1
|
The lysosomal transporter TAPL has a dual role as peptide translocator and phosphatidylserine floppase. Nat Commun 2022; 13:5851. [PMID: 36195619 PMCID: PMC9532399 DOI: 10.1038/s41467-022-33593-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
TAPL is a lysosomal ATP-binding cassette transporter that translocates a broad spectrum of polypeptides from the cytoplasm into the lysosomal lumen. Here we report that, in addition to its well-known role as a peptide translocator, TAPL exhibits an ATP-dependent phosphatidylserine floppase activity that is the possible cause of its high basal ATPase activity and of the lack of coupling between ATP hydrolysis and peptide efflux. We also present the cryo-EM structures of mouse TAPL complexed with (i) phospholipid, (ii) cholesteryl hemisuccinate (CHS) and 9-mer peptide, and (iii) ADP·BeF3. The inward-facing structure reveals that F449 protrudes into the cylindrical transport pathway and divides it into a large hydrophilic central cavity and a sizable hydrophobic upper cavity. In the structure, the peptide binds to TAPL in horizontally-stretched fashion within the central cavity, while lipid molecules plug vertically into the upper cavity. Together, our results suggest that TAPL uses different mechanisms to function as a peptide translocase and a phosphatidylserine floppase.
Collapse
|
2
|
Szakacs G, Abele R. An inventory of lysosomal ABC transporters. FEBS Lett 2020; 594:3965-3985. [DOI: 10.1002/1873-3468.13967] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Szakacs
- Institute of Enzymology Research Centre of Natural Sciences Eötvös Loránd Research Network Budapest Hungary
- Institute of Cancer Research Medical University of Vienna Vienna Austria
| | - Rupert Abele
- Institute of Biochemistry Goethe‐University Frankfurt am Main Frankfurt am Main Germany
| |
Collapse
|
3
|
Barkhash AV, Yurchenko AA, Yudin NS, Kozlova IV, Borishchuk IA, Smolnikova MV, Zaitseva OI, Pozdnyakova LL, Voevoda MI, Romaschenko AG. Association of ABCB9 and COL22A1 Gene Polymorphism with Human Predisposition to Severe Forms of Tick-Borne Encephalitis. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419030025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Abele R, Tampé R. Moving the Cellular Peptidome by Transporters. Front Cell Dev Biol 2018; 6:43. [PMID: 29761100 PMCID: PMC5937356 DOI: 10.3389/fcell.2018.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
Living matter is defined by metastability, implying a tightly balanced synthesis and turnover of cellular components. The first step of eukaryotic protein degradation via the ubiquitin-proteasome system (UPS) leads to peptides, which are subsequently degraded to single amino acids by an armada of proteases. A small fraction of peptides, however, escapes further cytosolic destruction and is transported by ATP-binding cassette (ABC) transporters into the endoplasmic reticulum (ER) and lysosomes. The ER-resident heterodimeric transporter associated with antigen processing (TAP) is a crucial component in adaptive immunity for the transport and loading of peptides onto major histocompatibility complex class I (MHC I) molecules. Although the function of the lysosomal resident homodimeric TAPL-like (TAPL) remains, until today, only loosely defined, an involvement in immune defense is anticipated since it is highly expressed in dendritic cells and macrophages. Here, we compare the gene organization and the function of single domains of both peptide transporters. We highlight the structural organization, the modes of substrate binding and translocation as well as physiological functions of both organellar transporters.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.,Cluster of Excellence - Macromolecular Complexes, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
5
|
Co-operative function and mutual stabilization of the half ATP-binding cassette transporters HAF-4 and HAF-9 in Caenorhabditis elegans. Biochem J 2013; 452:467-75. [PMID: 23458156 DOI: 10.1042/bj20130115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Caenorhabditis elegans HAF-4 and HAF-9 are half ABC (ATP-binding-cassette) transporters that are highly homologous to the human lysosomal peptide transporter TAPL [TAP (transporter associated with antigen processing)-like; ABCB9]. We reported previously that both HAF-4 and HAF-9 localize to the membrane of a subset of intestinal organelles, and are required for the formation of these organelles and other physiological aspects. In the present paper, we report the genetic and physical interactions between HAF-4 and HAF-9. Overexpression of HAF-4 and HAF-9 did not rescue the intestinal organelle defect of the haf-9 and haf-4 deletion mutants respectively, indicating that they cannot substitute for each other. Double haf-4 and haf-9 mutants do not exhibit more severe phenotypes than the single mutants, suggesting their co-operative function. Immunoprecipitation experiments demonstrated their physical interaction. The results of the present study suggest that HAF-4 and HAF-9 form a heterodimer. Furthermore, Western blot analysis of the deletion mutants and RNAi (RNA interference) knockdown experiments in GFP (green fluorescent protein)-tagged HAF-4 or HAF-9 transgenic worms suggest that HAF-4-HAF-9 heterodimer formation is required for their stabilization. The findings provide a clue as to how ABC transporters adopt a stable functional form.
