1
|
Zhao N, Huang X, Liu Z, Gao Y, Teng J, Yu T, Yan F. Probiotic characterization of Bacillus smithii: Research advances, concerns, and prospective trends. Compr Rev Food Sci Food Saf 2024; 23:e13308. [PMID: 38369927 DOI: 10.1111/1541-4337.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Bacillus smithii is a thermophilic Bacillus that can be isolated from white wine, hot spring soil, high-temperature compost, and coffee grounds, with various biofunctions and wide applications. It is resistant to both gastric acid and high temperature, which makes it easier to perform probiotic effects than traditional commercial probiotics, so it can maintain good vitality during food processing and has great application prospects. This paper starts with the taxonomy and genetics and focuses on aspects, including genetic transformation, functional enzyme production, waste utilization, and application in the field of food science as a potential probiotic. According to available studies during the past 30 years, we considered that B. smithii is a novel class of microorganisms with a wide range of functional enzymes such as hydrolytic enzymes and hydrolases, as well as resistance to pathogenic bacteria. It is available in waste degradation, organic fertilizer production, the feed and chemical industries, the pharmaceutical sector, and food fortification. Moreover, B. smithii has great potentials for applications in the food industry, as it presents high resistance to the technological processes that guarantee its health benefits. It is also necessary to systematically evaluate the safety, flavor, and texture of B. smithii and explore its biological mechanism of action, which is of great value for further application in multiple fields, especially in food and medicine.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xuedi Huang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhongyang Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yufang Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jialuo Teng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Nguyen NA, Vidya FNU, Yennawar NH, Wu H, McShan AC, Agarwal V. Disordered regions in proteusin peptides guide post-translational modification by a flavin-dependent RiPP brominase. Nat Commun 2024; 15:1265. [PMID: 38341413 PMCID: PMC10858898 DOI: 10.1038/s41467-024-45593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
To biosynthesize ribosomally synthesized and post-translationally modified peptides (RiPPs), enzymes recognize and bind to the N-terminal leader region of substrate peptides which enables catalytic modification of the C-terminal core. Our current understanding of RiPP leaders is that they are short and largely unstructured. Proteusins are RiPP precursor peptides that defy this characterization as they possess unusually long leaders. Proteusin peptides have not been structurally characterized, and we possess scant understanding of how these atypical leaders engage with modifying enzymes. Here, we determine the structure of a proteusin peptide which shows that unlike other RiPP leaders, proteusin leaders are preorganized into a rigidly structured region and a smaller intrinsically disordered region. With residue level resolution gained from NMR titration experiments, the intermolecular peptide-protein interactions between proteusin leaders and a flavin-dependent brominase are mapped onto the disordered region, leaving the rigidly structured region of the proteusin leader to be functionally dispensable. Spectroscopic observations are biochemically validated to identify a binding motif in proteusin peptides that is conserved among other RiPP leaders as well. This study provides a structural characterization of the proteusin peptides and extends the paradigm of RiPP modification enzymes using not only unstructured peptides, but also structured proteins as substrates.
Collapse
Affiliation(s)
- Nguyet A Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - F N U Vidya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hongwei Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
3
|
Van Wyk JC, Sewell BT, Danson MJ, Tsekoa TL, Sayed MF, Cowan DA. Engineering enhanced thermostability into the Geobacillus pallidus nitrile hydratase. Curr Res Struct Biol 2022; 4:256-270. [PMID: 36106339 PMCID: PMC9465369 DOI: 10.1016/j.crstbi.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Nitrile hydratases (NHases) are important biocatalysts for the enzymatic conversion of nitriles to industrially-important amides such as acrylamide and nicotinamide. Although thermostability in this enzyme class is generally low, there is not sufficient understanding of its basis for rational enzyme design. The gene expressing the Co-type NHase from the moderate thermophile, Geobacillus pallidus RAPc8 (NRRL B-59396), was subjected to random mutagenesis. Four mutants were selected that were 3 to 15-fold more thermostable than the wild-type NHase, resulting in a 3.4–7.6 kJ/mol increase in the activation energy of thermal inactivation at 63 °C. High resolution X-ray crystal structures (1.15–1.80 Å) were obtained of the wild-type and four mutant enzymes. Mutant 9E, with a resolution of 1.15 Å, is the highest resolution crystal structure obtained for a nitrile hydratase to date. Structural comparisons between the wild-type and mutant enzymes illustrated the importance of salt bridges and hydrogen bonds in enhancing NHase thermostability. These additional interactions variously improved thermostability by increased intra- and inter-subunit interactions, preventing cooperative unfolding of α-helices and stabilising loop regions. Some hydrogen bonds were mediated via a water molecule, specifically highlighting the significance of structured water molecules in protein thermostability. Although knowledge of the mutant structures makes it possible to rationalize their behaviour, it would have been challenging to predict in advance that these mutants would be stabilising. Random mutagenesis yields a 15-fold increase in nitrile hydratase thermostability. Salt bridges and hydrogen bonds improves nitrile hydratase thermostability. Water-mediated hydrogen bonds improves protein thermostability.
