1
|
Hameş EE, Demir T. Microbial ribonucleases (RNases): production and application potential. World J Microbiol Biotechnol 2015; 31:1853-62. [PMID: 26433394 DOI: 10.1007/s11274-015-1945-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/07/2015] [Indexed: 01/15/2023]
Abstract
Ribonuclease (RNase) is hydrolytic enzyme that catalyzes the cleavage of phosphodiester bonds in RNA. RNases play an important role in the metabolism of cellular RNAs, such as mRNA and rRNA or tRNA maturation. Besides their cellular roles, RNases possess biological activity, cell stimulating properties, cytotoxicity and genotoxicity. Cytotoxic effect of particular microbial RNases was comparable to that of animal derived counterparts. In this respect, microbial RNases have a therapeutic potential as anti-tumor drugs. The significant development of DNA vaccines and the progress of gene therapy trials increased the need for RNases in downstream processes. In addition, RNases are used in different fields, such as food industry for single cell protein preparations, and in some molecular biological studies for the synthesis of specific nucleotides, identifying RNA metabolism and the relationship between protein structure and function. In some cases, the use of bovine or other animal-derived RNases have increased the difficulties due to the safety and regulatory issues. Microbial RNases have promising potential mainly for pharmaceutical purposes as well as downstream processing. Therefore, an effort has been given to determination of optimum fermentation conditions to maximize RNase production from different bacterial and fungal producers. Also immobilization or strain development experiments have been carried out.
Collapse
Affiliation(s)
- E Esin Hameş
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Tuğçe Demir
- Department of Chemical Engineering, Kocaeli University, Umut Tepe Yerleşkesi, 41380, Kocaeli, Turkey
| |
Collapse
|
2
|
Minias AE, Brzostek AM, Minias P, Dziadek J. The deletion of rnhB in Mycobacterium smegmatis does not affect the level of RNase HII substrates or influence genome stability. PLoS One 2015; 10:e0115521. [PMID: 25603150 PMCID: PMC4300193 DOI: 10.1371/journal.pone.0115521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/25/2014] [Indexed: 11/24/2022] Open
Abstract
RNase HII removes RNA from RNA/DNA hybrids, such as single ribonucleotides and RNA primers generated during DNA synthesis. Both, RNase HII substrates and RNase HII deficiency have been associated with genome instability in several organisms, and genome instability is a major force leading to the acquisition of drug resistance in bacteria. Understanding the mechanisms that underlie this phenomenon is one of the challenges in identifying efficient methods to combat bacterial pathogens. The aim of the present study was set to investigate the role of rnhB, presumably encoding RNase HII, in maintaining genome stability in the M. tuberculosis model organism Mycobacterium smegmatis. We performed gene replacement through homologous recombination to obtain mutant strains of Mycobacterium smegmatis lacking the rnhB gene. The mutants did not present an altered phenotype, according to the growth rate in liquid culture or susceptibility to hydroxyurea, and did not show an increase in the spontaneous mutation rate, determined using the Luria-Delbrück fluctuation test for streptomycin resistance in bacteria. The mutants also did not present an increase in the level of RNase HII substrates, measured as the level of alkaline degradation of chromosomal DNA or determined through immunodetection. We conclude that proteins other than RnhB proteins efficiently remove RNase HII substrates in M. smegmatis. These results highlight differences in the basic biology between Mycobacteria and eukaryotes and between different species of bacteria.
Collapse
Affiliation(s)
- Alina E. Minias
- Department of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Department of Microbiology, Biotechnology and Immunology, University of Lodz, Lodz, Poland
- * E-mail: (AM); (JD)
| | - Anna M. Brzostek
- Department of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Piotr Minias
- Department of Teacher Training and Biodiversity Studies, University of Lodz, Lodz, Poland
| | - Jaroslaw Dziadek
- Department of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- * E-mail: (AM); (JD)
| |
Collapse
|
3
|
Hou J, Liu X, Liu J. Detection of Single Nucleotide Polymorphism by RNase H-Cleavage Mediated Allele-Specific Extension Method. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
4
|
Anstey-Gilbert CS, Hemsworth GR, Flemming CS, Hodskinson MRG, Zhang J, Sedelnikova SE, Stillman TJ, Sayers JR, Artymiuk PJ. The structure of Escherichia coli ExoIX--implications for DNA binding and catalysis in flap endonucleases. Nucleic Acids Res 2013; 41:8357-67. [PMID: 23821668 PMCID: PMC3783174 DOI: 10.1093/nar/gkt591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli Exonuclease IX (ExoIX), encoded by the xni gene, was the first identified member of a novel subfamily of ubiquitous flap endonucleases (FENs), which possess only one of the two catalytic metal-binding sites characteristic of other FENs. We have solved the first structure of one of these enzymes, that of ExoIX itself, at high resolution in DNA-bound and DNA-free forms. In the enzyme-DNA cocrystal, the single catalytic site binds two magnesium ions. The structures also reveal a binding site in the C-terminal domain where a potassium ion is directly coordinated by five main chain carbonyl groups, and we show this site is essential for DNA binding. This site resembles structurally and functionally the potassium sites in the human FEN1 and exonuclease 1 enzymes. Fluorescence anisotropy measurements and the crystal structures of the ExoIX:DNA complexes show that this potassium ion interacts directly with a phosphate diester in the substrate DNA.
