1
|
Graeff FG, Joca S, Zangrossi H. Bradykinin actions in the central nervous system: historical overview and psychiatric implications. Acta Neuropsychiatr 2024; 36:129-138. [PMID: 38178717 DOI: 10.1017/neu.2023.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Bradykinin (BK), a well-studied mediator of physiological and pathological processes in the peripheral system, has garnered less attention regarding its function in the central nervous system, particularly in behavioural regulation. This review delves into the historical progression of research focused on the behavioural effects of BK and other drugs that act via similar mechanisms to provide new insights into the pathophysiology and pharmacotherapy of psychiatric disorders. Evidence from experiments with animal models indicates that BK modulates defensive reactions associated with panic symptoms and the response to acute stressors. The mechanisms are not entirely understood but point to complex interactions with other neurotransmitter systems, such as opioids, and intracellular signalling cascades. By addressing the existing research gaps in this field, we present new proposals for future research endeavours to foster a new era of investigation regarding BK's role in emotional regulation. Implications for psychiatry, chiefly for panic and depressive disorders are also discussed.
Collapse
Affiliation(s)
- Frederico Guilherme Graeff
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, SP, Brazil
- Department of Psychology, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Helio Zangrossi
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Casarrubea M, Di Giovanni G, Aiello S, Crescimanno G. The hole-board apparatus in the study of anxiety. Physiol Behav 2023; 271:114346. [PMID: 37690695 DOI: 10.1016/j.physbeh.2023.114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Anxiety disorders pose a significant challenge in contemporary society, and their impact in terms of social and economic burden is overwhelming. Behavioral research conducted on animal subjects is crucial for comprehending these disorders and, from a translational standpoint, for introducing innovative therapeutic approaches. In this context, the Hole-Board apparatus has emerged as a widely utilized test for studying anxiety-related behaviors in rodents. Although a substantial body of literature underscores the utility and reliability of the Hole-Board in anxiety research, recent decades have witnessed a range of studies that have led to uncertainties and misinterpretations regarding the validity of this behavioral assay. The objective of this review is twofold: firstly, to underscore the utility and reliability of the Hole-Board assay, and concurrently, to examine the underlying factors contributing to potential misconceptions surrounding its utilization in the study of anxiety and anxiety-related behaviors. We will present results from both conventional quantitative analyses and multivariate approaches, while referencing a comprehensive collection of studies conducted using the Hole-Board.
Collapse
Affiliation(s)
- Maurizio Casarrubea
- Laboratory of Behavioural Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Corso Tukory n.129, Palermo 90134, Italy.
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Stefania Aiello
- Laboratory of Behavioural Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Corso Tukory n.129, Palermo 90134, Italy
| | - Giuseppe Crescimanno
- Laboratory of Behavioural Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Corso Tukory n.129, Palermo 90134, Italy
| |
Collapse
|
3
|
Rahman MM, Islam MR, Mim SA, Sultana N, Chellappan DK, Dua K, Kamal MA, Sharma R, Emran TB. Insights into the Promising Prospect of G Protein and GPCR-Mediated Signaling in Neuropathophysiology and Its Therapeutic Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8425640. [PMID: 36187336 PMCID: PMC9519337 DOI: 10.1155/2022/8425640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are intricately involved in the conversion of extracellular feedback to intracellular responses. These specialized receptors possess a crucial role in neurological and psychiatric disorders. Most nonsensory GPCRs are active in almost 90% of complex brain functions. At the time of receptor phosphorylation, a GPCR pathway is essentially activated through a G protein signaling mechanism via a G protein-coupled receptor kinase (GRK). Dopamine, an important neurotransmitter, is primarily involved in the pathophysiology of several CNS disorders; for instance, bipolar disorder, schizophrenia, Parkinson's disease, and ADHD. Since dopamine, acetylcholine, and glutamate are potent neuropharmacological targets, dopamine itself has potential therapeutic effects in several CNS disorders. GPCRs essentially regulate brain functions by modulating downstream signaling pathways. GPR6, GPR52, and GPR8 are termed orphan GPCRs because they colocalize with dopamine D1 and D2 receptors in neurons of the basal ganglia, either alone or with both receptors. Among the orphan GPCRs, the GPR52 is recognized for being an effective psychiatric receptor. Various antipsychotics like aripiprazole and quetiapine mainly target GPCRs to exert their actions. One of the most important parts of signal transduction is the regulation of G protein signaling (RGS). These substances inhibit the activation of the G protein that initiates GPCR signaling. Developing a combination of RGS inhibitors with GPCR agonists may prove to have promising therapeutic potential. Indeed, several recent studies have suggested that GPCRs represent potentially valuable therapeutic targets for various psychiatric disorders. Molecular biology and genetically modified animal model studies recommend that these enriched GPCRs may also act as potential therapeutic psychoreceptors. Neurotransmitter and neuropeptide GPCR malfunction in the frontal cortex and limbic-related regions, including the hippocampus, hypothalamus, and brainstem, is likely responsible for the complex clinical picture that includes cognitive, perceptual, emotional, and motor symptoms. G protein and GPCR-mediated signaling play a critical role in developing new treatment options for mental health issues, and this study is aimed at offering a thorough picture of that involvement. For patients who are resistant to current therapies, the development of new drugs that target GPCR signaling cascades remains an interesting possibility. These discoveries might serve as a fresh foundation for the creation of creative methods for pharmacologically useful modulation of GPCR function.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sadia Afsana Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nasrin Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Australia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