Collapse
|
4
|
Sun S, Zhou J, Jiang J, Dai Y, Sheng M. Nitrile Hydratases: From Industrial Application to Acetamiprid and Thiacloprid Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10440-10449. [PMID: 34469128 DOI: 10.1021/acs.jafc.1c03496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The widespread application of neonicotinoid insecticides (NEOs) in agriculture causes a series of environmental and ecological problems. Microbial remediation is a popular approach to relieve these negative impacts, but the associated molecular mechanisms are rarely explored. Nitrile hydratase (NHase), an enzyme commonly used in industry for amide production, was discovered to be responsible for the degradation of acetamiprid (ACE) and thiacloprid (THI) by microbes. Since then, research into NHases in NEO degradation has attracted increasing attention. In this review, microbial degradation of ACE and THI is briefly described. We then focus on NHase evolution, gene composition, maturation mechanisms, expression, and biochemical properties with regard to application of NHases in NEO degradation for bioremediation.
Collapse
Affiliation(s)
- Shilei Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jiangsheng Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Miaomiao Sheng
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| |
Collapse
|
5
|
Hashimoto Y, Ube Y, Doi S, Kumano T, Kobayashi M. Metal chaperone, NhpC, involved in the metallocenter biosynthesis of nitrile hydratase. J GEN APPL MICROBIOL 2021; 67:24-32. [DOI: 10.2323/jgam.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yoshiteru Hashimoto
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
- Microbiology Research Center for Sustainability (MiCS), The University of Tsukuba
| | - Yuko Ube
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
| | - Shiori Doi
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
| | - Takuto Kumano
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
- Microbiology Research Center for Sustainability (MiCS), The University of Tsukuba
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
- Microbiology Research Center for Sustainability (MiCS), The University of Tsukuba
| |
Collapse
|
6
|
Guo L, Cheng X, Jiang HY, Dai YJ. Maturation Mechanism of Nitrile Hydratase From Streptomyces canus CGMCC 13662 and Its Structural Character. Front Microbiol 2020; 11:1419. [PMID: 32670250 PMCID: PMC7329996 DOI: 10.3389/fmicb.2020.01419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
Nitrile hydratases have received significant interest both in the large-scale industrial production of acrylamide and nicotinamide, and the remediation of environmental contamination with nitrile-containing pollutants. Almost all known nitrile hydratases include an α-subunit (AnhA) and β-subunit (AnhB), and a specific activator protein is crucial for their maturation and catalytic activity. Many studies exist on nitrile hydratase characteristics and applications, but few have reported their metal insertion and post-translational maturation mechanism. In this study, we investigated the cobalt insertion and maturation mechanism of nitrile hydratase from Streptomyces canus CGMCC 13662 (ScNHase) bearing three subunits (AnhD, AnhE, and AnhA). ScNHase subunits were purified, and the cobalt content and nitrile hydratase activity of the ScNHase subunits were detected. We discovered that cobalt could insert into the cobalt-free AnhA of ScNHase in the absence of activator protein under reduction agent DL-dithiothreitol (DTT) environment. AnhD not only performed the function of AnhB of NHase, but also acted as a metal ion chaperone and self-subunit swapping chaperone, while AnhE did not act as similar performance. A cobalt direct-insertion under reduction condition coordinated self-subunit swapping mechanism is responsible for ScNHase post-translational maturation. Molecular docking of ScNHase and substrates suggested that the substrate specificity of ScNHase was correlated with its structure. ScNHase had a weak hydrophobic interaction with IAN through protein-ligand interaction analysis and, therefore, had no affinity with indole-3-acetonitrile (IAN). The post-translational maturation mechanism and structure characteristics of ScNHase could help guide research on the environmental remediation of nitrile-containing waste contamination and three-subunit nitrile hydratase.
Collapse
Affiliation(s)
- Ling Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Xi Cheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Huo-Yong Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Cheng Z, Xia Y, Zhou Z. Recent Advances and Promises in Nitrile Hydratase: From Mechanism to Industrial Applications. Front Bioeng Biotechnol 2020; 8:352. [PMID: 32391348 PMCID: PMC7193024 DOI: 10.3389/fbioe.2020.00352] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Nitrile hydratase (NHase, EC 4.2.1.84) is one type of metalloenzyme participating in the biotransformation of nitriles into amides. Given its catalytic specificity in amide production and eco-friendliness, NHase has overwhelmed its chemical counterpart during the past few decades. However, unclear catalytic mechanism, low thermostablity, and narrow substrate specificity limit the further application of NHase. During the past few years, numerous studies on the theoretical and industrial aspects of NHase have advanced the development of this green catalyst. This review critically focuses on NHase research from recent years, including the natural distribution, gene types, posttranslational modifications, expression, proposed catalytic mechanism, biochemical properties, and potential applications of NHase. The developments of NHase described here are not only useful for further application of NHase, but also beneficial for the development of the fields of biocatalysis and biotransformation.