Collapse
Affiliation(s)
- Christopher S. Anstey-Gilbert
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Glyn R. Hemsworth
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Claudia S. Flemming
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Michael R. G. Hodskinson
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jing Zhang
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Svetlana E. Sedelnikova
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Timothy J. Stillman
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jon R. Sayers
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Peter J. Artymiuk
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
5
|
Lu Z, Liang R, Liu X, Hou J, Liu J. RNase HIII from Chlamydophila pneumoniae can efficiently cleave double-stranded DNA carrying a chimeric ribonucleotide in the presence of manganese. Mol Microbiol 2012; 83:1080-93. [PMID: 22332714 DOI: 10.1111/j.1365-2958.2012.07990.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two ribonuclease Hs (RNase Hs) have been found in Chlamydophila pneumoniae, CpRNase HII and CpRNase HIII. This work is the first report that CpRNase HIII can efficiently cleave DNA-rN(1) -DNA/DNA (rN(1) , monoribonucleotide) in vitro in the presence of Mn(2+) , whereas the enzymatic activity of CpRNase HII on the same substrate was inhibited by Mn(2+) and dependent on Mg(2+) . However, the ability of both CpRNase Hs to cleave other alternative substrates (RNA/DNA hybrids and Okazaki-like substrates), was insensitive to the divalent ions changes, suggesting that high concentrations of Mn(2+) specifically repressed the ability of CpRNase HII to cleave DNA-rN(1) -DNA/DNA but activated this function in CpRNase HIII. Further in vivo experiments showed that the CpRNase HII complementation of Escherichia coli rnh(-) mutations in an Mg(2+) environment was suppressed by Mn(2+) . In contrast, Mn(2+) was indispensable for CpRNase HIII to complement the same mutations. Further, the cell growth inhibition and the genomic DNA sensitivity to alkali in the bacterial strain lacking RNase HII activity could be relieved by functional CpRNase HII or HIII with its compatible ion. Therefore, CpRNase HIII can execute cleavage activity on DNA-rN(1) -DNA/DNA under a Mn(2+) -rich environment and may function as a substitute for CpRNase HII under special physiological states.
Collapse
Affiliation(s)
- Zheng Lu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
6
|
Sato A, Soga T, Igarashi K, Takesue K, Tomita M, Kanai A. GTP-dependent RNA 3'-terminal phosphate cyclase from the hyperthermophilic archaeon Pyrococcus furiosus. Genes Cells 2011; 16:1190-9. [PMID: 22074260 DOI: 10.1111/j.1365-2443.2011.01561.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We discovered that the PF1549 gene in Pyrococcus furiosus encodes a very heat-stable RNA 3'-terminal phosphate cyclase (Pf-Rtc). Although all previously reported Rtc proteins are ATP-dependent enzymes, we found that Pf-Rtc requires GTP for its cyclase activity at 95 °C. Low-level activation of the enzyme was also observed in the presence of dGTP but not other dNTPs, indicating that the guanine base is very important for Pf-Rtc activity. We analyzed a series of GTP analogues and found that the conversion from GTP to GMP is important for Pf-Rtc activity and that an excess of GMP inhibits this activity. Gel-shift analysis clearly showed that the RNA-binding activity of Pf-Rtc is totally dependent on the linear form of the 3'-terminal phosphate, with an apparent K(d) value of 20 nm at 95°C. Furthermore, we found that Pf-Rtc may contribute to GTP-dependent RNA ligation activity through the PF0027 protein (a 2'-5' RNA ligase-like protein in P. furiosus). The possible roles of Pf-Rtc and the importance of terminal phosphate structures in RNA are discussed.
Collapse
Affiliation(s)
- Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Dobosy JR, Rose SD, Beltz KR, Rupp SM, Powers KM, Behlke MA, Walder JA. RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnol 2011; 11:80. [PMID: 21831278 PMCID: PMC3224242 DOI: 10.1186/1472-6750-11-80] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/10/2011] [Indexed: 12/13/2022] Open
Abstract
Background The polymerase chain reaction (PCR) is commonly used to detect the presence of nucleic acid sequences both in research and diagnostic settings. While high specificity is often achieved, biological requirements sometimes necessitate that primers are placed in suboptimal locations which lead to problems with the formation of primer dimers and/or misamplification of homologous sequences. Results Pyrococcus abyssi (P.a.) RNase H2 was used to enable PCR to be performed using blocked primers containing a single ribonucleotide residue which are activated via cleavage by the enzyme (rhPCR). Cleavage occurs 5'-to the RNA base following primer hybridization to the target DNA. The requirement of the primer to first hybridize with the target sequence to gain activity eliminates the formation of primer-dimers and greatly reduces misamplification of closely related sequences. Mismatches near the scissile linkage decrease the efficiency of cleavage by RNase H2, further increasing the specificity of the assay. When applied to the detection of single nucleotide polymorphisms (SNPs), rhPCR was found to be far more sensitive than standard allele-specific PCR. In general, the best discrimination occurs when the mismatch is placed at the RNA:DNA base pair. Conclusion rhPCR eliminates the formation of primer dimers and markedly improves the specificity of PCR with respect to off-target amplification. These advantages of the assay should find utility in challenging qPCR applications such as genotyping, high level multiplex assays and rare allele detection.
