1
|
Thomaschewski M, Riecken K, Unrau L, Volz T, Cornils K, Ittrich H, Heim D, Wege H, Akgün E, Lütgehetmann M, Dieckhoff J, Köpke M, Dandri M, Benten D, Fehse B. Multi-color RGB marking enables clonality assessment of liver tumors in a murine xenograft model. Oncotarget 2017; 8:115582-115595. [PMID: 29383183 PMCID: PMC5777795 DOI: 10.18632/oncotarget.23312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
We recently introduced red-green-blue (RGB) marking for clonal cell tracking based on individual color-coding. Here, we applied RGB marking to study clonal development of liver tumors. Immortalized, non-tumorigenic human fetal hepatocytes expressing the human telomerase reverse transcriptase (FH-hTERT) were RGB-marked by simultaneous transduction with lentiviral vectors encoding mCherry, Venus, and Cerulean. Multi-color fluorescence microscopy was used to analyze growth characteristics of RGB-marked FH-hTERT in vitro and in vivo after transplantation into livers of immunodeficient mice with endogenous liver damage (uPA/SCID). After initially polyclonal engraftment we observed oligoclonal regenerative nodules derived from transplanted RGB-marked FH-hTERT. Some mice developed monochromatic invasive liver tumors; their clonal origin was confirmed both on the molecular level, based on specific lentiviral-vector insertion sites, and by serial transplantation of one tumor. Vector insertions in proximity to the proto-oncogene MCF2 and the transcription factor MITF resulted in strong upregulation of mRNA expression in the respective tumors. Notably, upregulated MCF2 and MITF expression was also observed in 21% and 33% of 24 human hepatocellular carcinomas analyzed. In conclusion, liver repopulation with RGB-marked FH-hTERT is a useful tool to study clonal progression of liver tumors caused by insertional mutagenesis in vivo and will help identifying genes involved in liver cancer.
Collapse
Affiliation(s)
- Michael Thomaschewski
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Ludmilla Unrau
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Cornils
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Harald Ittrich
- Diagnostic and Interventional Radiology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Heim
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Wege
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Ercan Akgün
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Dieckhoff
- Diagnostic and Interventional Radiology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Köpke
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Benten
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
- Department of Gastroenterology, Helios Klinikum Duisburg, Duisburg, Germany
| | - Boris Fehse
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Ognibene M, Vanni C, Blengio F, Segalerba D, Mancini P, De Marco P, Torrisi MR, Bosco MC, Varesio L, Eva A. Identification of a novel mouse Dbl proto-oncogene splice variant: evidence that SEC14 domain is involved in GEF activity regulation. Gene 2014; 537:220-9. [PMID: 24412292 DOI: 10.1016/j.gene.2013.12.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
The Rho guanine nucleotide exchange factor protoDbl is involved in different biochemical pathways affecting cell proliferation and migration. The N-terminal sequence of protoDbl contains negative regulatory elements that restrict the catalytic activity of the DH-PH module. Here, we report the identification of a new mouse protoDbl splice variant lacking exon 3. We found that the splice variant mRNA is expressed in the spleen and bone marrow lymphocytes, adrenal gland, gonads and brain. The protoDbl variant protein was detectable in the brain. The newly identified variant displays the disruption of the SEC14 domain, positioned on exons 2 and 3 in the protoDbl N-terminal region. We show here that an altered SEC14 sequence leads to enhanced Dbl translocation to the plasma membrane and to augmented transforming and exchange activity.
Collapse
Affiliation(s)
- Marzia Ognibene
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Cristina Vanni
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Fabiola Blengio
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Daniela Segalerba
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Università di Roma "La Sapienza", 00161 Roma, Italy
| | - Patrizia De Marco
- Laboratory of Neurosurgery, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Maria R Torrisi
- Department of Experimental Medicine, Università di Roma "La Sapienza", 00161 Roma, Italy; S. Andrea Hospital, 00161 Roma, Italy
| | - Maria C Bosco
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy.
| |
Collapse
|
3
|
Zihni C, Munro PM, Elbediwy A, Keep NH, Terry SJ, Harris J, Balda MS, Matter K. Dbl3 drives Cdc42 signaling at the apical margin to regulate junction position and apical differentiation. J Cell Biol 2014; 204:111-27. [PMID: 24379416 PMCID: PMC3882792 DOI: 10.1083/jcb.201304064] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 11/25/2013] [Indexed: 12/13/2022] Open
Abstract
Epithelial cells develop morphologically characteristic apical domains that are bordered by tight junctions, the apical-lateral border. Cdc42 and its effector complex Par6-atypical protein kinase c (aPKC) regulate multiple steps during epithelial differentiation, but the mechanisms that mediate process-specific activation of Cdc42 to drive apical morphogenesis and activate the transition from junction formation to apical differentiation are poorly understood. Using a small interfering RNA screen, we identify Dbl3 as a guanine nucleotide exchange factor that is recruited by ezrin to the apical membrane, that is enriched at a marginal zone apical to tight junctions, and that drives spatially restricted Cdc42 activation, promoting apical differentiation. Dbl3 depletion did not affect junction formation but did affect epithelial morphogenesis and brush border formation. Conversely, expression of active Dbl3 drove process-specific activation of the Par6-aPKC pathway, stimulating the transition from junction formation to apical differentiation and domain expansion, as well as the positioning of tight junctions. Thus, Dbl3 drives Cdc42 signaling at the apical margin to regulate morphogenesis, apical-lateral border positioning, and apical differentiation.