Collapse
Affiliation(s)
| | | | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Yang WL, Dai ZL, Cheng X, Guo L, Fan ZX, Ge F, Dai YJ. Sulfoxaflor Degraded by Aminobacter sp. CGMCC 1.17253 through Hydration Pathway Mediated by Nitrile Hydratase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4579-4587. [PMID: 32227888 DOI: 10.1021/acs.jafc.9b06668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sulfoxaflor, a sulfoximine insecticide, could efficiently control many insect pests of sap-feeding. Microbial degradation of sulfoxaflor and the enzymatic mechanism involved have not been studied to date. A bacterial isolate JW2 that transforms sulfoxaflor to X11719474 was isolated and identified as Aminobacter sp. CGMCC 1.17253. Both the recombinant Escherichia coli strain harboring the Aminobacter sp. CGMCC 1.17253 nitrile hydratase (NHase) gene and the pure NHase acquired sulfoxaflor-degrading ability. Aminobacter sp. CGMCC 1.17253 NHase is a typical cobalt-containing NHase content of subunit α, subunit β, and an accessory protein, and the three-dimensional homology model of NHase was built. Substrate specificity tests showed that NHase catalyzed the conversion of acetamiprid, thiacloprid, indolyl-3-acetonitrile, 3-cyanopyridine, and benzonitrile into their corresponding amides, indicating its broad substrate specificity. This is the first report of the pure bacteria degradation of the sulfoxaflor residual in the environment and reveals the enzymatic mechanism mediated by Aminobacter sp. CGMCC 1.17253.
Collapse
Affiliation(s)
- Wen-Long Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Zhi-Ling Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xi Cheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Ling Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Zhi-Xia Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Feng Ge
- College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, People's Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
9
|
Yu H, Jiao S, Wang M, Liang Y, Tang L. Biodegradation of Nitriles by Rhodococcus. BIOLOGY OF RHODOCOCCUS 2019. [DOI: 10.1007/978-3-030-11461-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Pei X, Wang J, Wu Y, Zhen X, Tang M, Wang Q, Wang A. Evidence for the participation of an extra α-helix at β-subunit surface in the thermal stability of Co-type nitrile hydratase. Appl Microbiol Biotechnol 2018; 102:7891-7900. [DOI: 10.1007/s00253-018-9191-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/23/2022]
|
11
|
Zhang H, Li M, Li J, Wang G, Li F, Xiong M. Chaperone-assisted maturation of the recombinant Fe-type nitrile hydratase is insufficient for fully active expression in Escherichia coli. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1. J Biol Inorg Chem 2015; 20:885-94. [DOI: 10.1007/s00775-015-1273-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/24/2015] [Indexed: 10/23/2022]
|
13
|
Pei X, Wang Q, Meng L, Li J, Yang Z, Yin X, Yang L, Chen S, Wu J. Chaperones-assisted soluble expression and maturation of recombinant Co-type nitrile hydratase in Escherichia coli to avoid the need for a low induction temperature. J Biotechnol 2015; 203:9-16. [PMID: 25796588 DOI: 10.1016/j.jbiotec.2015.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/03/2015] [Accepted: 03/07/2015] [Indexed: 11/28/2022]
Abstract
Nitrile hydratase (NHase) is an important industrial enzyme that biosynthesizes high-value amides. However, most of NHases expressed in Escherichia coli easily aggregate to inactive inclusion bodies unless the induction temperature is reduced to approximately 20°C. The NHase from Aurantimonas manganoxydans has been functionally expressed in E. coli, and exhibits considerable potential for the production of nicotinamide in industrial application. In this study, the effects of chaperones including GroEL/ES, Dnak/J-GrpE and trigger factor on the expression of the recombinant Co-type NHase were investigated. The results indicate that three chaperones can significantly promote the active expression of the recombinant NHase at 30°C. The total NHase activities reached to 263 and 155U/ml in shake flasks when the NHase was co-expressed with GroEL/ES and DnaK/J-GrpE, which were 52- and 31-fold higher than the observed activities without chaperones, respectively. This increase is possibly due to the soluble expression of the recombinant NHase assisted by molecular chaperones. Furthermore, GroEL/ES and DnaK/J-GrpE were determined to promote the maturation of the Co-type NHase in E. coli under the absence of the parental activator gene. These knowledge regarding the chaperones effect on the NHase expression are useful for understanding the biosynthesis of Co-type NHase.
Collapse
Affiliation(s)
- Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, PR China
| | - Qiuyan Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, PR China
| | - Lijun Meng
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China
| | - Jing Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China
| | - Zhengfen Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China
| | - Xiaopu Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, PR China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China
| | - Shaoyun Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China.