Collapse
Affiliation(s)
- Joseph R Dobosy
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA 5224, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Reiling SA, Homma K, Asojo OA. Purification and crystallization of RNase HIII from Staphylococcus aureus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 67:79-82. [PMID: 21206030 DOI: 10.1107/s1744309110045616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/06/2010] [Indexed: 11/11/2022]
Abstract
As part of collaborative efforts to characterize virulence factors from Staphylococcus aureus, methods for the large-scale recombinant production of RNase HIII from S. aureus subspecies MRSA252 (Sa-RNase HIII) have been developed. RNase HIII-type ribonucleases are poorly characterized members of the RNase H group of endonucleases which hydrolyze RNA from RNA/DNA hybrids and are thought to be involved in DNA replication and repair. They are characterized by N-terminal extensions of unknown function that do not share sequence homology with the N-terminal extensions of bacterial RNases HI and RNases HII. Sa-RNase HIII was crystallized in the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a=48.9, b=74.2, c=127.5 Å, and diffracted to 2.6 Å resolution.
Collapse
Affiliation(s)
- Scott A Reiling
- Department of Pathology and Microbiology, College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | | | | |
Collapse
|
9
|
Abstract
Faithful DNA replication involves the removal of RNA residues from genomic DNA prior to the ligation of nascent DNA fragments in all living organisms. Because the physiological roles of archaeal type 2 RNase H are not fully understood, the substrate structure requirements for the detection of RNase H activity need further clarification. Biochemical characterization of a single RNase H detected within the genome of Pyrococcus abyssi showed that this type 2 RNase H is an Mg- and alkaline pH-dependent enzyme. PabRNase HII showed RNase activity and acted as a specific endonuclease on RNA-DNA/DNA duplexes. This specific cleavage, 1 nucleotide upstream of the RNA-DNA junction, occurred on a substrate in which RNA initiators had to be fully annealed to the cDNA template. On the other hand, a 5' RNA flap Okazaki fragment intermediate impaired PabRNase HII endonuclease activity. Furthermore, introduction of mismatches into the RNA portion near the RNA-DNA junction decreased both the specificity and the efficiency of cleavage by PabRNase HII. Additionally, PabRNase HII could cleave a single ribonucleotide embedded in a double-stranded DNA. Our data revealed PabRNase HII as a dual-function enzyme likely required for the completion of DNA replication and DNA repair.
Collapse
|
10
|
Characterization of RNase HII substrate recognition using RNase HII–argonaute chimaeric enzymes from Pyrococcus furiosus. Biochem J 2010; 426:337-44. [DOI: 10.1042/bj20091553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNase H (ribonuclease H) is an endonuclease that cleaves the RNA strand of RNA–DNA duplexes. It has been reported that the three-dimensional structure of RNase H is similar to that of the PIWI domain of the Pyrococcus furiosus Ago (argonaute) protein, although the two enzymes share almost no similarity in their amino acid sequences. Eukaryotic Ago proteins are key components of the RNA-induced silencing complex and are involved in microRNA or siRNA (small interfering RNA) recognition. In contrast, prokaryotic Ago proteins show greater affinity for RNA–DNA hybrids than for RNA–RNA hybrids. Interestingly, we found that wild-type Pf-RNase HII (P. furiosus, RNase HII) digests RNA–RNA duplexes in the presence of Mn2+ ions. To characterize the substrate specificity of Pf-RNase HII, we aligned the amino acid sequences of Pf-RNase HII and Pf-Ago, based on their protein secondary structures. We found that one of the conserved secondary structural regions (the fourth β-sheet and the fifth α-helix of Pf-RNase HII) contains family-specific amino acid residues. Using a series of Pf-RNase HII–Pf-Ago chimaeric mutants of the region, we discovered that residues Asp110, Arg113 and Phe114 are responsible for the dsRNA (double-stranded RNA) digestion activity of Pf-RNase HII. On the basis of the reported three-dimensional structure of Ph-RNase HII from Pyrococcus horikoshii, we built a three-dimensional structural model of RNase HII complexed with its substrate, which suggests that these amino acids are located in the region that discriminates DNA from RNA in the non-substrate strand of the duplexes.
