAC) inhibitor in addition to aerobic exercise on the epigenetic markers and neurotrophic gene expressions in the motor cortex, to find a more enriched brain pre-conditioning for motor learning in neurorehabilitation. ICR mice were divided into four groups based on two factors: HDAC inhibition and exercise. Intraperitoneal administration of an HDAC inhibitor (1.2 g/kg sodium butyrate, NaB) and treadmill exercise (approximately at 10 m/min for 60 min) were conducted five days a week for four weeks. NaB administration inhibited total HDAC activity and enhanced acetylation level of histones specifically in histone H4, accompanying the increase of transcription levels of immediate-early genes (IEGs) (c-fos and Arc) and neurotrophins (BDNF and NT-4) crucial for neuroplasticity in the motor cortex. However, exercise enhanced HDAC activity and acetylation level of histone H4 and H3 without the modification of transcription levels. In addition, there were no synergic effects between HDAC inhibition and the exercise regime on the gene expressions. This study showed that HDAC inhibition could present more enriched condition for neuroplasticity to the motor cortex. However, exercise-induced neurotrophic gene expressions could depend on exercise regimen based on the intensity, the term etc. Therefore, this study has a novelty suggesting that pharmacological HDAC inhibition could be an alternative potent approach to present a neuronal platform with enriched neuroplasticity for motor learning and motor recovery, however, an appropriate exercise regimen is expected in this approach.
Collapse
Affiliation(s)
- Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan.
| | - Mika Kitahara
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroki Mani
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan; Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| |
Collapse
|
11
|
Ge R, Dai Y. Three-Week Treadmill Exercise Enhances Persistent Inward Currents, Facilitates Dendritic Plasticity, and Upregulates the Excitability of Dorsal Raphe Serotonin Neurons in ePet-EYFP Mice. Front Cell Neurosci 2020; 14:575626. [PMID: 33177992 PMCID: PMC7595958 DOI: 10.3389/fncel.2020.575626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Exercise plays a key role in preventing or treating mental or motor disorders caused by dysfunction of the serotonergic system. However, the electrophysiological and ionic channel mechanisms underlying these effects remain unclear. In this study, we investigated the effects of 3-week treadmill exercise on the electrophysiological and channel properties of dorsal raphe nucleus (DRN). Serotonin (5-HT) neurons in ePet-EYFP mice, using whole-cell patch clamp recording. Treadmill exercise was induced in ePet-EYFP mice of P21–24 for 3 weeks, and whole-cell patch clamp recording was performed on EYFP-positive 5-HT neurons from DRN slices of P42–45 mice. Experiment data showed that 5-HT neurons in the DRN were a heterogeneous population with multiple firing patterns (single firing, phasic firing, and tonic firing). Persistent inward currents (PICs) with multiple patterns were expressed in 5-HT neurons and composed of Cav1.3 (Ca-PIC) and sodium (Na-PIC) components. Exercise hyperpolarized the voltage threshold for action potential (AP) by 3.1 ± 1.0 mV (control: n = 14, exercise: n = 18, p = 0.005) and increased the AP amplitude by 6.7 ± 3.0 mV (p = 0.031) and firing frequency by more than 22% especially within a range of current stimulation stronger than 70 pA. A 3-week treadmill exercise was sufficient to hyperpolarize PIC onset by 2.6 ± 1.3 mV (control: −53.4 ± 4.7 mV, n = 28; exercise: −56.0 ± 4.7 mV, n = 25, p = 0.050) and increase the PIC amplitude by 28% (control: 193.6 ± 81.8 pA; exercise: 248.5 ± 105.4 pA, p = 0.038). Furthermore, exercise hyperpolarized Na-PIC onset by 3.8 ± 1.8 mV (control: n = 8, exercise: n = 9, p = 0.049) and increased the Ca-PIC amplitude by 23% (p = 0.013). The exercise-induced enhancement of the PIC amplitude was mainly mediated by Ca-PIC and hyperpolarization of PIC onset by Na-PIC. Moreover, exercise facilitated dendritic plasticity, which was shown as the increased number of branch points by 1.5 ± 0.5 (p = 0.009) and dendritic branches by 2.1 ± 0.6 (n = 20, p = 0.001) and length by 732.0 ± 100.1 μm (p < 0.001) especially within the range of 50–200 μm from the soma. Functional analysis suggested that treadmill exercise enhanced Na-PIC for facilitation of spike initiation and Ca-PIC for regulation of repetitive firing. We concluded that PICs broadly existed in DRN 5-HT neurons and could influence serotonergic neurotransmission in juvenile mice and that 3-week treadmill exercise induced synaptic adaptations, enhanced PICs, and thus upregulated the excitability of the 5-HT neurons.
Collapse
Affiliation(s)
- Renkai Ge
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China.,School of Physical Education and Health Care, East China Jiaotong University, Nanchang, China
| | - Yue Dai
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China
| |
Collapse
|