1
|
Isaev AB, Bychkov ML, Kulbatskii DS, Andreev-Andrievskiy AA, Mashkin MA, Shulepko MA, Shlepova OV, Loktyushov EV, Latanov AV, Kirpichnikov MP, Lyukmanova EN. Upregulation of cholinergic modulators Lypd6 and Lypd6b associated with autism drives anxiety and cognitive decline. Cell Death Discov 2024; 10:444. [PMID: 39433742 PMCID: PMC11494011 DOI: 10.1038/s41420-024-02211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Intellectual disability and autistic features are associated with chromosome region 2q23.q23.2 duplication carrying LYPD6 and LYPD6B genes. Here, we analyzed LYPD6 and LYPD6B expression in patients with different neuropsychiatric disorders. Increased LYPD6 and LYPD6B expression was revealed in autism and other disorders. To study possible consequences of Lypd6 and Lypd6b overexpression in the brain, we used a mouse model with intracerebroventricular delivery of recombinant analogs of these proteins. A two-week infusion evoked significant memory impairment and acute stress. Both modulators downregulated hippocampal and amygdala dendritic spine density. No changes in synaptic plasticity were observed. Intracerebroventricular administration by both proteins downregulated hippocampal expression of Lypd6, Lypd6b, and α7 nicotinic acetylcholine receptor (nAChR). Similar to Lypd6, Lypd6b targeted different nAChR subtypes in the brain with preferential inhibition of α7- and α4β2-nAChRs. Thus, increased Lypd6 and Lypd6b level in the brain are linked to cholinergic system depression, neuronal atrophy, memory decline, and anxiety.
Collapse
Affiliation(s)
- Aizek B Isaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
| | - Maxim L Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitrii S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Andreev-Andrievskiy
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Biomedical Problems of Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Mashkin
- Institute for Biomedical Problems of Russian Academy of Sciences, Moscow, Russia
| | | | - Olga V Shlepova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
| | - Eugene V Loktyushov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Russia
| | - Alexander V Latanov
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Moscow Center for Advanced Studies, Moscow, Russia.
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
- Shenzhen MSU-BIT University, Shenzhen, China.
| |
Collapse
|
2
|
Shrader SH, Mellen N, Cai J, Barnes GN, Song ZH. Cannabidiol is a behavioral modulator in BTBR mouse model of idiopathic autism. Front Neurosci 2024; 18:1359810. [PMID: 38784096 PMCID: PMC11112039 DOI: 10.3389/fnins.2024.1359810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction The prevalence of Autism Spectrum Disorder (ASD) has drastically risen over the last two decades and is currently estimated to affect 1 in 36 children in the U.S., according to the center for disease control (CDC). This heterogenous neurodevelopmental disorder is characterized by impaired social interactions, communication deficits, and repetitive behaviors plus restricted interest. Autistic individuals also commonly present with a myriad of comorbidities, such as attention deficit hyperactivity disorder, anxiety, and seizures. To date, a pharmacological intervention for the treatment of core autistic symptoms has not been identified. Cannabidiol (CBD), the major nonpsychoactive constituent of Cannabis sativa, is suggested to have multiple therapeutic applications, but its effect(s) on idiopathic autism is unknown. We hypothesized that CBD will effectively attenuate the autism-like behaviors and autism-associated comorbid behaviors in BTBR T+Itpr3tf/J (BTBR) mice, an established mouse model of idiopathic ASD. Methods Male BTBR mice were injected intraperitoneally with either vehicle, 20 mg/kg CBD or 50 mg/kg CBD daily for two weeks beginning at postnatal day 21 ± 3. On the final treatment day, a battery of behavioral assays were used to evaluate the effects of CBD on the BTBR mice, as compared to age-matched, vehicle-treated C57BL/6 J mice. Results High dose (50 mg/kg) CBD treatment attenuated the elevated repetitive self-grooming behavior and hyperlocomotion in BTBR mice. The social deficits exhibited by the control BTBR mice were rescued by the 20 mg/kg CBD treatment. Discussion Our data indicate that different doses for CBD are needed for treating specific ASD-like behaviors. Together, our results suggest that CBD may be an effective drug to ameliorate repetitive/restricted behaviors, social deficits, and autism-associated hyperactivity.