Collapse
|
11
|
Liu XP, Hou JL, Liu JH. A novel single nucleotide polymorphism detection of a double-stranded DNA target by a ribonucleotide-carrying molecular beacon and thermostable RNase HII. Anal Biochem 2009; 398:83-92. [PMID: 19891952 DOI: 10.1016/j.ab.2009.10.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/26/2009] [Accepted: 10/29/2009] [Indexed: 12/21/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variation. SNPs are important markers that link sequence variations to phenotypic changes. Because of the importance of SNPs in the life and medical sciences, a great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis. In this article, we describe a novel method for SNP genotyping based on differential fluorescence emission due to cleavage by Thermus thermophilus RNase HII (TthRNase HII) of DNA heteroduplexes containing an SNP site-specific chimeric DNA-rN(1)-DNA molecular beacon (cMB). We constructed a loop sequence for a cMB that contains a single SNP-specific ribonucleotide at the central site. When the cMB probe is hybridized to a target double-stranded DNA (dsDNA), a perfect match of the cMB/DNA duplex permits efficient cleavage with TthRNase HII, whereas a mismatch in the duplex due to an SNP greatly reduces efficiency. Cleavage efficiency is measured by the incremental difference of fluorescence emission of the beacon. We show that the genotypes of 10 individuals at 12 SNP sites across a series of human leukocyte antigen (HLA) can be determined correctly with respect to conventional DNA sequencing. This novel TthRNase HII-based method offers a platform for easy and accurate SNP analysis.
Collapse
Affiliation(s)
- Xi-Peng Liu
- College of Life Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | |
Collapse
|
12
|
Kanai A, Sato A, Fukuda Y, Okada K, Matsuda T, Sakamoto T, Muto Y, Yokoyama S, Kawai G, Tomita M. Characterization of a heat-stable enzyme possessing GTP-dependent RNA ligase activity from a hyperthermophilic archaeon, Pyrococcus furiosus. RNA (NEW YORK, N.Y.) 2009; 15:420-431. [PMID: 19155324 PMCID: PMC2657004 DOI: 10.1261/rna.1122109] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 11/24/2008] [Indexed: 05/27/2023]
Abstract
Using an expression protein library of a hyperthermophilic archaeon, Pyrococcus furiosus, we identified a gene (PF0027) that encodes a protein with heat-stable cyclic nucleotide phosphodiesterase (CPDase) activity. The PF0027 gene encoded a 21-kDa protein and an amino acid sequence that showed approximately 27% identity to that of the 2'-5' tRNA ligase protein, ligT (20 kDa), from Escherichia coli. We found that the purified PF0027 protein possessed GTP-dependent RNA ligase activity and that synthetic tRNA halves bearing 2',3'-cyclic phosphate and 5'-OH termini were substrates for the ligation reaction in vitro. GTP hydrolysis was not required for the reaction, and GTPgammaS enhanced the tRNA ligation activity of PF0027 protein, suggesting that the ligation step is regulated by a novel mechanism. In comparison to the strong CPDase activity of the PF0027 protein, the RNA ligase activity itself was quite weak, and the ligation product was unstable during in vitro reaction. Finally, we used NMR to determine the solution structure of the PF0027 protein and discuss the implications of our results in understanding the role of the PF0027 protein.
Collapse
Affiliation(s)
- Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Junction ribonuclease (JRNase) recognizes the transition from RNA to DNA of an RNA-DNA/DNA hybrid, such as an Okazaki fragment, and cleaves it, leaving a mono-ribonucleotide at the 5' terminus of the RNA-DNA junction. Although this JRNase activity was originally reported in calf RNase H2, some other RNases H have recently been suggested to possess it. This paper shows that these enzymes can also cleave an RNA-DNA/RNA heteroduplex in a manner similar to the RNA-DNA/DNA substrate. The cleavage site of the RNA-DNA/RNA substrate corresponds to the RNA/RNA duplex region, indicating that the cleavage activity cannot be categorized as RNase H activity, which specifically cleaves an RNA strand of an RNA/DNA hybrid. Examination of several RNases H with respect to JRNase activity suggested that the activity is only found in RNase HII orthologs. Therefore, RNases HIII, which are RNase HII paralogs, are distinguished from RNases HII by the absence of JRNase activity. Whether a substrate can be targeted by JRNase activity would depend only on whether or not an RNA-DNA junction consisting of one ribonucleotide and one deoxyribonucleotide is included in the duplex. In addition, although the activity has been reported not to occur on completely single-stranded RNA-DNA, it can recognize a single-stranded RNA-DNA junction if a double-stranded region is located adjacent to the junction.
