1
|
Yu P, Cheng M, Wang N, Wu C, Qiang K. Pubertal maternal presence reduces anxiety and increases adult neurogenesis in Kunming mice offspring. Pharmacol Biochem Behav 2024; 243:173839. [PMID: 39079561 DOI: 10.1016/j.pbb.2024.173839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Puberty is a critical period of emotional development and neuroplasticity. However, most studies have focused on early development, with limited research on puberty, particularly the parental presence. In this study, four groups were established, and pubertal maternal presence (PMP) was assessed until postnatal days 21 (PD21), 28 (PD28), 35 (PD35), and 42 (PD42), respectively. The social interaction and anxiety behaviors, as well as the expression of oxytocin (OT) in the paraventricular nucleus (PVN) and supraoptic nucleus (SON), and the number of new generated neurons and the expression of estrogen receptor alpha (ERα) in the dentate gyrus (DG) were assessed. The results suggest that there is a lot of physical contact between the mother and offspring from 21 to 42 days of age, which reduces anxiety in both female and male offspring in adulthood; for example, the PMP increased the amount of time mice spent in the center area in the open field experiment and in the bright area in the light-dark box experiment. PMP increased OT expression in the PVN and SON and the number of newly generated neurons in the DG. However, there was a sexual difference in ERα, with ERα increasing in females but decreasing in males. In conclusion, PMP reduces the anxiety of offspring in adulthood, increases OT in the PVN and SON, and adult neurogenesis; ERα in the DG may be involved in this process.
Collapse
Affiliation(s)
- Peng Yu
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China.
| | - Miao Cheng
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Na Wang
- College of Life and Geographic Sciences, Kashi University, Kashi 844099, Xinjiang, China
| | - Chendong Wu
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Keju Qiang
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| |
Collapse
|
2
|
Balikci A, Eryilmaz U, Guler VK, Ilbay G. Tactile stimulation of young WAG/Rij rats prevents development of depression but not absence epilepsy. Front Behav Neurosci 2024; 18:1433431. [PMID: 38993266 PMCID: PMC11236540 DOI: 10.3389/fnbeh.2024.1433431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Investigations in Wistar Albino Glaxo from Rijswijk (WAG/Rij) rats that are susceptible to genetic absence epilepsy have demonstrated that environmental modifications affect absence seizures. Previously, we showed that neonatal tactile stimulations produce disease-modifying effect on genetically determined absence epilepsy and associated depression in Wag/Rij rats. The study presented here examined the effect of TS during late ontogenesis (adolescence and young adulthood) on epilepsy and depression outcomes in this genetically epileptic rat strain. On postnatal day (PND) 38, male WAG/Rij rats randomly were assigned to either the tactile stimulation (TS), handled or control group (unhandled) with 8 animals in each group. Following a 7-day adaptation period to their new surroundings, the animals were submitted to tactile stimulation from PND 45 to PND 90, five days per week, for 5 min daily. The tactile-stimulated rat was removed from its cage, placed on the experimenter's lap, and had its neck and back gently stroked by the researcher. The handled rats were taken to another cage and left alone for 5 min daily from PND 45 to PND 90. The control rats were left undisturbed in their home cage, except for regular cage cleaning. After PND 90, all rats were left undisturbed until behavioral testing and EEG recording. When the animals were 7 months old, they were subjected to the sucrose consumption test (SCT) and the forced swimming test (FST). Electroencephalogram (EEG) recordings were made at 8 months of age in order to measure electroencephalographic seizure activity, thus, the spike-wave discharges (SWDs). Tactile-stimulated rats showed increased sucrose consumption and number of approaches to the sucrose solution in the SCT when compared with the handled and control rats. In the FST, rats in TS group showed lower immobility time and greater immobility latency, active swimming time and diving frequency than the handled and control rats. The duration and the number of seizures were not different amongst the groups. The data obtained suggest that TS in young rats is able to prevent depression in WAG/Rij rats.
