1
|
PRDX6 Promotes the Differentiation of Human Mesenchymal Stem (Stromal) Cells to Insulin-Producing Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7103053. [PMID: 32051828 PMCID: PMC6995490 DOI: 10.1155/2020/7103053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) can be differentiated in vitro to form insulin-producing cells (IPCs). However, the proportion of induced cells is modest. Extracts from injured pancreata of rodents promoted this differentiation, and three upregulated proteins were identified in these extracts. The aim of this study was to evaluate the potential benefits of adding these proteins to the differentiation medium alone or in combination. Our results indicate that the proportion of IPCs among the protein(s)-supplemented samples was significantly higher than that in the samples with no added proteins. The yield from samples supplemented with PRDX6 alone was 4-fold higher than that from samples without added protein. These findings were also supported by the results of fluorophotometry. Gene expression profiles revealed higher levels among protein-supplemented samples. Significantly higher levels of GGT, SST, Glut-2, and MafB expression were noted among PRDX6-treated samples. There was a stepwise increase in the release of insulin and c-peptide, as a function of increasing glucose concentrations, indicating that the differentiated cells were glucose sensitive and insulin responsive. PRDX6 exerts its beneficial effects as a result of its biological antioxidant properties. Considering its ease of use as a single protein, PRDX6 is now routinely used in our differentiation protocols.
Collapse
|
2
|
Co-culture with mature islet cells augments the differentiation of insulin-producing cells from pluripotent stem cells. Stem Cell Rev Rep 2015; 11:62-74. [PMID: 25173880 DOI: 10.1007/s12015-014-9554-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Islet transplantation has been hampered by the shortage of islet donors available for diabetes therapy. However, pluripotent stem cells (PSCs) can be an alternative source of insulin-producing cells (IPCs) because of their capacity for self-renewal and differentiation. We described a method to efficiently differentiate PSCs into IPCs by co-culturing mature islets with directed-differentiated pancreatic endoderm (PE) cells from mouse and human PSCs. PE cells co-cultured with islet cells or islet cell-derived conditioned medium (CM) showed increased expression levels of β-cell markers; significantly higher levels of proinsulin- and Newport Green (NG)-positive cells, which revealed the characteristics of insulin producing cells; and increased insulin secretion upon glucose stimulation. Co-culturing human PE cells with islet cells was also effective to differentiate PE cells into IPCs. Diabetic nude mice transplanted with co-cultured cells exhibited restored euglycemia, human C-peptide release, and improved glucose tolerance. Immunohistochemistry revealed that insulin+/C-peptide + cells existed in the grafted tissues. These results suggest that mature islet cells can increase the differentiation efficiency of PE cells into mature IPCs via paracrine effects.
Collapse
|
3
|
Ebrahimie M, Esmaeili F, Cheraghi S, Houshmand F, Shabani L, Ebrahimie E. Efficient and simple production of insulin-producing cells from embryonal carcinoma stem cells using mouse neonate pancreas extract, as a natural inducer. PLoS One 2014; 9:e90885. [PMID: 24614166 PMCID: PMC3948699 DOI: 10.1371/journal.pone.0090885] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/03/2014] [Indexed: 01/15/2023] Open
Abstract
An attractive approach to replace the destroyed insulin-producing cells (IPCs) is the generation of functional β cells from stem cells. Embryonal carcinoma (EC) stem cells are pluripotent cells which can differentiate into all cell types. The present study was carried out to establish a simple nonselective inductive culture system for generation of IPCs from P19 EC cells by 1–2 weeks old mouse pancreas extract (MPE). Since, mouse pancreatic islets undergo further remodeling and maturation for 2–3 weeks after birth, we hypothesized that the mouse neonatal MPE contains essential factors to induce in vitro differentiation of pancreatic lineages. Pluripotency of P19 cells were first confirmed by expression analysis of stem cell markers, Oct3/4, Sox-2 and Nanog. In order to induce differentiation, the cells were cultured in a medium supplemented by different concentrations of MPE (50, 100, 200 and 300 µg/ml). The results showed that P19 cells could differentiate into IPCs and form dithizone-positive cell clusters. The generated P19-derived IPCs were immunoreactive to proinsulin, insulin and insulin receptor beta. The expression of pancreatic β cell genes including, PDX-1, INS1 and INS2 were also confirmed. The peak response at the 100 µg/ml MPE used for investigation of EP300 and CREB1 gene expression. When stimulated with glucose, these cells synthesized and secreted insulin. Network analysis of the key transcription factors (PDX-1, EP300, CREB1) during the generation of IPCs resulted in introduction of novel regulatory candidates such as MIR17, and VEZF1 transcription factors, as well as MORN1, DKFZp761P0212, and WAC proteins. Altogether, we demonstrated the possibility of generating IPCs from undifferentiated EC cells, with the characteristics of pancreatic β cells. The derivation of pancreatic cells from EC cells which are ES cell siblings would provide a valuable experimental tool in study of pancreatic development and function as well as rapid production of IPCs for transplantation.
