1
|
Akwu NA, Lekhooa M, Deqiang D, Aremu AO. Antidepressant effects of coumarins and their derivatives: A critical analysis of research advances. Eur J Pharmacol 2023; 956:175958. [PMID: 37543158 DOI: 10.1016/j.ejphar.2023.175958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Coumarins and their derivatives are non-flavonoids polyphenols with diverse pharmacological activities including anti-depressant effects. This study systematically examines the antidepressant effects of coumarins and their derivatives in relation to time series of research progress in the pharmacological pathways, association with other diseases, toxicity and bibliometric analysis. The review was approached using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) coupled with R package involving Biblioshiny, a web interface for Bibliometrix analysis and VOSviewer software analytic tools. Literature searches were conducted in Scopus, Web of Science, and PubMed from the inception through January 21, 2023. Coumarins, depression, coumarin derivatives and treatment were the main search terms used which resulted in the inclusion of 46 eligible publications. Scopoletin, psoralen, 7-hydroxycoumarin, meranzin hydrate, osthole, esculetin/umbelliferone were the most studied coumarins with antidepressant effects. Coumarins and their derivatives exerted antidepressant effects with a stronger affinity for monoamine oxidase-B (MAO-B) inhibition and, their inhibitory effect via neurotransmitter pathway on MAO is well-studied. However, epigenetic modification, neuroendocrine, neurotrophic pathways are understudied. Recent research focuses on their antidepressant effects which targeted cytokines and fibromyalgia. There is a link between the gut microbiome, the brain, and depression; meranzin hydrate exerts an antidepressant activity by remodelling the gastrointestinal system. We established that empirical data on some coumarins and their derivatives to support their antidepressant effects are limited. Likewise, the safe dose range for several coumarins and their derivatives is yet to be fully determined.
Collapse
Affiliation(s)
- Nneka Augustina Akwu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2790, South Africa; Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Makhotso Lekhooa
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Dou Deqiang
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian, 116600, China
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2790, South Africa; School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
| |
Collapse
|
2
|
Zuo W, Liu X, Chen J, Zuo W, Yin Y, Nie X, Tang P, Huang Y, Yu Q, Hu Q, Zhou J, Tan Y, Huang X, Ren Q. Single-cell sequencing provides insights into the landscape of ovary in PCOS and alterations induced by CUMS. Am J Physiol Endocrinol Metab 2023; 325:E346-E362. [PMID: 37584608 DOI: 10.1152/ajpendo.00165.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder related to psychological distress. However, the mechanism underlying increased prevalence of depression in PCOS remained unclear. This study aimed to explore the unique transcriptional landscape of ovary and offered a platform to explore the mechanism of PCOS, as well as the influences caused by depression. The PCOS rat model was established by letrozole whereas PCOS rat model with depression was established by letrozole combined with chronic unpredicted mild stress (CUMS). Then single-cell RNA sequencing (scRNA-Seq) was applied to analyze the transcriptional features of rat ovaries. Granulosa cells (GCs) and fibroblasts (Fibros) accounted for the top two clusters of total 12 cell types. There were nine clusters in GCs, related to inflammatory response, endoplasmic reticulum (ER) stress, and steroidogenesis. The expression of differentially expressed genes (DEG) Hes1 was higher in PCOS and PCOS + CUMS groups, exhibiting enhanced expression by pseudotime and positively related to inflammation. Pseudotemporal analysis revealed that inflammation contributed to the different GCs distributions. Moreover, analysis of DEGs and gene ontology (GO) function enrichment revealed CUMS aggravated inflammation in PCOS GCs possibly via interferon signaling pathway. In theca cells (TCs), nine clusters were observed and some of them were relevant to inflammation, ER stress, and lipid metabolism. DEGs Ass1, Insl3, and Ifi27 were positively related to Cyp17a1, and Ces1d might contribute to the different trajectory of TCs. Subsequent scRNA-seq revealed a signature profile of endothelial cells (ECs) and Fibros, which suggest that inflammation-induced damage of ECs and Fibro, further exacerbated by CUMS. Finally, analysis of T cells and mononuclear phagocytes (MPs) revealed the existence of immune dysfunction, among which interferon signaling played a critical role. These findings provided more knowledge for a better understanding PCOS from the view of inflammation and identified new biomarkers and targets for the treatment of PCOS with psychological diseases.NEW & NOTEWORTHY In this study, we mapped the landscape of polycystic ovary syndrome (PCOS) ovary with rat model induced by letrozole and provided a novel insight into the molecular mechanism of PCOS accompanied by chronic unpredicted mild stress (CUMS) at single-cell transcriptomic level. These observations highlight the importance of inflammation in the pathogenesis of PCOS, which might also be the bridge between PCOS and psychological diseases.