Collapse
Affiliation(s)
- Ceniz Zihni
- Department of Cell Biology and Imaging Unit, Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Peter M.G. Munro
- Department of Cell Biology and Imaging Unit, Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Ahmed Elbediwy
- Department of Cell Biology and Imaging Unit, Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Nicholas H. Keep
- Crystallography, Institute for Structural and Molecular Biology, Birkbeck, University of London, London WC1E 7HX, England, UK
| | - Stephen J. Terry
- Department of Cell Biology and Imaging Unit, Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - John Harris
- Nikon Imaging Centre, King’s College London, London SE1 1UL, England, UK
| | - Maria S. Balda
- Department of Cell Biology and Imaging Unit, Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Karl Matter
- Department of Cell Biology and Imaging Unit, Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| |
Collapse
|
4
|
Ognibene M, Barbieri O, Vanni C, Mastracci L, Astigiano S, Emionite L, Salani B, Fedele M, Resaz R, Tenca C, Fais F, Sabatini F, De Santanna A, Altruda F, Varesio L, Hirsch E, Eva A. High frequency of development of B cell lymphoproliferation and diffuse large B cell lymphoma in Dbl knock-in mice. J Mol Med (Berl) 2011; 89:493-504. [PMID: 21221514 DOI: 10.1007/s00109-010-0712-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 12/07/2010] [Accepted: 12/15/2010] [Indexed: 01/03/2023]
Abstract
Dbl is the prototype of a large family of GDP-GTP exchange factors for small GTPases of the Rho family. In vitro, Dbl is known to activate Rho, Rac, and Cdc42 and to induce a transformed phenotype in murine fibroblasts. We previously reported that Dbl-null mice are viable and fertile but display defective dendrite elongation of distinct subpopulations of cortical neurons, suggesting a role of Dbl in controlling dendritic growth. To gain deeper insights into the role of Dbl in development and disease, we attempted a knock-in approach to create an endogenous allele that encodes a missense-mutation-mediated loss of function in the DH domain. We generated, by gene targeting technology, a mutant mouse strain by inserting a mutagenized human proto-Dbl cDNA clone expressing only the Dbl N terminus regulatory sequence at the starting codon of murine exon 1. Animals were monitored over a 21-month period, and necropsy specimens were collected for histological examination and immunohistochemistry analysis. Dbl knock-in mice are viable and did not manifest either decreased reproductive performances or gross developmental phenotype but revealed a reduced lifespan compared to wild-type (w.t.) mice and showed, with aging, a B cell lymphoproliferation that often has features of a frank diffuse large B cell lymphoma. Moreover, Dbl knock-in male mice displayed an increased incidence of lung adenoma compared to w.t. mice. These data indicate that Dbl is a tumor susceptibility gene in mice and that loss of function of Dbl DH domain by genetic missense mutations is responsible for induction of diffuse large B cell lymphoma.
Collapse
Affiliation(s)
- Marzia Ognibene
- Laboratory of Molecular Biology, G. Gaslini Institute, Largo Gaslini 5, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nile AH, Bankaitis VA, Grabon A. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. CLINICAL LIPIDOLOGY 2010; 5:867-897. [PMID: 21603057 PMCID: PMC3097519 DOI: 10.2217/clp.10.67] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inositol and phosphoinositide signaling pathways represent major regulatory systems in eukaryotes. The physiological importance of these pathways is amply demonstrated by the variety of diseases that involve derangements in individual steps in inositide and phosphoinositide production and degradation. These diseases include numerous cancers, lipodystrophies and neurological syndromes. Phosphatidylinositol transfer proteins (PITPs) are emerging as fascinating regulators of phosphoinositide metabolism. Recent advances identify PITPs (and PITP-like proteins) to be coincidence detectors, which spatially and temporally coordinate the activities of diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. These insights are providing new ideas regarding mechanisms of inherited mammalian diseases associated with derangements in the activities of PITPs and PITP-like proteins.
Collapse
Affiliation(s)
- Aaron H Nile
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Aby Grabon
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| |
Collapse
|
6
|
Morris SM, Akerman GS, Desai VG, Tsai CA, Tolleson WH, Melchior WB, Lin CJ, Fuscoe JC, Casciano DA, Chen JJ. Effect of p53 genotype on gene expression profiles in murine liver. Mutat Res 2008; 640:54-73. [PMID: 18206960 DOI: 10.1016/j.mrfmmm.2007.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 11/30/2007] [Accepted: 12/11/2007] [Indexed: 05/25/2023]
Abstract
The tumor suppressor protein p53 is a key regulatory element in the cell and is regarded as the "guardian of the genome". Much of the present knowledge of p53 function has come from studies of transgenic mice in which the p53 gene has undergone a targeted deletion. In order to provide additional insight into the impact on the cellular regulatory networks associated with the loss of this gene, microarray technology was utilized to assess gene expression in tissues from both the p53(-/-) and p53(+/-) mice. Six male mice from each genotype (p53(+/+), p53(+/-), and p53(-/-)) were humanely killed and the tissues processed for microarray analysis. The initial studies have been performed in the liver for which the Dunnett test revealed 1406 genes to be differentially expressed between p53(+/+) and p53(+/-) or between p53(+/+) and p53(-/-) at the level of p < or = 0.05. Both genes with increased expression and decreased expression were identified in p53(+/-) and in p53(-/-) mice. Most notable in the gene list derived from the p53(+/-) mice was the significant reduction in p53 mRNA. In the p53(-/-) mice, not only was there reduced expression of the p53 genes on the array, but genes associated with DNA repair, apoptosis, and cell proliferation were differentially expressed, as expected. However, altered expression was noted for many genes in the Cdc42-GTPase pathways that influence cell proliferation. This may indicate that alternate pathways are brought into play in the unperturbed liver when loss or reduction in p53 levels occurs.
Collapse
Affiliation(s)
- Suzanne M Morris
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|