Collapse
Affiliation(s)
- Aymen Balikci
- Department of Physiology, Faculty of Medicine, Kocaeli University, İzmit, Türkiye
| | - Ugur Eryilmaz
- Department of Physiology, Faculty of Medicine, Kocaeli University, İzmit, Türkiye
| | - Vildan Keles Guler
- Department of Physiology, Faculty of Medicine, Kocaeli University, İzmit, Türkiye
| | - Gul Ilbay
- Department of Physiology, Faculty of Medicine, Kocaeli University, İzmit, Türkiye
| |
Collapse
|
3
|
Packheiser J, Hartmann H, Fredriksen K, Gazzola V, Keysers C, Michon F. A systematic review and multivariate meta-analysis of the physical and mental health benefits of touch interventions. Nat Hum Behav 2024; 8:1088-1107. [PMID: 38589702 PMCID: PMC11199149 DOI: 10.1038/s41562-024-01841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024]
Abstract
Receiving touch is of critical importance, as many studies have shown that touch promotes mental and physical well-being. We conducted a pre-registered (PROSPERO: CRD42022304281) systematic review and multilevel meta-analysis encompassing 137 studies in the meta-analysis and 75 additional studies in the systematic review (n = 12,966 individuals, search via Google Scholar, PubMed and Web of Science until 1 October 2022) to identify critical factors moderating touch intervention efficacy. Included studies always featured a touch versus no touch control intervention with diverse health outcomes as dependent variables. Risk of bias was assessed via small study, randomization, sequencing, performance and attrition bias. Touch interventions were especially effective in regulating cortisol levels (Hedges' g = 0.78, 95% confidence interval (CI) 0.24 to 1.31) and increasing weight (0.65, 95% CI 0.37 to 0.94) in newborns as well as in reducing pain (0.69, 95% CI 0.48 to 0.89), feelings of depression (0.59, 95% CI 0.40 to 0.78) and state (0.64, 95% CI 0.44 to 0.84) or trait anxiety (0.59, 95% CI 0.40 to 0.77) for adults. Comparing touch interventions involving objects or robots resulted in similar physical (0.56, 95% CI 0.24 to 0.88 versus 0.51, 95% CI 0.38 to 0.64) but lower mental health benefits (0.34, 95% CI 0.19 to 0.49 versus 0.58, 95% CI 0.43 to 0.73). Adult clinical cohorts profited more strongly in mental health domains compared with healthy individuals (0.63, 95% CI 0.46 to 0.80 versus 0.37, 95% CI 0.20 to 0.55). We found no difference in health benefits in adults when comparing touch applied by a familiar person or a health care professional (0.51, 95% CI 0.29 to 0.73 versus 0.50, 95% CI 0.38 to 0.61), but parental touch was more beneficial in newborns (0.69, 95% CI 0.50 to 0.88 versus 0.39, 95% CI 0.18 to 0.61). Small but significant small study bias and the impossibility to blind experimental conditions need to be considered. Leveraging factors that influence touch intervention efficacy will help maximize the benefits of future interventions and focus research in this field.
Collapse
Affiliation(s)
- Julian Packheiser
- Social Neuroscience, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands.
| | - Helena Hartmann
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands
- Center for Translational and Behavioral Neuroscience, University Hospital Essen, Essen, Germany
- Clinical Neurosciences, Department for Neurology, University Hospital Essen, Essen, Germany
| | - Kelly Fredriksen
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands
| | - Frédéric Michon
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Cui Y, Zhuang M, Huang Z, Guo Y, Chen F, Li Y, Long Y, Liu Y, Zeng G, Feng X, Chen X. An antihypertensive drug-AT1 inhibitor attenuated BRCA development promoted by chronic psychological stress via Ang II/PARP1/FN1 pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167031. [PMID: 38253214 DOI: 10.1016/j.bbadis.2024.167031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Chronic psychological stress contributes to the occurrence of cancer and activates the renin-angiotensin system (RAS). However, the mechanisms by which RAS promotes the progression of breast cancer (BRCA) under chronic psychological stress are remain unknown. In this study, we observed elevated levels of Angiotensin II (Ang II) in both serum and BRCA tissue under chronic stress, leading to accelerated BRCA growth in a mouse model. An antihypertensive drug, candesartan (an AT1 inhibitor), effectively attenuated Ang II-induced cell proliferation and metastasis. Utilizing mass spectrometry and weighted gene co-expression network analysis (WGCNA), we identified fibronectin 1 (FN1) as the hub protein involved in chronic stress-Ang II/AT1 axis. Focal adhesion pathway was identified as a downstream signaling pathway activated during the progression of chronic stress. Depletion of FN1 significantly attenuated Ang II-induced proliferation and metastasis of BRCA cells. Poly (ADP-ribose) polymerase 1 (PARP1) was found to bind to the DNA promoter of FN1, leading to the transcription of FN1. Ang II upregulated PARP1 expression, resulting in increased FN1 levels. Recombinant FN1 partially restored the progress of BRCA malignancy induced by the Ang II/PARP1 pathway. In vivo, candesartan reversed the progressive effect of chronic psychological stress on BRCA. In clinical samples, Ang II levels in both serum and tumor tissues are higher in stressed patients compared to control patients. Serum Ang II levels were positively correlated with chronic stress indicators. In conclusion, our study demonstrated that chronic psychological stress accelerates the malignancy of BRCA, and the AT1 inhibitor candesartan counteracts these effects by suppressing the Ang II-AT1 axis and the downstream PARP1/FN1/focal adhesion pathway.
