1
|
Thondala B, Chauhan G, Pawar H, Ray K, Sharma M, Yadav N, Kumar S, Kishore K, Panjwani U. Role of Adenosine A1 Receptor in Sleep Deprivation-Induced Neuroinflammation: Insights on Rapid Eye Movement Sleep and Fear Extinction Memory Recall in Rats. Cureus 2024; 16:e75926. [PMID: 39830563 PMCID: PMC11740000 DOI: 10.7759/cureus.75926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Sleep deprivation (SD), stemming from a myriad of aetiologies, is a prevalent health condition frequently overlooked. It typically impairs memory consolidation and synaptic plasticity, potentially through neuroinflammatory mechanisms and adenosinergic signalling. It is still unclear whether the adenosine A1 receptor (A1R) modulates SD-induced neurological deficits in the hippocampus. OBJECTIVES This study aims to evaluate the effects of SD on fear extinction memory recall and emotional behaviour in male Sprague Dawley rats; to investigate the role of A1R antagonism by the administration of 8-cyclopentyltheophylline (8-CPT), an A1R antagonist during 48-hour SD in mitigating neuroinflammation and synaptic plasticity deficits induced by SD; and to assess changes in hippocampal neurogenesis, neuronal cell death, and sleep architecture in response to A1R antagonism during SD. METHODS A total of 39 animals were used in the study, and they were divided into three experimental groups: 1) cage control (CC; n = 13); 2) SD for 48 hours (SD; n = 13); 3) SD for 48 hours+ 8-CPT (20 mg/kg/day in 20% DMSO divided into two doses, morning and evening, i.p.; n = 13). 'n' refers to the sample size/number of animals in each group. Rats were subjected to SD after cued fear extinction training for 48 hours followed by fear extinction memory recall test, anxious-depressive-like behaviours by open field test (OFT), sucrose preference test, and forced swim test (FST). Levels of adenosine in the hippocampus were quantified by high-performance liquid chromatography. Protein levels of interleukin-6 (IL-6) and IL-10 were quantified by enzyme-linked immunosorbent assay (ELISA). Expression levels of proteins and genes of interest were analysed using immunohistochemistry and real-time polymerase chain reaction (RT-PCR), respectively. Sleep architecture was assessed by recording electroencephalography (EEG), electromyography, and electrooculography from rats. RESULTS Administration of CPT during SD reversed extinction recall impairments (p = 0.01), improved line crossings in OFT, sucrose preference (p < 0.01), and reduced immobility during the FST (p < 0.01). Immunohistochemical analysis of DG, CA3, and CA1 regions of the hippocampus revealed a significant upregulation of A1R expression in the SD and SD+CPT groups (p < 0.001, n = 5). Expression of post-synaptic density protein (PSD-95) and synaptophysin increased and a marked reduction in the Toll-like receptor-4 (TLR-4) expression in activated microglia in the SD+CPT group. 8-CPT partially restored SD-induced decline in serotonin and brain-derived neurotrophic factor. SD-induced neuronal apoptosis through caspase-3 and the P-p38 mitogen-activated protein kinase pathway was partially reversed by 8-CPT. RT-PCR results showed that A1R antagonism attenuated gene expression of pro-inflammatory cytokines (IL-1β, TNFα, p-NFκB s536, and IL-6) and increased anti-inflammatory cytokines (IL-1ra, IL-4, IL-10, IL-11, and IL-13) during SD. EEG recordings revealed that A1R antagonism increased REM sleep without affecting non-REM sleep during SD, leaving rebound sleep unaffected. Conclusion: These findings highlight the role of A1R antagonism in restoring fear extinction memory recall, synaptic plasticity, adult neurogenesis, neuronal cell death, and attenuating neuroinflammation during SD, paving the way for the further exploration of its therapeutic potential in sleep-related cognitive deficits.