| |
Collapse
|
14
|
Zhang Q, Yang X, Wang H, van der Donk WA. High divergence of the precursor peptides in combinatorial lanthipeptide biosynthesis. ACS Chem Biol 2014; 9:2686-94. [PMID: 25244001 PMCID: PMC4245175 DOI: 10.1021/cb500622c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and post-translationally modified peptides (RiPPs). These compounds are widely distributed in taxonomically distant species, and their biosynthetic systems and biological activities are diverse. A unique example of lanthipeptide biosynthesis is the prochlorosin synthetase ProcM from the marine cyanobacterium Prochlorococcus MIT9313, which transforms up to 29 different precursor peptides (ProcAs) into a library of lanthipeptides called prochlorosins (Pcns) with highly diverse sequences and ring topologies. Here, we show that many ProcM-like enzymes from a variety of bacteria have the capacity to carry out post-translational modifications on highly diverse precursor peptides, providing new examples of natural combinatorial biosynthesis. We also demonstrate that the leader peptides come from different evolutionary origins, suggesting that the combinatorial biosynthesis is tied to the enzyme and not a specific type of leader peptide. For some precursor peptides encoded in the genomes, the leader peptides apparently have been truncated at the N-termini, and we show that these N-terminally truncated peptides are still substrates of the enzymes. Consistent with this hypothesis, we demonstrate that about two-thirds of the ProcA N-terminal sequence is not essential for ProcM activity. Our results also highlight the potential of exploring this class of natural products by genome mining and bioengineering.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry,
Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Xiao Yang
- Department of Chemistry,
Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Huan Wang
- Department of Chemistry,
Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Chemistry,
Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Devi S, Sharma N, Savitri, Bhalla TC. Comparative analysis of amino acid sequences from mesophiles and thermophiles in respective of carbon-nitrogen hydrolase family. 3 Biotech 2013; 3:491-507. [PMID: 28324422 PMCID: PMC3824785 DOI: 10.1007/s13205-012-0111-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/17/2012] [Indexed: 12/27/2022] Open
Abstract
A comparative study of amino acid sequence and physicochemical properties indicates the affiliation of protein from the nitrilase/cyanide hydratase family. This family contains nitrilases that break carbon-nitrogen bonds and appear to be involved in the reduction of organic nitrogen compounds and ammonia production. They all have distinct substrate specificity and include nitrilase, cyanide hydratases, aliphatic amidases, beta-alanine synthase, and a few other proteins with unknown molecular function. These sequences were analyzed for different physical and chemical properties and to relate these observed differences to the thermostability properties, phylogenetic tree construction and the evolutionary relationship among them. In this work, in silico analysis of amino acid sequences of mesophilic (15) and thermophilic (archaea, 15 and bacteria, 15) proteins has been done. The physiochemical properties of these three groups of nitrilase/cyanide hydratase family also differ in number of amino acids, molecular weight, pI values, positively charged ions, i.e. Arg + Lys, aliphatic index and grand average of hydropathacity (GRAVY). The amino acid Ala (1.37-fold) was found to be higher in mesophilic bacteria as compared to thermophilic bacteria but Lys and Phe were found to be significantly high (1.43 and 1.39-fold, respectively) in case of thermophilic bacteria. The amino acids Ala, Cys, Gln, His and Thr were found to be significantly higher (1.41, 1.6, 1.77, 1.44 and 1.29-fold, respectively) in mesophilic bacteria as compared to thermophilic archaea, where Glu, Leu and Val were found significantly high (1.22, 1.19 and 1.26-fold, respectively).
Collapse
Affiliation(s)
- Sarita Devi
- Bioinformatics Centre (Sub-Distributed Information Centre), Himachal Pradesh University, Shimla, Summer Hill, 171005, India
| | - Nikhil Sharma
- Bioinformatics Centre (Sub-Distributed Information Centre), Himachal Pradesh University, Shimla, Summer Hill, 171005, India
| | - Savitri
- Department of Biotechnology, Himachal Pradesh University, Shimla, Summer Hill, 171005, India
| | - Tek Chand Bhalla
- Bioinformatics Centre (Sub-Distributed Information Centre), Himachal Pradesh University, Shimla, Summer Hill, 171005, India.
- Department of Biotechnology, Himachal Pradesh University, Shimla, Summer Hill, 171005, India.