Collapse
Affiliation(s)
- Yuqing Cui
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; The Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Ming Zhuang
- The Department Radiotherapy Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Zheping Huang
- Women & Infants Hospital of Rhode Island & Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Yan Guo
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; The Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Fengzhi Chen
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Yangyang Li
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Yuanhui Long
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Ying Liu
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Guangchun Zeng
- The Department of Pathology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Xujing Feng
- The Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Xuesong Chen
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; The Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
5
|
Day M, Gibb R, Kolb B. Tactile stimulation facilitates functional recovery and dendritic change following neonatal hemidecortication in rats. Behav Brain Res 2023; 452:114582. [PMID: 37454933 DOI: 10.1016/j.bbr.2023.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
After large neocortical lesions, such as hemidecortication, children can show significant motor and cognitive impairments. It thus is of considerable interest to identify treatments that might enhance long-term functional outcome. We have previously shown that tactile stimulation enhances recovery from perinatal focal cortical lesions in rats, so the goal of the present experiment was to explore the effectiveness of postlesion tactile stimulation in reducing functional deficits associated with neonatal hemidecortication. Rats were given hemidecortications on postnatal day 10 (P10). Half of the group was then exposed to a daily tactile stimulation treatment for 15 min, three times a day for eleven days following the surgery. All groups were then tested on a number of behavioural tasks (Morris water task, skilled reaching, forelimb placing during spontaneous vertical exploration, and a sunflower seed opening task) beginning at P 120. The brains of the male animals were prepared for Golgi-Cox staining and subsequent analysis of dendritic arborisation and spine density. There were two main findings in this experiment: 1) Tactile stimulation improved cognitive ability and some motor performance after P 10 hemidecortication; and, 2) Tactile stimulation altered cortical organization after P10 hemidecortication. Tactile stimulation may provide an important noninvasive therapy after hemispherectomy in children.
Collapse
Affiliation(s)
- Morgan Day
- Dept of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robbin Gibb
- Dept of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Bryan Kolb
- Dept of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
6
|
Gong S, Deng F. Renin-angiotensin system: The underlying mechanisms and promising therapeutical target for depression and anxiety. Front Immunol 2023; 13:1053136. [PMID: 36761172 PMCID: PMC9902382 DOI: 10.3389/fimmu.2022.1053136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Emotional disorders, including depression and anxiety, contribute considerably to morbidity across the world. Depression is a serious condition and is projected to be the top contributor to the global burden of disease by 2030. The role of the renin-angiotensin system (RAS) in hypertension and emotional disorders is well established. Evidence points to an association between elevated RAS activity and depression and anxiety, partly through the induction of neuroinflammation, stress, and oxidative stress. Therefore, blocking the RAS provides a theoretical basis for future treatment of anxiety and depression. The evidence for the positive effects of RAS blockers on depression and anxiety is reviewed, aiming to provide a promising target for novel anxiolytic and antidepressant medications and/or for improving the efficacy of currently available medications used for the treatment of anxiety and depression, which independent of blood pressure management.