Collapse
Affiliation(s)
- Bhanuteja Thondala
- Department of Human Factors Engineering and Military Ergonomics, Defence Institute of Physiology and Allied Sciences, Delhi, IND
- Physiology, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Garima Chauhan
- Department of Human Factors Engineering and Military Ergonomics, Defence Institute of Physiology and Allied Sciences, Delhi, IND
| | - Harsh Pawar
- Department of Human Factors Engineering and Military Ergonomics, Defence Institute of Physiology and Allied Sciences, Delhi, IND
| | - Koushik Ray
- Department of Human Factors Engineering and Military Ergonomics, Defence Institute of Physiology and Allied Sciences, Delhi, IND
| | - Monika Sharma
- Department of Human Factors Engineering and Military Ergonomics, Defence Institute of Physiology and Allied Sciences, Delhi, IND
| | - Neha Yadav
- Department of Human Factors Engineering and Military Ergonomics, Defence Institute of Physiology and Allied Sciences, Delhi, IND
| | - Sanjeev Kumar
- Department of Human Factors Engineering and Military Ergonomics, Defence Institute of Physiology and Allied Sciences, Delhi, IND
| | - Krishna Kishore
- Department of Human Factors Engineering and Military Ergonomics, Defence Institute of Physiology and Allied Sciences, Delhi, IND
| | - Usha Panjwani
- School of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, IND
- Department of Human Factors Engineering and Military Ergonomics, Defence Institute of Physiology and Allied Sciences, Delhi, IND
| |
Collapse
|
2
|
Tregub PP, Komleva YK, Kulikov VP, Chekulaev PA, Tregub OF, Maltseva LD, Manasova ZS, Popova IA, Andriutsa NS, Samburova NV, Salmina AB, Litvitskiy PF. Relationship between Hypoxia and Hypercapnia Tolerance and Life Expectancy. Int J Mol Sci 2024; 25:6512. [PMID: 38928217 PMCID: PMC11204369 DOI: 10.3390/ijms25126512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The review discusses the potential relationship between hypoxia resistance and longevity, the influence of carbon dioxide on the mechanisms of aging of the mammalian organism, and intermittent hypercapnic-hypoxic effects on the signaling pathways of aging mechanisms. In the article, we focused on the potential mechanisms of the gero-protective efficacy of carbon dioxide when combined with hypoxia. The review summarizes the possible influence of intermittent hypoxia and hypercapnia on aging processes in the nervous system. We considered the perspective variants of the application of hypercapnic-hypoxic influences for achieving active longevity and the prospects for the possibilities of developing hypercapnic-hypoxic training methods.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
| | - Yulia K. Komleva
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
| | - Vladimir P. Kulikov
- Department of Ultrasound and Functional Diagnostics, Altay State Medical University, 656040 Barnaul, Russia
| | - Pavel A. Chekulaev
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Larisa D. Maltseva
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia S. Andriutsa
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia V. Samburova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alla B. Salmina
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Zeng W, Takashima K, Tang Q, Zou X, Ojiro R, Ozawa S, Jin M, Ando Y, Yoshida T, Shibutani M. Natural antioxidant formula ameliorates lipopolysaccharide-induced impairment of hippocampal neurogenesis and contextual fear memory through suppression of neuroinflammation in rats. J Chem Neuroanat 2023; 131:102285. [PMID: 37150363 DOI: 10.1016/j.jchemneu.2023.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
This study investigated the ameliorating effects of a natural antioxidant formula (NAF) consisting of Ginkgo biloba leaf extract, docosahexaenoic acid/eicosapentaenoic acid, ferulic acid, flaxseed oil, vitamin E, and vitamin B12 on a lipopolysaccharide (LPS)-induced cognitive dysfunction model in rats. Six-week-old rats received a diet containing 0.5% (w/w) NAF for 38 days from Day 1, and LPS (1 mg/kg body weight) was administered intraperitoneally once daily on Days 8 and 10. On Day 11, LPS alone increased interleukin-1β and tumor necrosis factor-α in the hippocampus and cerebral cortex and the numbers of M1-type microglia/macrophages and GFAP+ reactive astrocytes in the hilus of the hippocampal dentate gyrus. NAF treatment decreased brain proinflammatory cytokine levels and increased the number of M2-type microglia/macrophages. During Days 34-38, LPS alone impaired fear memory acquisition and the extinction learning process, and NAF facilitated fear extinction learning. On Day 38, LPS alone decreased the number of type-3 neural progenitor cells in the hippocampal neurogenic niche, and NAF restored the number of type-3 neural progenitor cells and increased the numbers of both immature granule cells in the neurogenic niche and reelin+ hilar interneurons. Thus, NAF exhibited anti-inflammatory effects and ameliorated LPS-induced adverse effects on hippocampal neurogenesis and fear memory learning, possibly through amplification of reelin signaling by hilar interneurons. These results suggest that neuroinflammation is a key factor in the development of LPS-induced impairment of fear memory learning, and supplementation with NAF in the present study helped to prevent hippocampal neurogenesis and disruptive neurobehaviors caused by neuroinflammation.