Collapse
|
6
|
Demirel Ö, Jan I, Wolters D, Blanz J, Saftig P, Tampé R, Abele R. The lysosomal polypeptide transporter TAPL is stabilized by interaction with LAMP-1 and LAMP-2. J Cell Sci 2012; 125:4230-40. [PMID: 22641697 DOI: 10.1242/jcs.087346] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
TAPL (ABCB9) is a homodimeric polypeptide translocation machinery which transports cytosolic peptides into the lumen of lysosomes for degradation. Since the function of proteins is strongly dependent on the interaction network involved, we investigated the interactome of TAPL. A proteomic approach allowed identification of the lysosome-associated membrane proteins LAMP-1 and LAMP-2B as the most abundant interaction partners. Albeit with low frequency, major histocompatibility complex II subunits were also detected. The interaction interface with LAMP was mapped to the four-transmembrane helices constituting the N-terminal domain of TAPL (TMD0). The LAMP proteins bind independently to TAPL. This interaction has influence on neither subcellular localization nor peptide transport activity. However, in LAMP-deficient cells, the half-life of TAPL is decreased by a factor of five, whereas another lysosomal membrane protein, LIMP-2, is not affected. Reduced stability of TAPL is caused by increased lysosomal degradation, indicating that LAMP proteins retain TAPL on the limiting membrane of endosomes and prevent its sorting to intraluminal vesicles.
Collapse
Affiliation(s)
- Özlem Demirel
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Bangert I, Tumulka F, Abele R. The lysosomal polypeptide transporter TAPL: more than a housekeeping factor? Biol Chem 2011; 392:61-6. [PMID: 21194361 DOI: 10.1515/bc.2011.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The transporter associated with antigen processing-like (TAPL) is a polypeptide transporter translocating cytosolic peptides into the lumen of lysosomes driven by ATP hydrolysis. TAPL belongs to the family of ABC transporters and forms a homodimer. This ABC transporter not only shows a broad tissue but also a wide phylogenetic distribution, because orthologs are still found in nematodes and insects. Here, we present the topology, substrate specificity, and distribution of this intracellular polypeptide transporter. Additionally, we will discuss its proposed physiological functions such as housekeeping together with a specialized factor for metabolite storage as well as for the adaptive immunity.
Collapse
Affiliation(s)
- Irina Bangert
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, Frankfurt/Main, Germany
| | | | | |
Collapse
|
8
|
Fujimoto Y, Kamakura A, Motohashi Y, Ohashi-Kobayashi A, Maeda M. Transporter Associated with Antigen Processing-Like (ABCB9) Stably Expressed in Chinese Hamster Ovary-K1 Cells Is Sorted to the Microdomains of Lysosomal Membranes. Biol Pharm Bull 2011; 34:36-40. [DOI: 10.1248/bpb.34.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasuyuki Fujimoto
- Department of Molecular Biology, School of Pharmacy, Iwate Medical University
| | - Aya Kamakura
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yu Motohashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Ayako Ohashi-Kobayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Masatomo Maeda
- Department of Molecular Biology, School of Pharmacy, Iwate Medical University
| |
Collapse
|
9
|
Kawai H, Tanji T, Shiraishi H, Yamada M, Iijima R, Inoue T, Kezuka Y, Ohashi K, Yoshida Y, Tohyama K, Gengyo-Ando K, Mitani S, Arai H, Ohashi-Kobayashi A, Maeda M. Normal formation of a subset of intestinal granules in Caenorhabditis elegans requires ATP-binding cassette transporters HAF-4 and HAF-9, which are highly homologous to human lysosomal peptide transporter TAP-like. Mol Biol Cell 2009; 20:2979-90. [PMID: 19403699 PMCID: PMC2695804 DOI: 10.1091/mbc.e08-09-0912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 04/10/2009] [Accepted: 04/17/2009] [Indexed: 11/11/2022] Open
Abstract
TAP-like (TAPL; ABCB9) is a half-type ATP-binding cassette (ABC) transporter that localizes in lysosome and putatively conveys peptides from cytosol to lysosome. However, the physiological role of this transporter remains to be elucidated. Comparison of genome databases reveals that TAPL is conserved in various species from a simple model organism, Caenorhabditis elegans, to mammals. C. elegans possesses homologous TAPL genes: haf-4 and haf-9. In this study, we examined the tissue-specific expression of these two genes and analyzed the phenotypes of the loss-of-function mutants for haf-4 and haf-9 to elucidate the in vivo function of these genes. Both HAF-4 and HAF-9 tagged with green fluorescent protein (GFP) were mainly localized on the membrane of nonacidic but lysosome-associated membrane protein homologue (LMP-1)-positive intestinal granules from larval to adult stage. The mutants for haf-4 and haf-9 exhibited granular defects in late larval and young adult intestinal cells, associated with decreased brood size, prolonged defecation cycle, and slow growth. The intestinal granular phenotype was rescued by the overexpression of the GFP-tagged wild-type protein, but not by the ATP-unbound form of HAF-4. These results demonstrate that two ABC transporters, HAF-4 and HAF-9, are related to intestinal granular formation and some other physiological aspects.