Collapse
Affiliation(s)
| | - Fang Deng
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Stress-induced cardiometabolic perturbations, increased oxidative stress and ACE/ACE2 imbalance are improved by endurance training in rats. Life Sci 2022; 305:120758. [DOI: 10.1016/j.lfs.2022.120758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
|
8
|
Correa BHM, Becari L, Peliky Fontes MA, Simões-e-Silva AC, Kangussu LM. Involvement of the Renin-Angiotensin System in Stress: State of the Art and Research Perspectives. Curr Neuropharmacol 2022; 20:1212-1228. [PMID: 34554902 PMCID: PMC9886820 DOI: 10.2174/1570159x19666210719142300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Along with other canonical systems, the renin-angiotensin system (RAS) has shown important roles in stress. This system is a complex regulatory proteolytic cascade composed of various enzymes, peptides, and receptors. Besides the classical (ACE/Ang II/AT1 receptor) and the counter-regulatory (ACE2/Ang-(1-7)/Mas receptor) RAS axes, evidence indicates that nonclassical components, including Ang III, Ang IV, AT2 and AT4, can also be involved in stress. OBJECTIVE AND METHODS This comprehensive review summarizes the current knowledge on the participation of RAS components in different adverse environmental stimuli stressors, including air jet stress, cage switch stress, restraint stress, chronic unpredictable stress, neonatal isolation stress, and post-traumatic stress disorder. RESULTS AND CONCLUSION In general, activation of the classical RAS axis potentiates stress-related cardiovascular, endocrine, and behavioral responses, while the stimulation of the counter-regulatory axis attenuates these effects. Pharmacological modulation in both axes is optimistic, offering promising perspectives for stress-related disorders treatment. In this regard, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are potential candidates already available since they block the classical axis, activate the counter-regulatory axis, and are safe and efficient drugs.
Collapse
Affiliation(s)
- Bernardo H. M. Correa
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Luca Becari
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Marco Antônio Peliky Fontes
- Department of Physiology & Biophysics - Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Ana Cristina Simões-e-Silva
- Department of Pediatrics, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas M. Kangussu
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; ,Address correspondence to this author at the Department of Morphology, Biological Sciences Institute – Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Tel: (+55-31) 3409-2772; E-mail:
| |
Collapse
|
9
|
Walker SC, Cavieres A, Peñaloza-Sancho V, El-Deredy W, McGlone FP, Dagnino-Subiabre A. C-low threshold mechanoafferent targeted dynamic touch modulates stress resilience in rats exposed to chronic mild stress. Eur J Neurosci 2022; 55:2925-2938. [PMID: 32852872 DOI: 10.1111/ejn.14951] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 01/28/2023]
Abstract
Affiliative tactile interactions buffer social mammals against neurobiological and behavioral effects of stress. The aim of this study was to investigate the cutaneous mechanisms underlying such beneficial consequences of touch by determining whether daily stroking, specifically targeted to activate a velocity/force tuned class of low-threshold c-fiber mechanoreceptor (CLTM), confers resilience against established markers of chronic unpredictable mild stress (CMS). Adult male Sprague Dawley rats were exposed to 2 weeks of CMS. Throughout the CMS protocol, some rats were stroked daily, either at CLTM optimal velocity (5 cm/s) or outside the CLTM optimal range (30 cm/s). A third CMS exposed group did not receive any tactile stimulation. The effect of CMS on serum corticosterone levels, anxiety- and depressive-like behaviors in these three groups was assessed in comparison to a control group of non-CMS exposed rats. While stroking did not mitigate the effects of CMS on body weight gain, CLTM optimal velocity stroking did significantly reduce CMS-induced elevations in corticosterone following an acute forced-swim. Rats receiving CLTM optimal stroking also showed significantly fewer anxiety-like behaviors (elevated plus-maze) than the other CMS exposed rats. In terms of depressive-like behavior, whereas the same velocity-specific resilience was observed in a forced-swim test and social interaction test both groups of stroked rats spent significantly less time interacting than control rats, though they also spent significantly less time in the corner than non-stroked CMS rats. Together, these findings support the theory CLTMs play a functional role in regulating the physiological condition of the body.