4
|
Lopes LT, Canto-de-Souza L, Baptista-de-Souza D, de Souza RR, Nunes-de-Souza RL, Canto-de-Souza A. The interplay between 5-HT 2C and 5-HT 3A receptors in the dorsal periaqueductal gray mediates anxiety-like behavior in mice. Behav Brain Res 2022; 417:113588. [PMID: 34547341 DOI: 10.1016/j.bbr.2021.113588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
The monoamine neurotransmitter serotonin (5-HT) modulates anxiety by its activity on 5-HT2C receptors (5-HT2CR) expressed in the dorsal periaqueductal gray (dPAG). Here, we investigated the presence of 5-HT3A receptors (5-HT3AR) in the dPAG, and the interplay between 5-HT2CR and 5-HT3AR in the dPAG in mediating anxiety-like behavior in mice. We found that 5-HT3AR is expressed in the dPAG and the blockade of these receptors using intra-dPAG infusion of ondansetron (5-HT3AR antagonist; 3.0 nmol) induced an anxiogenic-like effect. The activation of 5-HT3ABR by the infusion of mCPBG [1-(m-Chlorophenyl)-biguanide; 5-HT3R agonist] did not alter anxiety-like behaviors. In addition, blockade of 5-HT3AR (1.0 nmol) prevented the anxiolytic-like effect induced by the infusion of the 5-HT2CR agonist mCPP (1-(3-chlorophenyl) piperazine; 0.03 nmol). None of the treatment effects on anxiety-like behaviors altered the locomotor activity levels. The present results suggest that the anxiolytic-like effect exerted by serotonin activity on 5-HT2CR in the dPAG is modulated by 5-HT3AR expressed in same region.
Collapse
Affiliation(s)
- Luana Tenorio Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada.
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista, UNESP, Araraquara, SP 14801-902, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| | - Daniela Baptista-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista, UNESP, Araraquara, SP 14801-902, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| | - Rimenez Rodrigues de Souza
- The University of Texas at Dallas, School of Behavior and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States.
| | - Ricardo L Nunes-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista, UNESP, Araraquara, SP 14801-902, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| | - Azair Canto-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Graduate Program in Psychology UFSCar, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Rosas-Sánchez GU, German-Ponciano LJ, Rodríguez-Landa JF. Considerations of Pool Dimensions in the Forced Swim Test in Predicting the Potential Antidepressant Activity of Drugs. Front Behav Neurosci 2022; 15:757348. [PMID: 35069137 PMCID: PMC8777187 DOI: 10.3389/fnbeh.2021.757348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gilberto Uriel Rosas-Sánchez
- Programa de Doctorado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | | | - Juan Francisco Rodríguez-Landa
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
- *Correspondence: Juan Francisco Rodríguez-Landa
| |
Collapse
|
6
|
Hernandes PM, Batistela MF, Vilela-Costa HH, Sant'Ana AB, Kumpel VD, Tirapelle MC, Bom ADOP, de Andrade TGCS, Zangrossi H. Role of 5-HT 1A receptors in the ventral hippocampus in the regulation of anxiety- and panic-related defensive behaviors in rats. Behav Brain Res 2021; 408:113296. [PMID: 33862061 DOI: 10.1016/j.bbr.2021.113296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 01/04/2023]
Abstract
Changes in 5-HT1A receptor (5-HT1AR)-mediated neurotransmission in the hippocampus have been associated with anxiety, depression and in the mode of action of antidepressant drugs. It has been commonly accepted that whereas the dorsal pole of the hippocampus (DH) is involved in cognitive processing, the ventral pole (VH) is associated with emotional regulation. However, to date, only a few studies have directly addressed the role played by VH 5-HT1ARs in anxiety and panic processing, and their results are conflicting. Here we report that intra-VH administration of the 5-HT1A receptor agonist 8-OH-DPAT, the endogenous agonist serotonin (5-HT), or the standard anxiolytic benzodiazepine midazolam impaired the acquisition of inhibitory avoidance in the elevated T-maze (ETM) of male Wistar rats, indicating an anxiolytic effect. Conversely, local injection of the 5-HT1AR antagonist WAY-100635 caused the opposite effect. These results were equally found in the Vogel conflict test. None of these drugs interfered with locomotor activity in the open-field test, nor did they alter the expression of the escape response in the ETM, a defensive behavior associated with panic. Pre-injection of a sub-effective dose of WAY-100635 in the VH blocked the anxiolytic effect of 5-HT or 8-OH-DPAT in the Vogel test, confirming the involvement of 5-HT1AR for this behavioral effect. The effect in this test was anxiety-selective as none of the drugs affected water consumption or nociception. In conclusion, our results suggest that 5-HT1ARs in the VH play a tonic inhibitory role in anxiety processing. These receptors, however, are not involved in the regulation of panic-related escape behavior.
Collapse
Affiliation(s)
- Paloma Molina Hernandes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Matheus Fitipaldi Batistela
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Heloísa Helena Vilela-Costa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana Beatriz Sant'Ana
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Vinicíus Dias Kumpel
- Department of Biological Science, São Paulo State University (UNESP), Assis, SP, Brazil
| | | | | | | | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|