Collapse
Affiliation(s)
- Hiromi Kawai
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahiro Tanji
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Hirohisa Shiraishi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Mitsuo Yamada
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryoko Iijima
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takao Inoue
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuko Kezuka
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuaki Ohashi
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshida
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Iwate 020-8505, Japan; and
| | - Koujiro Tohyama
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Iwate 020-8505, Japan; and
| | - Keiko Gengyo-Ando
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayako Ohashi-Kobayashi
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Masatomo Maeda
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Abele R, Tampé R. Peptide trafficking and translocation across membranes in cellular signaling and self-defense strategies. Curr Opin Cell Biol 2009; 21:508-15. [PMID: 19443191 DOI: 10.1016/j.ceb.2009.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/11/2009] [Accepted: 04/14/2009] [Indexed: 01/03/2023]
Abstract
Cells are metastable per se and a fine-tuned balance of de novo protein synthesis and degradation shapes their proteome. The primary function of peptides is to supply amino acids for de novo protein synthesis or as an energy source during starvation. Peptides are intrinsically short-lived and steadily trimmed by an armada of intra and extracellular peptidases. However, peptides acquired additional, more sophisticated tasks already early in evolution. Here, we summarize current knowledge on intracellular peptide trafficking and translocation mediated by ATP-binding cassette (ABC) transport machineries with a focus on the functions of protein degradation products as important signaling molecules in self-defense mechanisms.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt aM, Germany
| | | |
Collapse
|
11
|
Kamakura A, Fujimoto Y, Motohashi Y, Ohashi K, Ohashi-Kobayashi A, Maeda M. Functional dissection of transmembrane domains of human TAP-like (ABCB9). Biochem Biophys Res Commun 2008; 377:847-51. [DOI: 10.1016/j.bbrc.2008.10.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 10/15/2008] [Indexed: 11/24/2022]
|
12
|
Zhao C, Haase W, Tampé R, Abele R. Peptide Specificity and Lipid Activation of the Lysosomal Transport Complex ABCB9 (TAPL). J Biol Chem 2008; 283:17083-91. [DOI: 10.1074/jbc.m801794200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Ohara T, Ohashi-Kobayashi A, Maeda M. Biochemical characterization of transporter associated with antigen processing (TAP)-like (ABCB9) expressed in insect cells. Biol Pharm Bull 2008; 31:1-5. [PMID: 18175933 DOI: 10.1248/bpb.31.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ATP-binding cassette (ABC) transporter, transporter associated with antigen processing (TAP)-like (TAPL) tagged with a histidine cluster was overexpressed, amounting to as much as 1-2% of total membrane proteins in Drosophila cell line S2. TAPL was effectively solubilized from membranes by Triton X-100, NP-40 and n-dodecyl-beta-D-maltoside. Solubilized TAPL bound ATP-agarose and adenosine 5'-diphosphate (ADP)-agarose but not adenosine 5'-monophosphate (AMP)-agarose. The binding was competed for by excess free ATP, ADP, guanosine 5'-triphosphate (GTP) and dATP but not by AMP. Pyrimidine nucleotides such as uridine 5'-triphosphate (UTP) and cytidine 5'-triphosphate (CTP) were less effective competitors, suggesting that purine nucleotide triphosphates are substrates for TAPL. The ATP-binding of TAPL required Mg(2+), and was observed at neutral pH. Chemical cross-linking experiments suggested that TAPL forms a homodimer in the membrane and under the solubilized conditions.