| |
Collapse
|
16
|
Chen J, Yu H, Liu C, Liu J, Shen Z. Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions. J Biotechnol 2013; 164:354-62. [DOI: 10.1016/j.jbiotec.2013.01.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 01/29/2023]
|
17
|
Wang S, Dai Y, Wang J, Shen Y, Zhai Y, Zheng H, Wang M. Molecular insights into substrate specificity of Rhodococcus ruber CGMCC3090 by gene cloning and homology modeling. Enzyme Microb Technol 2013; 52:111-7. [DOI: 10.1016/j.enzmictec.2012.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 11/10/2012] [Accepted: 11/12/2012] [Indexed: 11/29/2022]
|
18
|
|
19
|
Liu Y, Cui W, Xia Y, Cui Y, Kobayashi M, Zhou Z. Self-subunit swapping occurs in another gene type of cobalt nitrile hydratase. PLoS One 2012; 7:e50829. [PMID: 23226397 PMCID: PMC3511329 DOI: 10.1371/journal.pone.0050829] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/25/2012] [Indexed: 11/30/2022] Open
Abstract
Self-subunit swapping is one of the post-translational maturation of the cobalt-containing nitrile hydratase (Co-NHase) family of enzymes. All of these NHases possess a gene organization of <β-subunit> <α-subunit> <activator protein>, which allows the activator protein to easily form a mediatory complex with the α-subunit of the NHase after translation. Here, we discovered that the incorporation of cobalt into another type of Co-NHase, with a gene organization of <α-subunit> <β-subunit> <activator protein>, was also dependent on self-subunit swapping. We successfully isolated a recombinant NHase activator protein (P14K) of Pseudomonas putida NRRL-18668 by adding a Strep-tag N-terminal to the P14K gene. P14K was found to form a complex [α(StrepP14K)2] with the α-subunit of the NHase. The incorporation of cobalt into the NHase of P. putida was confirmed to be dependent on the α-subunit substitution between the cobalt-containing α(StrepP14K)2 and the cobalt-free NHase. Cobalt was inserted into cobalt-free α(StrepP14K)2 but not into cobalt-free NHase, suggesting that P14K functions not only as a self-subunit swapping chaperone but also as a metallochaperone. In addition, NHase from P. putida was also expressed by a mutant gene that was designed with a <β-subunit> <α-subunit> <P14K> order. Our findings expand the general features of self-subunit swapping maturation.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Youtian Cui
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- * E-mail: (MK); (ZMZ)
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- * E-mail: (MK); (ZMZ)
| |
Collapse
|
20
|
Siluvai GS, Vargheese B, Murthy NN. Synthesis and characterization of trivalent tribridged dicobalt complexes incorporating alkoxide, aqua-hydroxide, acetate and phosphate ligating groups. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Hosler ER, Herbst RW, Maroney MJ, Chohan BS. Exhaustive oxidation of a nickel dithiolate complex: some mechanistic insights en route to sulfate formation. Dalton Trans 2012; 41:804-16. [DOI: 10.1039/c1dt11032b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
|
23
|
Synthesis and characterization of an unsymmetrical cobalt(III) active site analogue of nitrile hydratase. J Biol Inorg Chem 2011; 16:937-47. [PMID: 21638158 DOI: 10.1007/s00775-011-0794-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
The design, synthesis, and characterization of an unsymmetrical diamidato-dithiol ligand (H(4) 1, where the hydrogen atoms represent deprotonatable amide and thiol protons) and its cobalt(III) complex, a synthetic analogue of the cobalt-containing nitrile hydratase enzyme family, are reported. The ligand was prepared in 24% yield from an overall eight-step synthetic pathway following a modified protocol established in our laboratory that includes two peptide couples using O-(1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate as the coupling agent. The ligand and all precursors were characterized by NMR spectroscopy and elemental analysis. The cobalt nitrile hydratase synthetic analogue complex [NBu(4)][Co(1)] was prepared on deprotonating ligand H(4) 1 to [1](4-) on addition of 5 equiv of NaH in N,N-dimethylformamide and adding 1 equiv of CoCl(2) at -40 °C under a N(2) atmosphere followed by oxidizing the complex by stirring it overnight open to dry air. The complex [NBu(4)][Co(1)] was isolated after counterion exchange with 1 equiv of NBu(4)Cl followed by crystallization from MeCN/Et(2)O in 71% yield. The structure of the complex was confirmed by X-ray diffraction analysis. Cyclic voltammetry studies on [NBu(4)][Co(1)] in a 0.1 M [NBu(4)][PF(6)]/MeCN solution showed a quasi-reversible reduction potential at -1.1 V (vs. Ag/AgCl), and magnetic susceptibility investigations indicated the complex is paramagnetic in both the solid and the solution states as determined from inverse-Gouy and Evans NMR methods, respectively.
Collapse
|
24
|
Brodkin HR, Novak WRP, Milne AC, D'Aquino JA, Karabacak NM, Goldberg IG, Agar JN, Payne MS, Petsko GA, Ondrechen MJ, Ringe D. Evidence of the participation of remote residues in the catalytic activity of Co-type nitrile hydratase from Pseudomonas putida. Biochemistry 2011; 50:4923-35. [PMID: 21473592 DOI: 10.1021/bi101761e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Active sites may be regarded as layers of residues, whereby the residues that interact directly with substrate also interact with residues in a second shell and these in turn interact with residues in a third shell. These residues in the second and third layers may have distinct roles in maintaining the essential chemical properties of the first-shell catalytic residues, particularly their spatial arrangement relative to the substrate binding pocket, and their electrostatic and dynamic properties. The extent to which these remote residues participate in catalysis and precisely how they affect first-shell residues remains unexplored. To improve our understanding of the roles of second- and third-shell residues in catalysis, we used THEMATICS to identify residues in the second and third shells of the Co-type nitrile hydratase from Pseudomonas putida (ppNHase) that may be important for catalysis. Five of these predicted residues, and three additional, conserved residues that were not predicted, have been conservatively mutated, and their effects have been studied both kinetically and structurally. The eight residues have no direct contact with the active site metal ion or bound substrate. These results demonstrate that three of the predicted second-shell residues (α-Asp164, β-Glu56, and β-His147) and one predicted third-shell residue (β-His71) have significant effects on the catalytic efficiency of the enzyme. One of the predicted residues (α-Glu168) and the three residues not predicted (α-Arg170, α-Tyr171, and β-Tyr215) do not have any significant effects on the catalytic efficiency of the enzyme.