Collapse
Affiliation(s)
- Sarah H. Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Nicholas Mellen
- Departments of Neurology and Autism Center, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jun Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
| | - Gregory N. Barnes
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- Departments of Neurology and Autism Center, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
3
|
Schellekens H, Ribeiro G, Cuesta-Marti C, Cryan JF. The microbiome-gut-brain axis in nutritional neuroscience. Nutr Neurosci 2023; 26:1159-1171. [PMID: 36222323 DOI: 10.1080/1028415x.2022.2128007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Emerging evidence is highlighting the microbiome as a key regulator of the effect of nutrition on gut-brain axis signaling. Nevertheless, it is not yet clear whether the impact of nutrition is moderating the microbiota-gut-brain interaction or if diet has a mediating role on microbiota composition and function to influence central nervous system function, brain phenotypes and behavior. Mechanistic evidence from cell-based in vitro studies, animal models and preclinical intervention studies are linking the gut microbiota to the effects of diet on brain function, but they have had limited translation to human intervention studies. While increasing evidence demonstrates the triangulating relationship between diet, microbiota, and brain function across the lifespan, future mechanistic and translational studies in the field of microbiota and nutritional neuroscience are warranted to inform potential strategies for prevention and management of several neurological, neurodevelopmental, neurodegenerative, and psychiatric disorders. This brief primer provides an overview of the most recent advances in the nutritional neuroscience - microbiome field, highlighting significant opportunities for future research.
Collapse
Affiliation(s)
- Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Cristina Cuesta-Marti
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Guo D, Yang X, Gao M, Chen X, Tang Y, Shen L, Li K, Shi L. Deficiency of Autism-Related Gene Dock4 Leads to Impaired Spatial Memory and Hippocampal Function in Mice at Late Middle Age. Cell Mol Neurobiol 2023; 43:1129-1146. [PMID: 35635601 PMCID: PMC11414430 DOI: 10.1007/s10571-022-01233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that lasts lifelong and causes noticeably higher premature mortality. Although the core symptoms and other behavioral deficits of ASD can persist or be deteriorated from early development to old age, how aging affects the behaviors and brain anatomy in ASD is largely unknown. DOCK4 is an ASD risk gene highly expressed in the hippocampus, and Dock4 knockout (KO) mice display ASD-like behaviors in adulthood (4- to 6-month-old). In this study, we evaluated the behavioral and hippocampal pathological changes of late-middle-aged (15- to 17-month-old) Dock4 male KO mice. Aged Dock4 KO mice continuously showed similar social deficit, elevated anxiety, and disrupted object location memory as observed in the adulthood, when compared to their wild-type (WT) littermates. Notably, Dock4 KO mice displayed an age-related decline of hippocampal dependent spatial memory, showing decreased spatial memory in Barnes maze than their WT littermates at late middle age. Morphological analysis from WT and Dock4 KO littermates revealed that Dock4 deficiency led to decreased mature neurons and oligodendrocytes but increased astrocytes in the hippocampus of late-middle-aged mice. Together, we report that ASD-like behaviors mostly persist into late-middle age in Dock4 KO mice, with specific alterations of spatial memory and hippocampal anatomy by age, thus providing new evidence for understanding age differences in behavioral deficits of ASD.
Collapse
Affiliation(s)
- Daji Guo
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China.
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Xiaoman Yang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Ming Gao
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaoqing Chen
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yanping Tang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lingling Shen
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Keshen Li
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
5
|
Sharghi S, Flunkert S, Daurer M, Rabl R, Chagnaud BP, Leopoldo M, Lacivita E, Hutter-Paier B, Prokesch M. Evaluating the effect of R-Baclofen and LP-211 on autistic behavior of the BTBR and Fmr1-KO mouse models. Front Neurosci 2023; 17:1087788. [PMID: 37065917 PMCID: PMC10097904 DOI: 10.3389/fnins.2023.1087788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionAutism spectrum disorder (ASD) is a persistent neurodevelopmental condition characterized by two core behavioral symptoms: impaired social communication and interaction, as well as stereotypic, repetitive behavior. No distinct cause of ASD is known so far; however, excitatory/inhibitory imbalance and a disturbed serotoninergic transmission have been identified as prominent candidates responsible for ASD etiology.MethodsThe GABAB receptor agonist R-Baclofen and the selective agonist for the 5HT7 serotonin receptor LP-211 have been reported to correct social deficits and repetitive behaviors in mouse models of ASD. To evaluate the efficacy of these compounds in more details, we treated BTBR T+ Itpr3tf/J and B6.129P2-Fmr1tm1Cgr/J mice acutely with R-Baclofen or LP-211 and evaluated the behavior of animals in a series of tests.ResultsBTBR mice showed motor deficits, elevated anxiety, and highly repetitive behavior of self-grooming. Fmr1-KO mice exhibited decreased anxiety and hyperactivity. Additionally, Fmr1-KO mice’s ultrasonic vocalizations were impaired suggesting a reduced social interest and communication of this strain. Acute LP-211 administration did not affect the behavioral abnormalities observed in BTBR mice but improved repetitive behavior in Fmr1-KO mice and showed a trend to change anxiety of this strain. Acute R-Baclofen treatment improved repetitive behavior only in Fmr1-KO mice.ConclusionOur results add value to the current available data on these mouse models and the respective compounds. Yet, additional studies are needed to further test R-Baclofen and LP-211 as potential treatments for ASD therapy.