Collapse
Affiliation(s)
- Wen Zeng
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Yujiro Ando
- Withpety Co., Ltd., 1-9-3 Shin-ishikawa, Aoba-ku, Yokohama, Kanagawa 225-0003, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
4
|
Burtscher J, Niedermeier M, Hüfner K, van den Burg E, Kopp M, Stoop R, Burtscher M, Gatterer H, Millet GP. The interplay of hypoxic and mental stress: Implications for anxiety and depressive disorders. Neurosci Biobehav Rev 2022; 138:104718. [PMID: 35661753 DOI: 10.1016/j.neubiorev.2022.104718] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Adequate oxygen supply is essential for the human brain to meet its high energy demands. Therefore, elaborate molecular and systemic mechanism are in place to enable adaptation to low oxygen availability. Anxiety and depressive disorders are characterized by alterations in brain oxygen metabolism and of its components, such as mitochondria or hypoxia inducible factor (HIF)-pathways. Conversely, sensitivity and tolerance to hypoxia may depend on parameters of mental stress and the severity of anxiety and depressive disorders. Here we discuss relevant mechanisms of adaptations to hypoxia, as well as their involvement in mental stress and the etiopathogenesis of anxiety and depressive disorders. We suggest that mechanisms of adaptations to hypoxia (including metabolic responses, inflammation, and the activation of chemosensitive brain regions) modulate and are modulated by stress-related pathways and associated psychiatric diseases. While severe chronic hypoxia or dysfunctional hypoxia adaptations can contribute to the pathogenesis of anxiety and depressive disorders, harnessing controlled responses to hypoxia to increase cellular and psychological resilience emerges as a novel treatment strategy for these diseases.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Martin Niedermeier
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Clinic for Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| | - Erwin van den Burg
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Ron Stoop
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Adebayo OG, Asiwe JN, Ben-Azu B, Aduema W, Onyeleonu I, Akpotu AE, Wopara I, Kolawole TA, Umoren EB, Igbokwe V, Buduburisi BR, Onwuka FC, Brown PI. Ginkgo biloba protects striatal neurodegeneration and gut phagoinflammatory damage in rotenone-induced mice model of Parkinson's disease: Role of executioner caspase-3/Nrf2/ARE signaling. J Food Biochem 2022; 46:e14253. [PMID: 35608987 DOI: 10.1111/jfbc.14253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/19/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Asymptomatic and early clinical stages of Parkinson's disease (PD) have been linked with comorbid non-motor symptoms including dysfunction of the gastrointestinal (GI) tract. Notwithstanding, neuroprotective and gastroprotective effects of Ginkgo biloba supplements (GBS) have been investigated independently. Hence, whether GBS-mediated GIT-protective capacity could be helpful in PD via gut-brain anti-inflammatory signaling still remains unknown. Treatment with GBS significantly repressed the motor behavioral and neuromuscular deficits and prevented loss of striatal dopaminergic loss by improving the level of tyrosine hydroxylase enzyme and suppressing synucleinopathy development. Striatal neurons and ileal epithelial injury following intraperitoneal rotenone administration were accompanied with oxidoinflammatory/nitroinflammatory stress and marked inhibition of cholinergic transmission. Moreover, there was increased striatal executioner caspase-3 and decreased nuclear factor erythroid-2-related factor 2 (Nrf2) immunoexpression, loss of striatal pyramidal neuron with a marked decrease in length and width of the dendritic spines as well as significant hyperplasia of cryptal cells in the ileal epithelial tissues, all which were reversed by the pretreatment + concurrent (Pre-CONC) and concurrent (CONC) GBS treatment pattern. In sum, we proved the potential dual effects of GBS in preventing both dopaminergic neural-related impairments and gut wall abnormalities linked with PD.