Collapse
Affiliation(s)
- Heather R Brodkin
- Department of Chemistry and Chemical Biology and Institute for Complex Scientific Software, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
van Pelt S, Zhang M, Otten LG, Holt J, Sorokin DY, van Rantwijk F, Black GW, Perry JJ, Sheldon RA. Probing the enantioselectivity of a diverse group of purified cobalt-centred nitrile hydratases. Org Biomol Chem 2011; 9:3011-9. [DOI: 10.1039/c0ob01067g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Zhou Z, Hashimoto Y, Cui T, Washizawa Y, Mino H, Kobayashi M. Unique Biogenesis of High-Molecular Mass Multimeric Metalloenzyme Nitrile Hydratase: Intermediates and a Proposed Mechanism for Self-Subunit Swapping Maturation. Biochemistry 2010; 49:9638-48. [DOI: 10.1021/bi100651v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhemin Zhou
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yoshiteru Hashimoto
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tianwei Cui
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yumi Washizawa
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroyuki Mino
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
27
|
Haft DH, Basu MK, Mitchell DA. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family. BMC Biol 2010; 8:70. [PMID: 20500830 PMCID: PMC2887384 DOI: 10.1186/1741-7007-8-70] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 05/25/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A new family of natural products has been described in which cysteine, serine and threonine from ribosomally-produced peptides are converted to thiazoles, oxazoles and methyloxazoles, respectively. These metabolites and their biosynthetic gene clusters are now referred to as thiazole/oxazole-modified microcins (TOMM). As exemplified by microcin B17 and streptolysin S, TOMM precursors contain an N-terminal leader sequence and C-terminal core peptide. The leader sequence contains binding sites for the posttranslational modifying enzymes which subsequently act upon the core peptide. TOMM peptides are small and highly variable, frequently missed by gene-finders and occasionally situated far from the thiazole/oxazole forming genes. Thus, locating a substrate for a particular TOMM pathway can be a challenging endeavor. RESULTS Examination of candidate TOMM precursors has revealed a subclass with an uncharacteristically long leader sequence closely related to the enzyme nitrile hydratase. Members of this nitrile hydratase leader peptide (NHLP) family lack the metal-binding residues required for catalysis. Instead, NHLP sequences display the classic Gly-Gly cleavage motif and have C-terminal regions rich in heterocyclizable residues. The NHLP family exhibits a correlated species distribution and local clustering with an ABC transport system. This study also provides evidence that a separate family, annotated as Nif11 nitrogen-fixing proteins, can serve as natural product precursors (N11P), but not always of the TOMM variety. Indeed, a number of cyanobacterial genomes show extensive N11P paralogous expansion, such as Nostoc, Prochlorococcus and Cyanothece, which replace the TOMM cluster with lanthionine biosynthetic machinery. CONCLUSIONS This study has united numerous TOMM gene clusters with their cognate substrates. These results suggest that two large protein families, the nitrile hydratases and Nif11, have been retailored for secondary metabolism. Precursors for TOMMs and lanthionine-containing peptides derived from larger proteins to which other functions are attributed, may be widespread. The functions of these natural products have yet to be elucidated, but it is probable that some will display valuable industrial or medical activities.
Collapse
Affiliation(s)
- Daniel H Haft
- The J Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Malay Kumar Basu
- The J Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Kinetic and structural studies on roles of the serine ligand and a strictly conserved tyrosine residue in nitrile hydratase. J Biol Inorg Chem 2010; 15:655-65. [DOI: 10.1007/s00775-010-0632-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/17/2010] [Indexed: 10/19/2022]
|
29
|
Zhou Z, Hashimoto Y, Kobayashi M. Self-subunit swapping chaperone needed for the maturation of multimeric metalloenzyme nitrile hydratase by a subunit exchange mechanism also carries out the oxidation of the metal ligand cysteine residues and insertion of cobalt. J Biol Chem 2009; 284:14930-8. [PMID: 19346246 DOI: 10.1074/jbc.m808464200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The incorporation of cobalt into low molecular mass nitrile hydratase (L-NHase) of Rhodococcus rhodochrous J1 has been found to depend on the alpha-subunit exchange between cobalt-free L-NHase (apo-L-NHase lacking oxidized cysteine residues) and its cobalt-containing mediator (holo-NhlAE containing Cys-SO(2)(-) and Cys-SO(-) metal ligands), this novel mode of post-translational maturation having been named self-subunit swapping, and NhlE having been recognized as a self-subunit swapping chaperone (Zhou, Z., Hashimoto, Y., Shiraki, K., and Kobayashi, M. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 14849-14854). We discovered here that cobalt was inserted into both the cobalt-free NhlAE (apo-NhlAE) and the cobalt-free alpha-subunit (apo-alpha-subunit) in an NhlE-dependent manner in the presence of cobalt and dithiothreitol in vitro. Matrix-assisted laser desorption ionization time-of-flight mass spectroscopy analysis revealed that the non-oxidized cysteine residues in apo-NhlAE were post-translationally oxidized after cobalt insertion. These findings suggested that NhlE has two activities, i.e. cobalt insertion and cysteine oxidation. NhlE not only functions as a self-subunit swapping chaperone but also a metallochaperone that includes a redox function. Cobalt insertion and cysteine oxidation occurred under both aerobic and anaerobic conditions when Co(3+) was used as a cobalt donor, suggesting that the oxygen atoms in the oxidized cysteines were derived from water molecules but not from dissolved oxygen. Additionally, we isolated apo-NhlAE after the self-subunit swapping event and found that it was recycled for cobalt transfer into L-NHase.