Collapse
Affiliation(s)
- Shirin Sharghi
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
- Institute for Biology, Karl-Franzens-Universität Graz, Graz, Austria
- *Correspondence: Shirin Sharghi,
| | - Stefanie Flunkert
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
| | - Magdalena Daurer
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
| | - Roland Rabl
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
| | | | - Marcello Leopoldo
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Manuela Prokesch
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
| |
Collapse
|
6
|
The live biotherapeutic Blautia stercoris MRx0006 attenuates social deficits, repetitive behaviour, and anxiety-like behaviour in a mouse model relevant to autism. Brain Behav Immun 2022; 106:115-126. [PMID: 35995237 DOI: 10.1016/j.bbi.2022.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by deficits in social behaviour, increased repetitive behaviour, anxiety and gastrointestinal symptoms. The aetiology of ASD is complex and involves an interplay of genetic and environmental factors. Emerging pre-clinical and clinical studies have documented a potential role for the gut microbiome in ASD, and consequently, the microbiota represents a potential target in the development of novel therapeutics for this neurodevelopmental disorder. In this study, we investigate the efficacy of the live biotherapeutic strain, Blautia stercoris MRx0006, in attenuating some of the behavioural deficits in the autism-relevant, genetic mouse model, BTBR T+ Itpr3tf/J (BTBR). We demonstrate that daily oral administration with MRx0006 attenuates social deficits while also decreasing repetitive and anxiety-like behaviour. MRx0006 administration increases the gene expression of oxytocin and its receptor in hypothalamic cells in vitro and increases the expression of hypothalamic arginine vasopressin and oxytocin mRNA in BTBR mice. Additionally at the microbiome level, we observed that MRx0006 administration decreases the abundance of Alistipes putredinis, and modulates the faecal microbial metabolite profile. This alteration in the metabolite profile possibly underlies the observed increase in expression of oxytocin, arginine vasopressin and its receptors, and the consequent improvements in behavioural outcomes. Taken together, these findings suggest that the live biotherapeutic MRx0006 may represent a viable and efficacious treatment option for the management of physiological and behavioural deficits associated with ASD.
Collapse
|
7
|
Ellis RJ. Questionable Research Practices, Low Statistical Power, and Other Obstacles to Replicability: Why Preclinical Neuroscience Research Would Benefit from Registered Reports. eNeuro 2022; 9:ENEURO.0017-22.2022. [PMID: 35922130 PMCID: PMC9351632 DOI: 10.1523/eneuro.0017-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 02/03/2023] Open
Abstract
Replicability, the degree to which a previous scientific finding can be repeated in a distinct set of data, has been considered an integral component of institutionalized scientific practice since its inception several hundred years ago. In the past decade, large-scale replication studies have demonstrated that replicability is far from favorable, across multiple scientific fields. Here, I evaluate this literature and describe contributing factors including the prevalence of questionable research practices (QRPs), misunderstanding of p-values, and low statistical power. I subsequently discuss how these issues manifest specifically in preclinical neuroscience research. I conclude that these problems are multifaceted and difficult to solve, relying on the actions of early and late career researchers, funding sources, academic publishers, and others. I assert that any viable solution to the problem of substandard replicability must include changing academic incentives, with adoption of registered reports being the most immediately impactful and pragmatic strategy. For animal research in particular, comprehensive reporting guidelines that document potential sources of sensitivity for experimental outcomes is an essential addition.