Collapse
Affiliation(s)
- Wenting Zuo
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiangfei Liu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jianhuai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Wenren Zuo
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yanyun Yin
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiaowei Nie
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Peipei Tang
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Yunke Huang
- Department of Gynaecology, Women's Hospital School of Zhejiang University, Hangzhou, People's Republic of China
| | - Qian Yu
- Department of Science and Technology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Qiaoyun Hu
- Singleron Biotechnologies, Nanjing, People's Republic of China
| | - Jie Zhou
- Department of Traditional Chinese Medicine, The First People's Hospital of Nantong, Nantong, People's Republic of China
| | - Yong Tan
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Xi Huang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Qingling Ren
- Department of Gynaecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Su B, Tian J, Wang K, Yang W, Ning J, Liang Y, Liu Y, Li Y, Zheng G. Qualitative and Quantitative Analyses of the Chemical Components of Peels from Different Pomelo Cultivars ( Citrus grandis [L.] Osbeck) Based on Gas Chromatography-Mass Spectrometry, Ultraperformance Liquid Chromatography-Q-Exactive Orbitrap-MS, and High-Performance Liquid Chromatography-Photodiode Array Detection. ACS OMEGA 2023; 8:6253-6267. [PMID: 36844509 PMCID: PMC9948162 DOI: 10.1021/acsomega.2c05514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
The volatile and nonvolatile phytochemicals in peels of 5 major pomelo cultivars (including Citrus grandis cv. Yuhuanyou, C. grandis cv. Liangpingyou, C. grandis cv. Guanximiyou, C. grandis cv. Duweiwendanyou, and C. grandis cv. Shatianyou) from 11 places in China were characterized. First, 194 volatile compounds in pomelo peels were identified by gas chromatography-mass spectrometry (GC-MS). Of these, 20 major volatile compounds were subjected to cluster analysis. The heatmap indicated that the volatile compounds in peels of C. grandis cv. Shatianyou and C. grandis cv. Liangpingyou were different from those in other varieties, while there was no difference among C. grandis cv. Guanximiyou, C. grandis cv. Yuhuanyou, and C. grandis cv. Duweiwendanyou from different origins. Second, 53 nonvolatile compounds were identified in pomelo peels by ultraperformance liquid chromatography-Q-exactive orbitrap tandem MS (UPLC-Q-exactive orbitrap-MS), of which 11 components were detected for the first time. Third, six major nonvolatile compounds were quantitatively analyzed with high-performance LC-photodiode array detection (HPLC-PDA). Combining the results of HPLC-PDA and the heatmap, 6 nonvolatile compounds in 12 batches of pomelo peel were well separated among varieties. Comprehensive analysis and identification of chemical components in pomelo peels are of great significance for their further development and utilization.
Collapse
|
4
|
The young fruit of Citrus aurantium L. or Citrus sinensis Osbeck as a natural health food: A deep insight into the scientific evidence of its health benefits. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
5
|
Su Y, Tao L, Zhang X, Sheng X, Li Q, Fei W, Yin T, Kang A, Aa J, Wang G. Non-targeted characteristic filter analysis combined with in silico prediction strategies to identify the chemical components and in vivo metabolites of Dalitong Granules by UPLC-Q-TOF/MS/MS. J Pharm Biomed Anal 2022; 222:115086. [DOI: 10.1016/j.jpba.2022.115086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
|
6
|
Liu Y, He X, Di Z, Du X. Study on the Active Constituents and Molecular Mechanism of Zhishi Xiebai Guizhi Decoction in the Treatment of CHD Based on UPLC-UESI-Q Exactive Focus, Gene Expression Profiling, Network Pharmacology, and Experimental Validation. ACS OMEGA 2022; 7:3925-3939. [PMID: 35155889 PMCID: PMC8829943 DOI: 10.1021/acsomega.1c04491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
As one of the most common clinical cardiovascular diseases (CVDs), coronary heart disease (CHD) is the most common cause of death in the world. It has been confirmed that Zhishi Xiebai Guizhi decoction (ZXGD), a classical prescription of the traditional Chinese medicine (TCM), has achieved certain effects in the treatment of CHD; however, the mechanism still remains controversial. In this paper, an integrated approach, including UPLC-UESI-Q Exactive Focus, gene expression profiling, network pharmacology, and experimental validation, was introduced to systematically investigate the mechanism of ZXGD in the treatment of CHD. First, UPLC-UESI-Q Exactive Focus was applied to identify the chemical compounds of ZXGD. Then, the targets of the components for ZXGD were predicted by MedChem Studio software embed in the integrative pharmacology-based research platform of TCM, and the differentially expressed genes (DEGs) of CHD were obtained by gene expression profiling in gene expression omnibus database. The common genes of the above two genes were obtained by Venn analysis as the targets of GXGD in treatment with CHD. Third, the core targets were screened out by protein-protein interaction network analysis, and the kyoto encyclopedia of genes and genomes pathway enrichment analysis was performed by the database for annotation, visualization, and integrated discovery bioinformatics resources. After that, the formula-herb-compound-target-pathway network was constructed to explore the mechanism of ZXGD in the treatment of CHD. Finally, molecular docking and the vitro experiment were carried out to validate some key targets. As a result, a total of 39 compounds, 12 core targets, and 4 pathways contributed to ZXGD for the treatment of CHD. This study preliminarily provided a foundation for the study on the mechanism against CHD for ZXGD and may be a reference for the compatibility mechanism and the extended application of TCM compound prescription.