Collapse
Affiliation(s)
- Marzieh Ebrahimie
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Fariba Esmaeili
- Department of Biology, Faculty of Basic Sciences, University of Isfahan, Isfahan, Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Somayeh Cheraghi
- Department of Biology, Faculty of Basic Sciences, Azad Islamic University of Shahrekord, Shahrekord, Iran
| | - Fariba Houshmand
- Department of Physiology, Faculty of Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Leila Shabani
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Esmaeil Ebrahimie
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
4
|
Desgraz R, Bonal C, Herrera PL. β-cell regeneration: the pancreatic intrinsic faculty. Trends Endocrinol Metab 2011; 22:34-43. [PMID: 21067943 DOI: 10.1016/j.tem.2010.09.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 01/08/2023]
Abstract
Type I diabetes (T1D) patients rely on cumbersome chronic injections of insulin, making the development of alternate durable treatments a priority. The ability of the pancreas to generate new β-cells has been described in experimental diabetes models and, importantly, in infants with T1D. Here we discuss recent advances in identifying the origin of new β-cells after pancreatic injury, with and without inflammation, revealing a surprising degree of cell plasticity in the mature pancreas. In particular, the inducible selective near-total destruction of β-cells in healthy adult mice uncovers the intrinsic capacity of differentiated pancreatic cells to spontaneously reprogram to produce insulin. This opens new therapeutic possibilities because it implies that β-cells can differentiate endogenously, in depleted adults, from heterologous origins.
Collapse
Affiliation(s)
- Renaud Desgraz
- Department of Cell Physiology and Metabolism, University of Geneva Faculty of Medicine, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
5
|
Enhancement of β-Cell Regeneration by Islet Transplantation After Partial Pancreatectomy in Mice. Transplantation 2009; 88:354-9. [DOI: 10.1097/tp.0b013e3181b07a02] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Kim S, Shin JS, Kim HJ, Fisher RC, Lee MJ, Kim CW. Streptozotocin-induced diabetes can be reversed by hepatic oval cell activation through hepatic transdifferentiation and pancreatic islet regeneration. J Transl Med 2007; 87:702-12. [PMID: 17483848 DOI: 10.1038/labinvest.3700561] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatic oval cells have shown the potential to transdifferentiate into insulin-producing cells when cultured with high glucose concentrations. However, it remains unknown whether the oval cells can contribute to insulin production in diabetic mice. In this study, our aim was to investigate the response of activated hepatic oval cells to hyperglycemic conditions. C57BL/6 mice were fed a diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 4 weeks to activate the hepatic oval cell population before inducing hyperglycemia with streptozotocin (STZ). Despite the initial hyperglycemia (341+/-15 mg/dl), the blood glucose levels of DDC-STZ-treated mice were significantly improved within 6 weeks (185+/-12 mg/dl). During the initial hyperglycemic stage, DDC-STZ-treated livers expressed pancreatic developmental, endocrine and exocrine genes. Hepatic insulin production was confirmed by immunohistochemistry and ELISA. These results suggested that transdifferentiated hepatic oval cell population contributed to the amelioration of hyperglycemia. We additionally determined that DDC-STZ-treated pancreata played a critical role in complete reversal of hyperglycemia as evidenced by extensive beta-cell regeneration and increase of pancreatic insulin content after STZ treatment, which is rarely observed in other adult STZ models. Reversal of hyperglycemia in this model seems to be accomplished by biphasic insulin augmentation, first by hepatic transdifferentiation, and followed by endogenous beta-cell regeneration in the pancreas. The DDC-STZ treatment provides a novel injury model for better understanding of the functional behavior of hepatic and pancreatic stem/progenitor cell population under hyperglycemic condition, which may yield critical information for developing beta-cell-based therapies to treat diabetes.
Collapse
Affiliation(s)
- Seungbum Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
7
|
Kulis MD, Shuker SB. Expression, purification, and refolding of mouse islet neogenesis associated protein-related protein for NMR studies. Protein Expr Purif 2006; 48:224-31. [PMID: 16545961 DOI: 10.1016/j.pep.2006.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 01/31/2006] [Accepted: 02/02/2006] [Indexed: 11/20/2022]
Abstract
Islet neogenesis associated protein-related protein (INGAPrP) is thought to be involved in the differentiation of non-insulin-producing cells to insulin-secreting cells. INGAPrP is a mouse gene product that has a 72% identical amino acid sequence to a known islet-generating factor, hamster islet-neogenesis-associated protein (INGAP), which acts by differentiating pancreatic ductal cells into beta-cells. The three-dimensional structure of these proteins is unknown. The structure would provide information about the conformation of the active portion of INGAP, the so-called INGAP pentadecapeptide, leading to a well-defined target for rational drug design. An efficient procedure for the production of INGAPrP would facilitate the process of structure determination. We have successfully produced and isolated (15)N-labeled INGAPrP by expression in Escherichia coli Rosetta (DE3) cells in Spectra-9 media followed by a two-step purification and refolding protocol. The hexahistidine tag engineered at the N-terminus of the protein is used in the first step for standard immobilized-metal affinity chromatography purification under denaturing conditions. The secondary purification step utilizes a gel permeation chromatography column, producing homogeneous INGAPrP as well as refolding the protein. To verify that the protein was folded, we performed a (1)H-(15)N HSQC NMR experiment that showed excellent dispersion of signals, indicative of a folded protein. We also performed circular dichroism experiments, which demonstrated the presence of secondary structure. In summary, we report the first expression and isolation of INGAPrP, as well as demonstrate that our method produces a folded protein, which is necessary for structure determination.