Collapse
Affiliation(s)
- Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Jerome N Asiwe
- Cardiorespiratory Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Wadioni Aduema
- Department of Physiology, Faculty of Basic Medical Sciences, Bayelsa Medical University, Yenagoa, Nigeria
| | - Ijeoma Onyeleonu
- Department of Anatomy, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Ajirioghene E Akpotu
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Sciences, University of Port Harcourt, Port-Harcourt, Nigeria
| | - Tolunigba A Kolawole
- Endocrinology and Metabolism Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Elizabeth B Umoren
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria.,Gastrointestinal Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Vincent Igbokwe
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria.,Department of Physiology, Faculty of Basic Medical Sciences, Nnamdi Azikwe University, Awka, Nigeria
| | - Buduchim R Buduburisi
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Favour C Onwuka
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Providence I Brown
- Endocrinology and Metabolism Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| |
Collapse
|
6
|
Adebayo OG, Ben-Azu B, Ajayi AM, Wopara I, Aduema W, Kolawole TA, Umoren EB, Onyeleonu I, Ebo OT, Ajibo DN, Akpotu AE. Gingko biloba abrogate lead-induced neurodegeneration in mice hippocampus: involvement of NF-κB expression, myeloperoxidase activity and pro-inflammatory mediators. Biol Trace Elem Res 2022; 200:1736-1749. [PMID: 34240327 DOI: 10.1007/s12011-021-02790-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 10/20/2022]
Abstract
Neuroimmune alterations have important implication in the neuropsychiatric symptoms and biochemical changes associated with lead-induced neurotoxicity. It has been suggested that inhibition of neuroinflammatory-mediated lead-induced neurotoxicity by phytochemicals enriched with antioxidant activities would attenuate the deleterious effects caused by lead. Hence, this study investigated the neuroinflammatory mechanism behind the effect of Ginkgo biloba supplement (GB-S) in lead-induced neurotoxicity in mice brains. Mice were intraperitoneally pretreated with lead acetate (100 mg/kg) for 30 min prior the administration of GB-S (10 and 20 mg/kg, i.p.) and ethylenediaminetetraacetic acid (EDTA) (50 mg/kg, i.p.) for 14 consecutive days. Symptoms of neurobehavioral impairment were evaluated using open field test (OFT), elevated plus maze (EPM), and tail suspension test (TST) respectively. Thereafter, mice brain hippocampi were sectioned for myeloperoxidase activity (MPO), pro-inflammatory cytokine (TNF-α and IL-6) estimation and inflammatory protein (NF-κB) expression. Furthermore, histomorphormetric studies (Golgi impregnation and Cresyl violet stainings) were carried out. GB-S (10 and 20 mg/kg) significantly restores neurobehavioral impairments based on improved locomotion, reduced anxiety- and depressive-like behavior. Moreover, GB-S reduced the MPO activity, inhibits TNF-α, IL-6 release, and downregulates NF-κB immunopositive cell expression in mice hippocampus. Histomorphometrically, GB-S also prevents the loss of pyramidal neuron in the hippocampus. The endpoint of this findings suggest that GB-S decreases neuropsychiatric symptoms induced by lead acetate through mechanisms related to inhibition of release of pro-inflammatory mediators and suppression of hippocampal pyramidal neuron degeneration in mice.
Collapse
Affiliation(s)
- Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria.
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Abayomi M Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Port Harcourt, Port Harcourt, River State, Nigeria
| | - Wadioni Aduema
- Department of Physiology, Bayelsa Medical University, Yenagoa, Bayelsa State, Nigeria
| | - Tolunigba A Kolawole
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Elizabeth B Umoren
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Ijeoma Onyeleonu
- Department of Anatomy, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Oloruntoba T Ebo
- Department of Community Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Doris N Ajibo
- Department of Pharmacy, Faculty of Clinical Sciences, University of Port Harcourt, Port Harcourt, River State, Nigeria
| | - Ajirioghene E Akpotu
- Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Enugu, Enugu State, Nigeria
| |
Collapse
|
7
|
Tian T, Wu J, Chen T, Li J, Yan S, Zhou Y, Peng X, Li Y, Zheng N, Cai A, Ning Q, Xiang H, Xu F, Qin Y, Zhu W, Wang J. Long-term follow-up of dynamic brain changes in patients recovered from COVID-19 without neurological manifestations. JCI Insight 2022; 7:155827. [PMID: 35191397 PMCID: PMC8876627 DOI: 10.1172/jci.insight.155827] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND After the initial surge in COVID-19 cases, large numbers of patients were discharged from a hospital without assessment of recovery. Now, an increasing number of patients report postacute neurological sequelae, known as “long COVID” — even those without specific neurological manifestations in the acute phase. METHODS Dynamic brain changes are crucial for a better understanding and early prevention of “long COVID.” Here, we explored the cross-sectional and longitudinal consequences of COVID-19 on the brain in 34 discharged patients without neurological manifestations. Gray matter morphology, cerebral blood flow (CBF), and volumes of white matter tracts were investigated using advanced magnetic resonance imaging techniques to explore dynamic brain changes from 3 to 10 months after discharge. RESULTS Overall, the differences of cortical thickness