Collapse
Affiliation(s)
- Yuan Liu
- Institute
of Traditional Chinese Medicine, Shaanxi
Academy of Traditional Chinese Medicine, Xi’an, Shaanxi 710003, China
| | - Xu He
- Department
of Integrated Traditional Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang 711301, China
| | - Zhibiao Di
- Institute
of Traditional Chinese Medicine, Shaanxi
Academy of Traditional Chinese Medicine, Xi’an, Shaanxi 710003, China
| | - Xia Du
- Institute
of Traditional Chinese Medicine, Shaanxi
Academy of Traditional Chinese Medicine, Xi’an, Shaanxi 710003, China
- Institute
of Chinese Materia Medica, China Academy
of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
7
|
Cheng Y, Ma X, Zhao Q, Wang C, Yan D, Li F. Metabolic Profile of C-Prenyl Coumarins Using Mass Spectrometry-Based Metabolomics. Molecules 2021; 26:molecules26216558. [PMID: 34770967 PMCID: PMC8588418 DOI: 10.3390/molecules26216558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
C-prenyl coumarins (C-PYCs) are compounds with similar structures and various bioactivities, which are widely distributed in medicinal plants. Until now, the metabolic characterizations of C-PYCs and the relationship between metabolism and bioactivities remain unclear. In this study, ultra-performance chromatography electrospray ionization quadrupole time-of-flight mass spectrometry-based metabolomics (UPLC-ESI-QTOF-MS) was firstly used to determine the metabolic characterizations of three C-PYCs, including meranzin hydrate (MH), isomeranzin (ISM), and meranzin (MER). In total, 52 metabolites were identified, and all of them were found to be novel metabolites. Among these metabolites, 10 were from MH, 22 were from ISM, and 20 were from MER. The major metabolic pathways of these C-PYCs were hydroxylation, dehydrogenation, demethylation, and conjugation with cysteine, N-acetylcysteine, and glucuronide. The metabolic rate of MH was much lower than ISM and MER, which was only 27.1% in MLM and 8.7% in HLM, respectively. Additionally, recombinant cytochrome P450 (CYP) screening showed that CYP1A1, 2B6, 3A4, and 3A5 were the major metabolic enzymes involved in the formation of metabolites. Further bioactivity assays indicated that all of these three C-PYCs exhibited anti-inflammatory activity, but the effects of ISM and MER were slightly higher than MH, accompanied by a significant decrease in inflammatory cytokines transcription induced by lipopolysaccharide (LPS) in macrophages RAW 264.7. Taken together, the metabolic characterizations of the three C-PYCs suggested that the side chain of the prenyl group may impact the metabolism and biological activity of C-PYCs.
Collapse
Affiliation(s)
- Yan Cheng
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Q.Z.); (C.W.)
| | - Xiaofang Ma
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Qi Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Q.Z.); (C.W.)
| | - Chunyan Wang
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Q.Z.); (C.W.)
| | - Dongmei Yan
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
- Correspondence: (D.Y.); (F.L.)
| | - Fei Li
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Q.Z.); (C.W.)
- Correspondence: (D.Y.); (F.L.)
| |
Collapse
|