Collapse
Affiliation(s)
- Susannah C Walker
- Research Centre for Brain & Behaviour, Liverpool John Moores University, Liverpool, UK
| | - Antonia Cavieres
- Laboratory of Stress Neurobiology, Faculty of Sciences, Center for Integrative Neurobiology and Pathophysiology, Institute of Physiology, Universidad de Valparaíso, Valparaíso, Chile
| | - Valentín Peñaloza-Sancho
- Laboratory of Stress Neurobiology, Faculty of Sciences, Center for Integrative Neurobiology and Pathophysiology, Institute of Physiology, Universidad de Valparaíso, Valparaíso, Chile
| | - Wael El-Deredy
- Center for Research and Development in Health Engineering, Universidad de Valparaíso, Valparaíso, Chile
| | - Francis P McGlone
- Research Centre for Brain & Behaviour, Liverpool John Moores University, Liverpool, UK.,Institute of Psychology, Health & Society, University of Liverpool, Liverpool, UK
| | - Alexies Dagnino-Subiabre
- Laboratory of Stress Neurobiology, Faculty of Sciences, Center for Integrative Neurobiology and Pathophysiology, Institute of Physiology, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
10
|
Abstract
Modern lifestyle and adversities such as the COVID-19 pandemic pose challenges for our physical and mental health. Hence, it is of the utmost importance to identify mechanisms by which we can improve resilience to stress and quickly adapt to adversity. While there are several factors that improve stress resilience, social behavior—primarily in the form of social touch—is especially vital. This article provides an overview of how the somatosensory system plays a key role in translating the socio-emotional information of social touch into active coping with stress. Important future directions include evaluating in humans whether stress resilience can be modulated through the stimulation of low-threshold C-fiber mechanoreceptors and using this technology in the prevention of stress-related neuropsychiatric disorders such as major depressive disorder.
Collapse
|
11
|
Hesperidin Preserves Cognitive Functions and Hippocampus Histological Architecture in Albino Wistar Rats Subjected to Stress Through Enhancement of Brain-Derived Neurotrophic Factor. Neurotox Res 2021; 40:179-185. [PMID: 34826046 DOI: 10.1007/s12640-021-00433-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Hesperidin (HSD) is a natural compound with antioxidant potential. On the other hand, chronic stress had been linked to impaired cognitive functions as it affects many neurotransmitters and brain regions such as the hippocampus. The current study was conducted to examine the effect of HSD on learning and memory after chronic mild stress. Albino Wistar rats were subjected to chronic mild stress with HSD administered as supplements. HSD was found to decrease hippocampal amyloid beta and malondialdehyde levels, in addition, to preserve cognitive functions together with preserving hippocampus histological architecture. In conclusion, the present study sheds the light on the potential of HSD to ameliorate the deleterious effects of chronic mild stress on cognitive functions through brain-derived neurotrophic factor enhancement and reduction in Aβ formation in addition to activation of the antioxidant pathway.
Collapse
|
12
|
Baihe Jizihuang Tang Ameliorates Chronic Unpredictable Mild Stress-Induced Depression-Like Behavior: Integrating Network Pharmacology and Brain-Gut Axis Evaluation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5554363. [PMID: 34475963 PMCID: PMC8407975 DOI: 10.1155/2021/5554363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/13/2021] [Accepted: 08/05/2021] [Indexed: 01/01/2023]
Abstract
Baihe Jizihuang Tang (BHT) is a traditional Chinese medicine (TCM) prescription, which can also be used as a nutritional food with medicinal value. Herein, we aimed to clarify the antidepressive effects and molecular mechanism of BHT. Network pharmacological analysis; chronic unpredictable mild stress (CUMS) rat model assessment; behavioral tests; analysis of hippocampal neurotransmitter levels, hippocampal pathological structure, and hypothalamic-pituitary-adrenal (HPA) axis; western blot analysis; 16s RNA sequencing; ultraperformance liquid chromatography (UPLC)/mass spectrometry (MS); and high-performance liquid chromatography (HPLC)/ultraviolet (UV) analysis were used. We found 8 potentially active components and 12 targets from the database. KEGG analysis suggested that BHT significantly affected BDNF/tyrosine receptor kinase B levels, glutamate binding, synaptic transmission based on neurotransmitter signal, and the response to glucocorticoid signaling pathways. Consistently, 7 chemical components were identified using UPLC/quadrupole time-of-flight/MS; among them, regalosides A, B, C, and E were unique components of lily of TCM, and their content in BHT was significantly different: regaloside A > B > E > C. BHT could nourish hippocampal neurons, affect neurotransmitter metabolism, reduce HPA axis hyperactivity, improve deficits in hippocampal tissue structure, and change depressive behavior. Moreover, BHT regulated BDNF expression in the hippocampus and improved intestinal flora deficits in CUMS rats by changing the content of Bifidobacterium, Rothia, Glutamicibacter, and Lactobacillus at the genus level. Collectively, BHT attenuated CUMS-induced depression-like behavior by regulating BDNF and intestinal flora disorder through the brain-gut axis. Therefore, including BHT in the medication list may constitute a potential strategy for preventing depression.