Collapse
Affiliation(s)
- Naoto Ohtani
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
| | | | | |
Collapse
|
14
|
Junction ribonuclease: a ribonuclease HII orthologue from Thermus thermophilus HB8 prefers the RNA-DNA junction to the RNA/DNA heteroduplex. Biochem J 2008; 412:517-26. [PMID: 18318663 DOI: 10.1042/bj20080140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The genome of an extremely thermophilic bacterium, Thermus thermophilus HB8, contains a single ORF (open reading frame) encoding an RNase-HII-like sequence. Despite the presence of significant amino acid sequence identities with RNase (ribonuclease) HII enzymes, the ORF TTHA0198 could not suppress the temperature-sensitive growth defect of an RNase-H-deficient Escherichia coli mutant and the purified recombinant protein could not cleave an RNA strand of an RNA/DNA heteroduplex, suggesting that the TTHA0198 exhibited no RNase H activity both in vivo and in vitro. When oligomeric RNA-DNA/DNAs were used as a mimic substrate for Okazaki fragments, however, the protein cleaved them only at the 5' side of the last ribonucleotide at the RNA-DNA junction. In fact, the TTHA0198 protein prefers the RNA-DNA junction to the RNA/DNA hybrid. We have referred to this activity as JRNase (junction RNase) activity, which recognizes an RNA-DNA junction of the RNA-DNA/DNA heteroduplex and cleaves it leaving a mono-ribonucleotide at the 5' terminus of the RNA-DNA junction. E. coli and Deinococcus radiodurans RNases HII also cleaved the RNA-DNA/DNA substrates at the same site with a different metal-ion preference from that for RNase H activity, implying that the enzymes have JRNase activity as well as RNase H activity. The specialization in the JRNase activity of the RNase HII orthologue from T. thermophilus HB8 (Tth-JRNase) suggests that the JRNase activity of RNase HII enzymes might be independent of the RNase H activity.
Collapse
|
15
|
Hou J, Liu X, Zheng Y, Liu J. A method for HLA genotyping using the specific cleavage of DNA-rN1-DNA/DNA with RNase HII from Chlamydia pneumoniae. Oligonucleotides 2008; 17:433-43. [PMID: 18154453 DOI: 10.1089/oli.2007.0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single nucleotide polymorphisms (SNPs) provide a great opportunity for the study of human disease and bacterial drug resistance. However, many SNP typing techniques require dedicated instruments and high cost. Here, we develop a novel method for SNP genotyping based on specific cleavage properties of RNase HII from Chlamydia pneumoniae (CpRNase HII), termed the "CpRNase HII-based method." CpRNase HII cleaves the DNA-rN(1)-DNA/DNA duplex at the 5'-side of the ribonucleotide (rN(1) = one ribonucleotide). Moreover, the cleavage efficiencies of the perfectly matched DNA-rN(1)-DNA/DNA duplexes are higher than those carrying a mismatched ribonucleotide. DNA-rN(1)-DNA fragments are modified with a fluorophore at the 5'-end and a quencher at the 3'-end to generate molecular beacons (MBs), which hybridize with single-stranded DNA (analyte) to be cleaved by CpRNase HII. As perfectly matched duplexes can be cleaved efficiently and mismatched duplexes cannot, CpRNase HII-catalyzed reactions can differentiate between one-nucleotide variations on the DNA-rN(1)-DNA/DNA duplexes. We have validated this method with nine SNPs of the HLA gene, which were successfully determined by endpoint measurements of fluorescence intensity. The new method is simple and effective, because the design of MBs is easy, and all steps of the genotyping consist of simple additions of solutions and incubation. This method will be suitable for large-scale genotyping.
Collapse
Affiliation(s)
- Jingli Hou
- College of Life Science & Technology, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Fukushima S, Itaya M, Kato H, Ogasawara N, Yoshikawa H. Reassessment of the in vivo functions of DNA polymerase I and RNase H in bacterial cell growth. J Bacteriol 2007; 189:8575-83. [PMID: 17905985 PMCID: PMC2168925 DOI: 10.1128/jb.00653-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major factor in removing RNA primers during the processing of Okazaki fragments is DNA polymerase I (Pol I). Pol I is thought to remove the RNA primers and to fill the resulting gaps simultaneously. RNase H, encoded by rnh genes, is another factor in removing the RNA primers, and there is disagreement with respect to the essentiality of both the polA and rnh genes. In a previous study, we looked for the synthetic lethality of paralogs in Bacillus subtilis and detected several essential doublet paralogs, including the polA ypcP pair. YpcP consists of only the 5'-3' exonuclease domain. In the current study, we first confirmed that the polA genes of both Escherichia coli and B. subtilis could be completely deleted. We found that the 5'-3' exonuclease activity encoded by either polA or ypcP xni was required for the growth of B. subtilis and E. coli. Also, the 5'-3' exonuclease activity of Pol I was indispensable in the cyanobacterium Synechococcus elongatus. These results suggest that a 5'-3' exonuclease activity is essential in these organisms. Our success in constructing a B. subtilis strain that lacked all RNase H genes indicates that the enzymatic activity is dispensable, at least in the wild type. Increasing the 5'-3' exonuclease activity partially compensated for a defective phenotype of an RNase H-deficient mutant, suggesting cooperative functions for the two enzyme systems. Our search for the distribution of the 5'-3' exonuclease domain among 250 bacterial genomes resulted in the finding that all eubacteria, but not archaea, possess this domain.