Collapse
Affiliation(s)
- Zhemin Zhou
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
30
|
Feng YS, Chen PC, Wen FS, Hsiao WY, Lee CM. Nitrile hydratase from Mesorhizobium sp. F28 and its potential for nitrile biotransformation. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Hashimoto K, Suzuki H, Taniguchi K, Noguchi T, Yohda M, Odaka M. Catalytic mechanism of nitrile hydratase proposed by time-resolved X-ray crystallography using a novel substrate, tert-butylisonitrile. J Biol Chem 2008; 283:36617-23. [PMID: 18948265 DOI: 10.1074/jbc.m806577200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitrile hydratases (NHases) have an unusual iron or cobalt catalytic center with two oxidized cysteine ligands, cysteine-sulfinic acid and cysteine-sulfenic acid, catalyzing the hydration of nitriles to amides. Recently, we found that the NHase of Rhodococcus erythropolis N771 exhibited an additional catalytic activity, converting tert-butylisonitrile (tBuNC) to tert-butylamine. Taking advantage of the slow reactivity of tBuNC and the photoreactivity of nitrosylated NHase, we present the first structural evidence for the catalytic mechanism of NHase with time-resolved x-ray crystallography. By monitoring the reaction with attenuated total reflectance-Fourier transform infrared spectroscopy, the product from the isonitrile carbon was identified as a CO molecule. Crystals of nitrosylated inactive NHase were soaked with tBuNC. The catalytic reaction was initiated by photo-induced denitrosylation and stopped by flash cooling. tBuNC was first trapped at the hydrophobic pocket above the iron center and then coordinated to the iron ion at 120 min. At 440 min, the electron density of tBuNC was significantly altered, and a new electron density was observed near the isonitrile carbon as well as the sulfenate oxygen of alphaCys114. These results demonstrate that the substrate was coordinated to the iron and then attacked by a solvent molecule activated by alphaCys114-SOH.
Collapse
Affiliation(s)
- Koichi Hashimoto
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Rao S, Holz RC. Analyzing the catalytic mechanism of the Fe-type nitrile hydratase from Comamonas testosteroni Ni1. Biochemistry 2008; 47:12057-64. [PMID: 18942853 DOI: 10.1021/bi801623t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to gain insight into the catalytic mechanism of Fe-type nitrile hydratases (NHase), the pH and temperature dependence of the kinetic parameters k cat, K m, and k cat/ K m along with the solvent isotope effect were examined for the Fe-type NHase from Comamonas testosteroni Ni1 ( CtNHase). CtNHase was found to exhibit a bell-shaped curve for plots of relative activity vs pH over pH values 4-10 for the hydration of acrylonitrile and was found to display maximal activity at pH approximately 7.2. Fits of these data provided a p K ES1 value of 6.1 +/- 0.1, a p K ES2 value of 9.1 +/- 0.2 ( k' cat = 10.1 +/- 0.3 s (-1)), a p K E1 value of 6.2 +/- 0.1, and a p K E2 value of 9.2 +/- 0.1 ( k' cat/ K' m of 2.0 +/- 0.2 s (-1) mM (-1)). Proton inventory studies indicate that two protons are transferred in the rate-limiting step of the reaction at pH 7.2. Since CtNHase is stable to 25 degrees C, an Arrhenius plot was constructed by plotting ln( k cat) vs 1/ T, providing an E a of 33.3 +/- 1.5 kJ/mol. Delta H degrees of ionization values were also determined, thus helping to identify the ionizing groups exhibiting the p K ES1 and p K ES2 values. Based on Delta H degrees ion data, p K ES1 is assigned to betaTyr68 while p K ES2 is assigned to betaArg52, betaArg157, or alphaSer116 (NHases are alpha 2beta 2 heterotetramers). Given the strong similarities in the kinetic data obtained for both Co- and Fe-type NHase enzymes, both types of NHase enzymes likely hydrate nitriles in a similar fashion.