Collapse
Affiliation(s)
- Randall J Ellis
- Friedman Brain Institute, Department of Neuroscience, Addiction Institute of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
8
|
Metformin Alleviates Autistic-Like Behaviors Elicited by High-Fat Diet Consumption and Modulates the Crosstalk Between Serotonin and Gut Microbiota in Mice. Behav Neurol 2022; 2022:6711160. [PMID: 35222739 PMCID: PMC8872653 DOI: 10.1155/2022/6711160] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023] Open
Abstract
The biological mechanisms linking diet-related obesity and autistic behaviors remain unclear. Metformin has proven to be beneficial in the treatment of many syndromes, including autism spectrum disorder. Therefore, the aim of this study was to assess whether metformin treatment could ameliorate metabolic and behavioral alterations in C57BL/6 mice kept on a high-fat diet (HFD), and whether these changes were related to modifications in the gut microbiota and 5-HT levels. As expected, ten weeks of HFD ingestion increased body weight, adiposity, and glucose levels. HFD-fed mice showed a marked aggravation of repetitive behaviors (marble burying and self-grooming), and this was prevented by metformin administration. In addition, HFD-fed mice increased the total distance travelled in the open field test. This hyperactivity was counteracted by metformin cotreatment. In the elevated plus maze test, HFD-fed mice showed a reduced number of entries into the open arms. Interestingly, both HFD and metformin cotreatment increased social interactions in the three-chamber test. HFD increased the levels of intestinal tryptophan and 5-hydroxyindoleacetic acid. Metformin stimulated gut tryptophan and promoted the synthesis of 5-HT in the HFD group. Lactococcus, Trichococcus, Romboutsia, and Faecalibaculum were enriched in HFD-fed mice, whereas the HFD group cotreated with metformin was enriched in Intestinimonas and L. reuteri. Faecalibacterium was positively correlated with sociability and 5-HT pathway components in mice that received metformin. In summary, HFD consumption elicited a complex phenotype comprising higher levels of anxiety-like and repetitive behaviors but also increased sociability. Metformin could potentially improve HFD-induced disorders in the autistic spectrum through a mechanism involving positive modulation of 5-HT levels in the gut and its microbiota composition.
Collapse
|
9
|
Borsani E, Bonomini F, Bonini SA, Premoli M, Maccarinelli G, Giugno L, Mastinu A, Aria F, Memo M, Rezzani R. Role of melatonin in autism spectrum disorders in a male murine transgenic model: Study in the prefrontal cortex. J Neurosci Res 2022; 100:780-797. [PMID: 35043490 DOI: 10.1002/jnr.24997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/16/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of clinically heterogeneous neurodevelopmental disorders sharing common features related to impaired social and communication abilities in addition to stereotyped behaviors. ASD patients present encephalic morphological, physiological, and biomolecular alterations with low levels of melatonin due to alterations in its pathways. Therefore, even if ASDs have traditionally been framed as behavioral disorders, several lines of evidence are accumulating that ASDs are characterized by certain anatomical and physiological abnormalities, including oxidative stress and inflammation in peripheral biomarkers, but likewise present in human brain tissue also characterized by alterations in synaptic remodeling and neuromodulation. Melatonin has also protective and antioxidant properties, so we can therefore hypothesize that alterations in melatonin's pathways may be one of the causes of the symptomatology of autism. The aim of the present study was to analyze the beneficial effect induced by melatonin administration and its possible mechanism of action in a transgenic mouse model of autism, immediately after weaning. The male mice were daily treated per os with melatonin (10 mg/Kg/day) or vehicle for 8 weeks starting from the sixth week of life. The antioxidant modulation, the GABAergic/glutamatergic impairment, and the synaptic remodeling in the prefrontal cortex have been evaluated. Social and repetitive behaviors were also evaluated. The behavioral results showed no statistical evidences, instead the immunohistochemical results indicated the ability of melatonin to promote the activity of antioxidant system, the GABAergic/glutamatergic equilibrium, and the synaptic remodeling. The results show that melatonin may be a possible adjuvant therapeutic strategy in ASDs.