Collapse
Affiliation(s)
- Sanae Fukushima
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1 Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | |
Collapse
|
17
|
Evolution of ribonuclease H genes in prokaryotes to avoid inheritance of redundant genes. BMC Evol Biol 2007; 7:128. [PMID: 17663799 PMCID: PMC1950709 DOI: 10.1186/1471-2148-7-128] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 07/31/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A theoretical model of genetic redundancy has proposed that the fates of redundant genes depend on the degree of functional redundancy, and that functionally redundant genes will not be inherited together. However, no example of actual gene evolution has been reported that can be used to test this model. Here, we analyzed the molecular evolution of the ribonuclease H (RNase H) family in prokaryotes and used the results to examine the implications of functional redundancy for gene evolution. RESULTS In prokaryotes, RNase H has been classified into RNase HI, HII, and HIII on the basis of amino acid sequences. Using 353 prokaryotic genomes, we identified the genes encoding the RNase H group and examined combinations of these genes in individual genomes. We found that the RNase H group may have evolved in such a way that the RNase HI and HIII genes will not coexist within a single genome--in other words, these genes are inherited in a mutually exclusive manner. Avoiding the simultaneous inheritance of the RNase HI and HIII genes is remarkable when RNase HI contains an additional non-RNase H domain, double-stranded RNA, and an RNA-DNA hybrid-binding domain, which is often observed in eukaryotic RNase H1. This evolutionary process may have resulted from functional redundancy of these genes, because the substrate preferences of RNase HI and RNase HIII are similar. CONCLUSION We provide two possible evolutionary models for RNase H genes in which functional redundancy contributes to the exclusion of redundant genes from the genome of a species. This is the first empirical study to show the effect of functional redundancy on changes in gene constitution during the course of evolution.
Collapse
|
18
|
Fujishima K, Komasa M, Kitamura S, Suzuki H, Tomita M, Kanai A. Proteome-wide prediction of novel DNA/RNA-binding proteins using amino acid composition and periodicity in the hyperthermophilic archaeon Pyrococcus furiosus. DNA Res 2007; 14:91-102. [PMID: 17573465 PMCID: PMC2779898 DOI: 10.1093/dnares/dsm011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Proteins play a critical role in complex biological systems, yet about half of the proteins in publicly available databases are annotated as functionally unknown. Proteome-wide functional classification using bioinformatics approaches thus is becoming an important method for revealing unknown protein functions. Using the hyperthermophilic archaeon Pyrococcus furiosus as a model species, we used the support vector machine (SVM) method to discriminate DNA/RNA-binding proteins from proteins with other functions, using amino acid composition and periodicities as feature vectors. We defined this value as the composition score (CO) and periodicity score (PD). The P. furiosus proteins were classified into three classes (I–III) on the basis of the two-dimensional correlation analysis of CO score and PD score. As a result, approximately 87% of the functionally known proteins categorized as class I proteins (CO score + PD score > 0.6) were found to be DNA/RNA-binding proteins. Applying the two-dimensional correlation analysis to the 994 hypothetical proteins in P. furiosus, a total of 151 proteins were predicted to be novel DNA/RNA-binding protein candidates. DNA/RNA-binding activities of randomly chosen hypothetical proteins were experimentally verified. Six out of seven candidate proteins in class I possessed DNA/RNA-binding activities, supporting the efficacy of our method.
Collapse
Affiliation(s)
- Kosuke Fujishima
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-8520, Japan
| | - Mizuki Komasa
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-8520, Japan
| | - Sayaka Kitamura
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-8520, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-8520, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa 252-8520, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa 252-8520, Japan
- To whom correspondence should be addressed. Tel. +81 235-29-0524. Fax. +81 235-29-0525. E-mail:
| |
Collapse
|
19
|
Hou J, Liu X, Pei D, Liu J. RNase HII from Chlamydia pneumoniae discriminates mismatches incorporation into DNA-rN1-DNA/DNA duplexes. Biochem Biophys Res Commun 2007; 356:988-92. [PMID: 17397801 DOI: 10.1016/j.bbrc.2007.03.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
It was reported that RNase HII from Chlamydia pneumoniae (CpRNase HII) had RNase H activity on RNA/DNA duplex. We have analyzed the cleavage specificity of CpRNase HII on DNA-rN1-DNA/DNA duplex (rN1, one ribonucleotide). Various mismatches were introduced into the DNA-rN1-DNA/DNA duplexes at or around the ribonucleotide. The mismatches of duplexes resulted in slower cleavage rates compared to the matched duplexes. Furthermore, a greater reduction in cleavage activity was observed for the mismatches located at or adjacent to the ribonucleotide. The mismatches at the same position of DNA-rN1-DNA/DNA duplexes have different impact on the cleavage rates of CpRNase HII depending on the types of mismatches. These findings may offer further insights into the physical binding and catalytic properties of CpRNase HII-substrate interaction.