Collapse
Affiliation(s)
- Tomomi Ohara
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
14
|
Demirel Ö, Waibler Z, Kalinke U, Grünebach F, Appel S, Brossart P, Hasilik A, Tampé R, Abele R. Identification of a Lysosomal Peptide Transport System Induced during Dendritic Cell Development. J Biol Chem 2007; 282:37836-43. [DOI: 10.1074/jbc.m708139200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
15
|
Herget M, Tampé R. Intracellular peptide transporters in human--compartmentalization of the "peptidome". Pflugers Arch 2006; 453:591-600. [PMID: 16710701 DOI: 10.1007/s00424-006-0083-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Accepted: 03/27/2006] [Indexed: 01/09/2023]
Abstract
In the human genome, the five adenosine triphosphate (ATP)-binding cassette (ABC) half transporters ABCB2 (TAP1), ABCB3 (TAP2), ABCB9 (TAP-like), and in part, also ABCB8 and ABCB10 are closely related with regard to their structural and functional properties. Although targeted to different cellular compartments such as the endoplasmic reticulum (ER), lysosomes, and mitochondria, they are involved in intracellular peptide trafficking across membranes. The transporter associated with antigen processing (TAP1 and TAP2) constitute a key machinery in the major histocompatibility complex (MHC) class I-mediated cellular immune defense against infected or malignantly transformed cells. TAP translocates the cellular "peptidome" derived primarily from cytosolic proteasomal degradation into the ER lumen for presentation by MHC class I molecules. The homodimeric ABCB9 (TAP-like) complex located in lysosomal compartments shares structural and functional similarities to TAP; however, its biological role seems to be different from the MHC I antigen processing. ABCB8 and ABCB10 are targeted to the inner mitochondrial membrane. MDL1, the yeast homologue of ABCB10, is involved in the export of peptides derived from proteolysis of inner-membrane proteins into the intermembrane space. As such peptides are presented as minor histocompatibility antigens on the surface of mammalian cells, a physiological role of ABCB10 in the antigen processing can be accounted.
Collapse
Affiliation(s)
- Meike Herget
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
| | | |
Collapse
|
16
|
Zhao C, Tampé R, Abele R. TAP and TAP-like--brothers in arms? Naunyn Schmiedebergs Arch Pharmacol 2006; 372:444-50. [PMID: 16525794 DOI: 10.1007/s00210-005-0028-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 12/07/2005] [Indexed: 10/24/2022]
Abstract
The transporter associated with antigen processing like (TAPL, ABCB9) is a member of the ATP-binding cassette (ABC) transporter family. Moreover, TAPL belongs to the TAP family due to its high sequence homology to TAP1 and TAP2. TAPL forms a homodimer which is localized in lysosomes with a minor fraction in the ER. It functions as an ATP-dependent peptide transporter which shows a broad peptide specificity ranging from 6-mer up to 59-mer peptides. In contrast to TAP, TAPL transports peptides with low affinity but high efficiency. This review will briefly summarize current knowledge about the structural organization and possible physiological function of TAPL in antigen processing and presentation.
Collapse
Affiliation(s)
- Chenguang Zhao
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Marie-Curie-Str. 9, 60439, Frankfurt am Main, Germany
| | | | | |
Collapse
|
17
|
Wolters JC, Abele R, Tampé R. Selective and ATP-dependent translocation of peptides by the homodimeric ATP binding cassette transporter TAP-like (ABCB9). J Biol Chem 2005; 280:23631-6. [PMID: 15863492 DOI: 10.1074/jbc.m503231200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transporter associated with antigen processing (TAP)-like (TAPL, ABCB9) belongs to the ATP-binding cassette transporter family, which translocates a vast variety of solutes across membranes. The function of this half-size transporter has not yet been determined. Here, we show that TAPL forms a homodimeric complex, which translocates peptides across the membrane. Peptide transport strictly requires ATP hydrolysis. The transport follows Michaelis-Menten kinetics with low affinity and high capacity. Different nucleotides bind and energize the transport with a slight predilection for purine bases. The peptide specificity is very broad, ranging from 6-mer up to at least 59-mer peptides with a preference for 23-mers. Peptides are recognized via their backbone, including the free N and C termini as well as side chain interactions. Although related to TAP, TAPL is unique as far as its interaction partners, transport properties, and substrate specificities are concerned, thus excluding that TAPL is part of the peptide-loading complex in the classic route of antigen processing via major histocompatibility complex class I molecules.