Collapse
|
13
|
Bakhtiari-Dovvombaygi H, Izadi S, Zare M, Asgari Hassanlouei E, Dinpanah H, Ahmadi-Soleimani SM, Beheshti F. Vitamin D3 administration prevents memory deficit and alteration of biochemical parameters induced by unpredictable chronic mild stress in rats. Sci Rep 2021; 11:16271. [PMID: 34381124 PMCID: PMC8357828 DOI: 10.1038/s41598-021-95850-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate the effects of vitamin D3 (Vit D) administration on memory function, hippocampal level of amyloid-beta (Aβ), brain-derived neurotrophic factor (BDNF) and oxidative stress status in a rat model of unpredictable chronic mild stress (UCMS). Vit D was intraperitoneally administered at doses of 100, 1000, and 10,000 IU/kg. Animals were subjected to UCMS for a total period of 4 weeks. Memory function was assessed using morris water maze (MWM) and passive avoidance (PA) tests. Biochemical markers were measured to reveal the status of oxidative stress and antioxidant defense system. In addition, the levels of Aβ and BDNF were measured in hippocampal region. In the UCMS group, latency to find the platform was greater and the time spent in target quadrant (MWM test) as well as the latency to enter the dark compartment (PA test), were less than the vehicle group. Hippocampal malondialdehyde (MDA) and Aβ concentrations in the UCMS group were higher than the vehicle group. Hippocampal level of thiol and BDNF plus the activities of catalase and superoxide dismutase (SOD) were reduced in UCMS group compared to the control subjects (i.e. vehicle group). Interestingly, Vit D treatment supplementation reversed the mentioned effects of UCMS. Our findings indicated that Vit D administration improves UCMS-induced impairment of learning and memory through prevention of adverse effects on Aβ, BDNF and oxidative stress parameters.
Collapse
Affiliation(s)
- Hossein Bakhtiari-Dovvombaygi
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Saeed Izadi
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mostafa Zare
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - Hossein Dinpanah
- Department of Emergency Medicine, 9 Dey Educational Hospital, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran. .,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran. .,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
14
|
Costa R, Carvalho MSM, Brandão JDP, Moreira RP, Cunha TS, Casarini DE, Marcondes FK. Modulatory action of environmental enrichment on hormonal and behavioral responses induced by chronic stress in rats: Hypothalamic renin-angiotensin system components. Behav Brain Res 2020; 397:112928. [PMID: 32987059 DOI: 10.1016/j.bbr.2020.112928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Environmental enrichment (EE) has been studied as a protocol that can improve brain plasticity and may protect against negative insults such as chronic stress. The aim of this study was to evaluate the effects of EE on the hormonal and behavioral responses induced by chronic mild unpredictable stress (CMS) in rats, considering the involvement of the renin-angiotensin system. Male adult rats were divided into 4 groups: control, CMS, EE, and CMS + EE, and the experimental protocol lasted for 7 weeks. EE was performed during 7 weeks, 5 days per week, 2 h per day. CMS was applied during weeks 3, 4, and 5. After the CMS (week 6), depression-like behavior was evaluated by forced swimming and sucrose consumption tests, anxiety level was evaluated using the elevated plus-maze test, and memory was evaluated using the Y-maze test. On week 7, the animals were euthanized and basal plasma levels of corticosterone and catecholamines were determined. The hypothalamus was isolated and tissue levels of angiotensin peptides were evaluated. CMS increased plasma corticosterone, norepinephrine, and epinephrine basal concentrations, induced depression-like behaviors, impaired memory, and increased hypothalamic angiotensin I, II, and IV concentrations. EE decreased stress hormones secretion, depression-like behaviors, memory impairment, and hypothalamic angiotensin II induced by stress. Reductions of anxiety-like behavior and norepinephrine secretion were observed in both stressed and unstressed groups. The results indicated that EE seemed to protect adult rats against hormonal and behavioral CMS effects, and that the reduction of angiotensin II could contribute to these effects.
Collapse
Affiliation(s)
- Rafaela Costa
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Maeline Santos Morais Carvalho
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | - Roseli Peres Moreira
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Tatiana Sousa Cunha
- Science and Technology Institute, Federal University of São Paulo, São José Dos Campos, SP, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Klein Marcondes
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|