Collapse
Affiliation(s)
- Jingli Hou
- College of Life Science & Technology, Shanghai Jiaotong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | | | | | | |
Collapse
|
20
|
Kochiwa H, Itaya M, Tomita M, Kanai A. Stage-specific expression of Caenorhabditis elegans ribonuclease H1 enzymes with different substrate specificities and bivalent cation requirements. FEBS J 2006; 273:420-9. [PMID: 16403028 DOI: 10.1111/j.1742-4658.2005.05082.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribonuclease H1 (RNase H1) is a widespread enzyme found in a range of organisms from viruses to humans. It is capable of degrading the RNA moiety of DNA-RNA hybrids and requires a bivalent ion for activity. In contrast with most eukaryotes, which have one gene encoding RNase H1, the activity of which depends on Mg(2+) ions, Caenorhabditis elegans has four RNase H1-related genes, and one of them has an isoform produced by alternative splicing. However, little is known about the enzymatic features of the proteins encoded by these genes. To determine the differences between these enzymes, we compared the expression patterns of each RNase H1-related gene throughout the development of the nematode and the RNase H activities of their recombinant proteins. We found gene-specific expression patterns and different enzymatic features. In particular, besides the enzyme that displays the highest activity in the presence of Mg(2+) ions, C. elegans has another enzyme that shows preference for Mn(2+) ion as a cofactor. We characterized this Mn(2+)-dependent RNase H1 for the first time in eukaryotes. These results suggest that there are at least two types of RNase H1 in C. elegans depending on the developmental stage of the organism.
Collapse
Affiliation(s)
- Hiromi Kochiwa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | | | | | | |
Collapse
|
21
|
Kanai A, Sato A, Imoto J, Tomita M. Archaeal Pyrococcus furiosus thymidylate synthase 1 is an RNA-binding protein. Biochem J 2006; 393:373-9. [PMID: 16176183 PMCID: PMC1383696 DOI: 10.1042/bj20050608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using a stem-loop RNA oligonucleotide (19-mer) containing an AUG sequence in the loop region as a probe, we screened the protein library from a hyperthermophilic archaeon, Pyrococcus furiosus, and found that a flavin-dependent thymidylate synthase, Pf-Thy1 (Pyrococcus furiosus thymidylate synthase 1), possessed RNA-binding activity. Recombinant Pf-Thy1 was able to bind to the stem-loop structure at a high temperature (75 degrees C) with an apparent dissociation constant of 0.6 microM. A similar stem-loop RNA structure was located around the translation start AUG codon of Pf-Thy1 RNA, and gel-shift analysis revealed that Pf-Thy1 could also bind to this stem-loop structure. In vitro translation analysis using chimaeric constructs containing the stem-loop sequence in their Pf-Thy1 RNA and a luciferase reporter gene indicated that the stem-loop structure acted as an inhibitory regulator of translation by preventing the binding of its Shine-Dalgarno-like sequence by positioning it in the stem region. Addition of Pf-Thy1 into the in vitro translation system also inhibited translation. These results suggested that this class of thymidylate synthases may autoregulate their own translation in a manner analogous to that of the well characterized thymidylate synthase A proteins, although there is no significant amino acid sequence similarity between them.
Collapse
Affiliation(s)
- Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan.
| | | | | | | |
Collapse
|
22
|
Ohtani N, Saito N, Tomita M, Itaya M, Itoh A. The SCO2299 gene from Streptomyces coelicolor A3(2) encodes a bifunctional enzyme consisting of an RNase H domain and an acid phosphatase domain. FEBS J 2005; 272:2828-37. [PMID: 15943815 DOI: 10.1111/j.1742-4658.2005.04704.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The SCO2299 gene from Streptomyces coelicolor encodes a single peptide consisting of 497 amino acid residues. Its N-terminal region shows high amino acid sequence similarity to RNase HI, whereas its C-terminal region bears similarity to the CobC protein, which is involved in the synthesis of cobalamin. The SCO2299 gene suppressed a temperature-sensitive growth defect of an Escherichia coli RNase H-deficient strain, and the recombinant SCO2299 protein cleaved an RNA strand of RNA.DNA hybrid in vitro. The N-terminal domain of the SCO2299 protein, when overproduced independently, exhibited RNase H activity at a similar level to the full length protein. On the other hand, the C-terminal domain showed no CobC-like activity but an acid phosphatase activity. The full length protein also exhibited acid phosphatase activity at almost the same level as the C-terminal domain alone. These results indicate that RNase H and acid phosphatase activities of the full length SCO2299 protein depend on its N-terminal and C-terminal domains, respectively. The physiological functions of the SCO2299 gene and the relation between RNase H and acid phosphatase remain to be determined. However, the bifunctional enzyme examined here is a novel style in the Type 1 RNase H family. Additionally, S. coelicolor is the first example of an organism whose genome contains three active RNase H genes.
Collapse
Affiliation(s)
- Naoto Ohtani
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
| | | | | | | | | |
Collapse
|
23
|
Malik HS. Ribonuclease H evolution in retrotransposable elements. Cytogenet Genome Res 2005; 110:392-401. [PMID: 16093691 DOI: 10.1159/000084971] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 02/11/2004] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic and prokaryotic genomes encode either Type I or Type II Ribonuclease H (RNH) which is important for processing RNA primers that prime DNA replication in almost all organisms. This review highlights the important role that Type I RNH plays in the life cycle of many retroelements, and its utility in tracing early events in retroelement evolution. Many retroelements utilize host genome-encoded RNH, but several lineages of retroelements, including some non-LTR retroposons and all LTR retrotransposons, encode their own RNH domains. Examination of these RNH domains suggests that all LTR retrotransposons acquired an enzymatically weak RNH domain that is missing an important catalytic residue found in all other RNH enzymes. We propose that this reduced activity is essential to ensure correct processing of the polypurine tract (PPT), which is an important step in the life cycle of these retrotransposons. Vertebrate retroviruses appear to have reacquired their RNH domains, which are catalytically more active, but their ancestral RNH domains (found in other LTR retrotransposons) have degenerated to give rise to the tether domains unique to vertebrate retroviruses. The tether domain may serve to control the more active RNH domain of vertebrate retroviruses. Phylogenetic analysis of the RNH domains is also useful to "date" the relative ages of LTR and non-LTR retroelements. It appears that all LTR retrotransposons are as old as, or younger than, the "youngest" lineages of non-LTR retroelements, suggesting that LTR retrotransposons arose late in eukaryotes.