were dynamic and finally returned to the baseline. For cortical CBF, hypoperfusion in severe cases observed at 3 months tended to recover at 10 months. Subcortical nuclei and white matter differences between groups and within subjects showed various trends, including recoverable and long-term unrecovered differences. After a 10-month recovery period, a reduced volume of nuclei in severe cases was still more extensive and profound than that in mild cases. CONCLUSION Our study provides objective neuroimaging evidence for the coexistence of recoverable and long-term unrecovered changes in 10-month effects of COVID-19 on the brain. The remaining potential abnormalities still deserve public attention, which is critically important for a better understanding of “long COVID” and early clinical guidance toward complete recovery. FUNDING National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
| | - Tao Chen
- Institute and Department of Infectious Disease and
| | - Jia Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiran Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaolong Peng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
| | - Qin Ning
- Institute and Department of Infectious Disease and
| | - Hongbing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Kushwah N, Jain V, Kadam M, Kumar R, Dheer A, Prasad D, Kumar B, Khan N. Ginkgo biloba L. Prevents Hypobaric Hypoxia-Induced Spatial Memory Deficit Through Small Conductance Calcium-Activated Potassium Channel Inhibition: The Role of ERK/CaMKII/CREB Signaling. Front Pharmacol 2021; 12:669701. [PMID: 34326768 PMCID: PMC8313424 DOI: 10.3389/fphar.2021.669701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Hypobaric hypoxia (HH) is a stressful condition, which is more common at high altitudes and can impair cognitive functions. Ginkgo biloba L. leaf extract (GBE) is widely used as herbal medicine against different disorders. Its ability to improve cognitive functions, reduce oxidative stress, and promote cell survival makes it a putative therapeutic candidate against HH. The present study has been designed to explore the effect of GBE on HH-induced neurodegeneration and memory impairment as well as possible signaling mechanisms involved. 220–250 gm (approximately 6- to 8-week-old) Sprague Dawley rats were randomly divided into different groups. GBE was orally administered to respective groups at a dose of 100 mg/kg/day throughout the HH exposure, i.e., 14 days. Memory testing was performed followed by hippocampus isolation for further processing of different molecular and morphological parameters related to cognition. The results indicated that GBE ameliorates HH-induced memory impairment and oxidative damage and reduces apoptosis. Moreover, GBE modulates the activity of the small conductance calcium-activated potassium channels, which further reduces glutamate excitotoxicity and apoptosis. The exploration of the downstream signaling pathway demonstrated that GBE administration prevents HH-induced small conductance calcium-activated potassium channel activation, and that initiates pro-survival machinery by activating extracellular signal–regulated kinase (ERK)/calmodulin-dependent protein kinase II (CaMKII) and the cAMP response element–binding protein (CREB) signaling pathway. In summary, the current study demonstrates the beneficial effect of GBE on conditions like HH and provides various therapeutic targets involved in the mechanism of action of GBE-mediated neuroprotection.
Collapse
Affiliation(s)
- Neetu Kushwah
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Vishal Jain
- Department of Neurophysiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Manisha Kadam
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Rahul Kumar
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Aastha Dheer
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Dipti Prasad
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Bhuvnesh Kumar
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India.,Department of Neurophysiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Nilofar Khan
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| |
Collapse
|
9
|
Burtscher J, Mallet RT, Burtscher M, Millet GP. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res Rev 2021; 68:101343. [PMID: 33862277 DOI: 10.1016/j.arr.2021.101343] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
The absolute reliance of the mammalian brain on oxygen to generate ATP renders it acutely vulnerable to hypoxia, whether at high altitude or in clinical settings of anemia or pulmonary disease. Hypoxia is pivotal to the pathogeneses of myriad neurological disorders, including Alzheimer's, Parkinson's and other age-related neurodegenerative diseases. Conversely, reduced environmental oxygen, e.g. sojourns or residing at high altitudes, may impart favorable effects on aging and mortality. Moreover, controlled hypoxia exposure may represent a treatment strategy for age-related neurological disorders. This review discusses evidence of hypoxia's beneficial vs. detrimental impacts on the aging brain and the molecular mechanisms that mediate these divergent effects. It draws upon an extensive literature search on the effects of hypoxia/altitude on brain aging, and detailed analysis of all identified studies directly comparing brain responses to hypoxia in young vs. aged humans or rodents. Special attention is directed toward the risks vs. benefits of hypoxia exposure to the elderly, and potential therapeutic applications of hypoxia for neurodegenerative diseases. Finally, important questions for future research are discussed.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|