Collapse
Affiliation(s)
- Michael D Kulis
- School of Chemistry and Biochemistry, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, USA
| | | |
Collapse
|
8
|
Yang M, Liu W, Wang CY, Liu T, Zhou F, Tao J, Wang Y, Li MT. Proteomic analysis of differential protein expression in early process of pancreatic regeneration in pancreatectomized rats. Acta Pharmacol Sin 2006; 27:568-578. [PMID: 16626512 DOI: 10.1111/j.1745-7254.2006.00317.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM A broad-range proteomic approach was applied to investigate the complexity of the mechanisms involved in pancreatic regeneration for identification of new targets of diabetes treatment and potential markers of pancreatic stem cells. METHODS A regeneration pancreatic model was induced by 90% partial pancreatectomy (Px) in rats. Changes in the protein expression in regenerating rat pancreas on the third day after Px, as compared with rats that received sham surgery, were analyzed by using 2-D gel electrophoresis (2-DE), mass spectrometry (MS), and mass fingerprinting. RESULTS 2-DE revealed 91 spots with at least 1.5-fold increases in expression at 3 d after pancreatectomy and 53 differentially expressed proteins that were identified by peptide mass fingerprinting (PMF). These included cell growth-related, lipid and energy metabolism-related, protein and amino acid metabolism-related proteins, and signal transduction proteins. Vimentin, CK8, L-plastin, hnRNP A2/B1, and AGAT are associated with embryogenesis and cell differentiation, and may be new potential pancreatic stem cells markers. CONCLUSION The proteome profiling technique provided a broad-based and effective approach for the rapid assimilation and identification of adaptive protein changes during pancreas regeneration induced by pancreatectomy. Our data clarify the global proteome during the pancreatic proliferation and differentiation processes, which is important for better understanding of pancreatic regeneration and for discovering of protein biomarkers for pancreatic stem cells.
Collapse
Affiliation(s)
- Ming Yang
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Choi KS, Shin JS, Lee JJ, Kim YS, Kim SB, Kim CW. In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun 2005; 330:1299-305. [PMID: 15823584 DOI: 10.1016/j.bbrc.2005.03.111] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Indexed: 12/20/2022]
Abstract
Recent reports have suggested that mesenchymal cells derived from bone marrow may differentiate into not only mesenchymal lineage cells but also other lineage cells. There is possibility for insulin-producing cells (IPCs) to be differentiated from mesenchymal cells. We used self-functional repair stimuli of stem cells by partial injury. Rat pancreatic extract (RPE) from the regenerating pancreas (2 days after 60% pancreatectomy) was treated to rat mesenchymal cells. After the treatment of RPE, they made clusters like islet of Langerhans within a week and expressed four pancreatic endocrine hormones; insulin, glucagon, pancreatic polypeptide, and somatostatin. Moreover, IPCs released insulin in response to normal glucose challenge. Here we demonstrate that the treatment of RPE can differentiate rat mesenchymal cells into IPCs which can be a potential source for the therapy of diabetes.
Collapse
Affiliation(s)
- Kyung Suk Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
10
|
Shin JS, Lee JJ, Lee EJ, Kim YH, Chae KS, Kim CW. Proteome analysis of rat pancreas induced by pancreatectomy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:23-32. [PMID: 15848133 DOI: 10.1016/j.bbapap.2005.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 01/11/2005] [Accepted: 02/02/2005] [Indexed: 11/26/2022]
Abstract
The previous study demonstrated that the streptozotocin (STZ)-induced diabetic mice can be cured by injecting the regenerating pancreatic extract (RPE) of the partially pancreatectomized Wistar-Kyoto rats. In this study, to characterize the complex pattern of protein expression in RPE, the proteins of altered expression level after the pancreatectomy were identified by 2-dimensional electrophoresis (2-DE) and mass spectrometry. Of 76 significantly up- or down-regulated protein spots, 61 were identified by MALDI-TOF/MS. Moreover, the whole RPE was fractionated into 4 groups using an anion-exchange chromatography and each fraction's cell proliferating activity was measured by MTT assay. Compared to the normal pancreatic extract, fraction 3 and 4 of RPE showed the maximal cell proliferating activity. On 2-DE of 3 and 4 fractions, a total of 10 spots, which are differentially expressed after the pancreatectomy, were identified by MS/MS. Of these identified proteins, Reg III which might be functionally associated with well known regenerating factor (Reg I) was found. Taken together, our results demonstrated that the differential protein expression associated with pancreas regeneration could be sought by 2-DE and mass spectroscopy and suggested that the pre-fractionation method combined with in vitro cell proliferation assay is effectively used to pinpoint the active components for pancreas regeneration.
Collapse
Affiliation(s)
- Jun-Seop Shin
- Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | | | | | | | | | | |
Collapse
|