Collapse
Affiliation(s)
- H S Malik
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| |
Collapse
|
24
|
Pei D, Liu J, Liu X, Li S. Expression of both Chlamydia pneumoniae RNase HIIs in Escherichia coli. Protein Expr Purif 2005; 40:101-6. [PMID: 15721777 DOI: 10.1016/j.pep.2004.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 10/19/2004] [Indexed: 10/26/2022]
Abstract
Both genes encoding the RNase HIIs from Chlamydia pneumoniae AR 39 (discriminated as CpRNase HIIa and CpRNase HIIb in this report) were cloned and efficiently expressed in Escherichia coli. These genes amplified from Chlamydial genomes with PCR were digested with restriction endonucleases and then cloned into plasmid pET-28a predigested with the same enzymes. DNA sequencing confirmed that the constructs were correct in translation frame and coding sequence. Recombinant RNase HIIs were over-expressed by 0.5 mM IPTG induction. CpRNase HIIa existed mainly as inclusion bodies while CpRNase HIIb mainly as soluble fractions in E. coli. The soluble proteins were 20% of total expressed CpRNase HIIa and 65% of total expressed CpRNase HIIb, respectively. Native purification and denaturing Ni-NTA purification were performed to recover the recombinant CpRNase HIIs from induced bacteria. 3.36 mg CpRNase HIIa and 18 mg CpRNase HIIb were, respectively, obtained from 1 g wet bacteria with native Ni-NTA purification. Denaturing Ni-NTA purification recovered 14.48 mg CpRNase HIIa and 10.4 mg CpRNase HIIb from 1 g wet bacteria, respectively. Although the proteins recovered by denaturing Ni-NTA purification were inactive, re-folding by dialysis against decreased concentrations of urea could generate CpRNase HIIa and CpRNase HIIb as active as those recovered by native Ni-NTA purification. These efforts offered basis for further study on the structure-function relationships and their biological importance of Chlamydial RNase HIIs.
Collapse
Affiliation(s)
- Dongli Pei
- College of Life Sciences and Technology, Shanghai Jiaotong University, No. 1954 Hua-Shan Road, Shanghai 200030, China
| | | | | | | |
Collapse
|
25
|
Ohtani N, Yanagawa H, Tomita M, Itaya M. Identification of the first archaeal Type 1 RNase H gene from Halobacterium sp. NRC-1: archaeal RNase HI can cleave an RNA-DNA junction. Biochem J 2004; 381:795-802. [PMID: 15115438 PMCID: PMC1133889 DOI: 10.1042/bj20040153] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 04/16/2004] [Accepted: 04/28/2004] [Indexed: 11/17/2022]
Abstract
All the archaeal genomes sequenced to date contain a single Type 2 RNase H gene. We found that the genome of a halophilic archaeon, Halobacterium sp. NRC-1, contains an open reading frame with similarity to Type 1 RNase H. The protein encoded by the Vng0255c gene, possessed amino acid sequence identities of 33% with Escherichia coli RNase HI and 34% with a Bacillus subtilis RNase HI homologue. The B. subtilis RNase HI homologue, however, lacks amino acid sequences corresponding to a basic protrusion region of the E. coli RNase HI, and the Vng0255c has the similar deletion. As this deletion apparently conferred a complete loss of RNase H activity on the B. subtilis RNase HI homologue protein, the Vng0255c product was expected to exhibit no RNase H activity. However, the purified recombinant Vng0255c protein specifically cleaved an RNA strand of the RNA/DNA hybrid in vitro, and when the Vng0255c gene was expressed in an E. coli strain MIC2067 it could suppress the temperature-sensitive growth defect associated with the loss of RNase H enzymes of this strain. These results in vitro and in vivo strongly indicate that the Halobacterium Vng0255c is the first archaeal Type 1 RNase H. This enzyme, unlike other Type 1 RNases H, was able to cleave an Okazaki fragment-like substrate at the junction between the 3'-side of ribonucleotide and 5'-side of deoxyribonucleotide. It is likely that the archaeal Type 1 RNase H plays a role in the removal of the last ribonucleotide of the RNA primer from the Okazaki fragment during DNA replication.
Collapse
Affiliation(s)
- Naoto Ohtani
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | | | | | | |
Collapse
|