Collapse
Affiliation(s)
- Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| | - Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppina Maccarinelli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Lorena Giugno
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea Mastinu
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Aria
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Anashkina AA, Erlykina EI. Molecular Mechanisms of Aberrant Neuroplasticity in Autism Spectrum Disorders (Review). Sovrem Tekhnologii Med 2021; 13:78-91. [PMID: 34513070 PMCID: PMC8353687 DOI: 10.17691/stm2021.13.1.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 01/03/2023] Open
Abstract
This review presents the analysis and systematization of modern data on the molecular mechanisms of autism spectrum disorders (ASD) development. Polyetiology and the multifactorial nature of ASD have been proved. The attempt has been made to jointly review and systematize current hypotheses of ASD pathogenesis at the molecular level from the standpoint of aberrant brain plasticity. The mechanism of glutamate excitotoxicity formation, the effect of imbalance of neuroactive amino acids and their derivatives, neurotransmitters, and hormones on the ASD formation have been considered in detail. The strengths and weaknesses of the proposed hypotheses have been analyzed from the standpoint of evidence-based medicine. The conclusion has been drawn on the leading role of glutamate excitotoxicity as a biochemical mechanism of aberrant neuroplasticity accompanied by oxidative stress and mitochondrial dysfunction. The mechanism of aberrant neuroplasticity has also been traced at the critical moments of the nervous system development taking into account the influence of various factors of the internal and external environment. New approaches to searching for ASD molecular markers have been considered.
Collapse
Affiliation(s)
- A A Anashkina
- Senior Teacher, Department of Biochemistry named after G.Y. Gorodisskaya; Senior Researcher, Central Scientific Research Laboratory, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E I Erlykina
- Professor, Head of the Department of Biochemistry named after G.Y. Gorodisskaya, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
11
|
Novel Pharmacotherapies in Parkinson's Disease. Neurotox Res 2021; 39:1381-1390. [PMID: 34003454 PMCID: PMC8129607 DOI: 10.1007/s12640-021-00375-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease (PD), an age-related progressive neurodegenerative condition, is associated with loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), which results in motor deficits characterized by the following: akinesia, rigidity, resting tremor, and postural instability, as well as nonmotor symptoms such as emotional changes, particularly depression, cognitive impairment, gastrointestinal, and autonomic dysfunction. The most common treatment for PD is focused on dopamine (DA) replacement (e.g., levodopa = L-Dopa), which unfortunately losses its efficacy over months or years and can induce severe dyskinesia. Hence, more efficacious interventions without such adverse effects are urgently needed. In this review, following a general description of PD, potential novel therapeutic interventions for this devastating disease are examined. Specifically, the focus is on nicotine and nicotinic cholinergic system, as well as butyrate, a short chain fatty acid (SCFA), and fatty acid receptors.
Collapse
|
12
|
5-Aminoisoquinolinone, a PARP-1 Inhibitor, Ameliorates Immune Abnormalities through Upregulation of Anti-Inflammatory and Downregulation of Inflammatory Parameters in T Cells of BTBR Mouse Model of Autism. Brain Sci 2021; 11:brainsci11020249. [PMID: 33671196 PMCID: PMC7922312 DOI: 10.3390/brainsci11020249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 12/02/2022] Open
Abstract
Autism spectrum disorder (ASD) covers a range of neurodevelopmental disorders involving impairments in communication and repetitive and stereotyped patterns of behavior and reciprocal social interaction. 5-Aminoisoquinolinone (5-AIQ), a PARP-1 inhibitor, has neuroprotective and anti-inflammatory effects. We investigated the influence of 5-AIQ-treatment in BTBR T+ Itpr3tf/J (BTBR) mice as an autism model and used flow cytometry to assess the effect of 5-AIQ on FOXP3, Helios, GATA3, IL-9, IL-10 and IL-17A production by CXCR6+ and CD4+ T cells in the spleen. We also confirmed the effect of 5-AIQ treatment on expression of FOXP3, Helios, GATA3, IL-17A, IL-10, and IL-9 mRNA and protein expression levels in the brain tissue by quantitative PCR and western blotting. Our results demonstrated that 5-AIQ-treated BTBR mice had significantly increased numbers of CXCR6+FOXP3+, CXCR6+IL-10+, and CXCR6+Helios+ cells and decreased numbers of CD4+GATA3+, CD4+IL-9+, and CD4+IL-17A+ cells as compared with those in untreated BTBR mice. Our results further demonstrated that treatment with 5-AIQ in BTBR mice increased expression for FOXP3, IL-10, and Helios, and decreased expression for GATA3, IL-17A, and IL-9 mRNA. Our findings support the hypotheses that 5-AIQ has promising novel therapeutic effects on neuroimmune dysfunction in autism and is associated with modulation of Treg and Th17 cells.
Collapse
|