Collapse
Affiliation(s)
- Justina Clarinda Wolters
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt/M., Germany
| | | | | |
Collapse
|
18
|
Kobayashi A, Maeda T, Maeda M. Membrane localization of transporter associated with antigen processing (TAP)-like (ABCB9) visualized in vivo with a fluorescence protein-fusion technique. Biol Pharm Bull 2005; 27:1916-22. [PMID: 15577206 DOI: 10.1248/bpb.27.1916] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transporter associated with antigen processing (TAP)-like (TAPL, ABCB9) is a half-type ATP binding cassette (ABC) protein belonging to subfamily B highly homologous to the TAP, a hetero-dimeric complex consisting of a TAP1 and a TAP2 subunit. Human TAPL, to which was tagged with green fluorescence protein (GFP) at its carboxyl terminus (TAPL-GFP), showed fluorescence on intracellular membranes similar to TAP1-GFP. A truncated form of TAPL-L-GFP (M1-S275 was followed by GFP) showed a similar cellular fluorescence pattern to TAPL-GFP. However, the fluorescence of TAPL-S-GFP (M1-G75) was distributed over all the cellular membranes including plasma membrane, indicating that the amino terminal region of TAPL (M1-S275) is essential for its localization to the intracellular membranes. A co-expression study demonstrated that TAPL-S-GFP was co-localized with TAPL-DR (DsRed-tagged TAPL) or TAP1-DR, suggesting that TAPL is able to interact with not only itself but also with TAP1 through the M1-G75 region of TAPL. It is also proposed that a further downstream sequence of TAPL would confine the distribution of TAPL-S-GFP to the intracellular membranes. Similarly, the distribution of TAP2-S-GFP (M1-R88) was restricted to the intracellular membranes by TAPL-DR or TAP1-DR, indicating that the M1-R88 region of TAP2 is able to interact with TAPL as well as TAP1. Therefore, TAPL would form a homo-dimer with itself, and a hetero-dimer with TAP1 and TAP2. TAPL-GFP was co-localized with the fluorescence endoplasmic reticulum (ER) marker, suggesting that TAPL is mainly localized to the ER in the intracellular membranes.
Collapse
Affiliation(s)
- Ayako Kobayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| | | | | |
Collapse
|
19
|
Mutch DM, Anderle P, Fiaux M, Mansourian R, Vidal K, Wahli W, Williamson G, Roberts MA. Regional variations in ABC transporter expression along the mouse intestinal tract. Physiol Genomics 2004; 17:11-20. [PMID: 14679303 DOI: 10.1152/physiolgenomics.00150.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ATP-binding cassette (ABC) family of proteins comprise a group of membrane transporters involved in the transport of a wide variety of compounds, such as xenobiotics, vitamins, lipids, amino acids, and carbohydrates. Determining their regional expression patterns along the intestinal tract will further characterize their transport functions in the gut. The mRNA expression levels of murine ABC transporters in the duodenum, jejunum, ileum, and colon were examined using the Affymetrix MuU74v2 GeneChip set. Eight ABC transporters (Abcb2, Abcb3, Abcb9, Abcc3, Abcc6, Abcd1, Abcg5, and Abcg8) displayed significant differential gene expression along the intestinal tract, as determined by two statistical models (a global error assessment model and a classic ANOVA, both with a P < 0.01). Concordance with semiquantitative real-time PCR was high. Analyzing the promoters of the differentially expressed ABC transporters did not identify common transcriptional motifs between family members or with other genes; however, the expression profile for Abcb9 was highly correlated with fibulin-1, and both genes share a common complex promoter model involving the NFkappaB, zinc binding protein factor (ZBPF), GC-box factors SP1/GC (SP1F), and early growth response factor (EGRF) transcription binding motifs. The cellular location of another of the differentially expressed ABC transporters, Abcc3, was examined by immunohistochemistry. Staining revealed that the protein is consistently expressed in the basolateral compartment of enterocytes along the anterior-posterior axis of the intestine. Furthermore, the intensity of the staining pattern is concordant with the expression profile. This agrees with previous findings in which the mRNA, protein, and transport function of Abcc3 were increased in the rat distal intestine. These data reveal regional differences in gene expression profiles along the intestinal tract and demonstrate that a complete understanding of intestinal ABC transporter function can only be achieved by examining the physiologically distinct regions of the gut.
Collapse
Affiliation(s)
- David M Mutch
- Nestlé Research Center, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|