Collapse
Affiliation(s)
- Saroja Rao
- Department of Chemistry, Loyola University--Chicago, 1068 West Sheridan Road, Chicago, Illinois 60626, USA
| | | |
Collapse
|
33
|
Discovery of posttranslational maturation by self-subunit swapping. Proc Natl Acad Sci U S A 2008; 105:14849-54. [PMID: 18809911 DOI: 10.1073/pnas.0803428105] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several general mechanisms of metallocenter biosynthesis have been reported and reviewed, and in all cases, the components or subunits of an apoprotein remain in the final holoprotein. Here, we first discovered that one subunit of an apoenzyme did not remain in the functional holoenzyme. The cobalt-containing low-molecular-mass nitrile hydratase (L-NHase) of Rhodococcus rhodochrous J1 consists of beta- and alpha-subunits encoded by the nhlBA genes, respectively. An ORF, nhlE, just downstream of nhlBA, was found to be necessary for L-NHase activation. In contrast to the cobalt-containing L-NHase (holo-L-NHase containing Cys-SO(2)(-) and Cys-SO(-) metal ligands) derived from nhlBAE, the gene products derived from nhlBA were cobalt-free L-NHase (apo-L-NHase lacking oxidized cysteine residues). We discovered an L-NHase maturation mediator, NhlAE, consisting of NhlE and the cobalt- and oxidized cysteine-containing alpha-subunit of L-NHase. The incorporation of cobalt into L-NHase was shown to depend on the exchange of the nonmodified cobalt-free alpha-subunit of apo-L-NHase with the cobalt-containing cysteine-modified alpha-subunit of NhlAE. This is a posttranslational maturation process different from general mechanisms of metallocenter biosynthesis known so far: the unexpected behavior of a protein in a protein complex, which we named "self-subunit swapping."
Collapse
|
34
|
Liu J, Yu H, Shen Z. Insights into thermal stability of thermophilic nitrile hydratases by molecular dynamics simulation. J Mol Graph Model 2008; 27:529-35. [PMID: 18948044 DOI: 10.1016/j.jmgm.2008.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/28/2008] [Accepted: 09/02/2008] [Indexed: 11/26/2022]
Abstract
Thermal stability is of great importance for industrial enzymes. Here we explored the thermal-stable mechanism of thermophilic nitrile hydratases (NHases) utilizing a molecular dynamic simulation. At a nanosecond timescale, profiles of root mean square fluctuation (RMSF) of two thermophilic NHases, 1UGQ and 1V29, under enhancing thermal stress were carried out at 300 K, 320 K, 350 K and 370 K, respectively. Results showed that the region A1 (211-231 aa) and A2 (305-316 aa) in 1UGQ, region B1 (186-192 aa) in 1V29, and most of terminal ends in both enzymes are hyper-sensitive. Salt-bridge analyses revealed that in one hand, salt-bridges contributed to maintaining the rigid structure and stable performance of the thermophilic 1UGQ and 1V29; in the other hand, salt-bridges involved in thermal sensitive regions are relatively weak and prone to be broken at elevated temperature, thereby cannot hold the stable conformation of the spatial neighborhood. In 1V29, region A1 was stabilized by a well-organized hook-hook like cluster with multiple salt-bridge interactions, region A2 was stabilized by two strong salt-bridge interactions of GLU52-ARG332 and GLU334-ARG332. In 1UGQ, the absence of a charged residue decreased its thermal sensitivity of region B1, and the formation of a small beta-sheet containing a stable salt-bridge in C-beta-terminal significantly enhanced its thermal stability. By radius of gyration calculation containing or eliminating the thermal sensitive regions, we quantified the contribution of thermal sensitive regions for thermal sensitivity of 1UGQ and 1V29. Consequently, we presented strategies to improve thermal stability of the industrialized mesophilic NHase by introducing stable salt-bridge interactions into its thermal sensitive regions.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
35
|
Taniguchi K, Murata K, Murakami Y, Takahashi S, Nakamura T, Hashimoto K, Koshino H, Dohmae N, Yohda M, Hirose T, Maeda M, Odaka M. Novel catalytic activity of nitrile hydratase from Rhodococcus sp. N771. J Biosci Bioeng 2008; 106:174-9. [DOI: 10.1263/jbb.106.174] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/22/2008] [Indexed: 11/17/2022]
|
36
|
|
37
|
Kubiak K, Nowak W. Molecular dynamics simulations of the photoactive protein nitrile hydratase. Biophys J 2008; 94:3824-38. [PMID: 18234830 PMCID: PMC2367182 DOI: 10.1529/biophysj.107.116665] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 12/31/2007] [Indexed: 11/18/2022] Open
Abstract
Nitrile hydratase (NHase) is an enzyme used in the industrial biotechnological production of acrylamide. The active site, which contains nonheme iron or noncorrin cobalt, is buried in the protein core at the interface of two domains, alpha and beta. Hydrogen bonds between betaArg-56 and alphaCys-114 sulfenic acid (alphaCEA114) are important to maintain the enzymatic activity. The enzyme may be inactivated by endogenous nitric oxide (NO) and activated by absorption of photons of wavelength lambda < 630 nm. To explain the photosensitivity and to propose structural determinants of catalytic activity, differences in the dynamics of light-active and dark-inactive forms of NHase were investigated using molecular dynamics (MD) modeling. To this end, a new set of force field parameters for nonstandard NHase active sites have been developed. The dynamics of the photodissociated NO ligand in the enzyme channel was analyzed using the locally enhanced sampling method, as implemented in the MOIL MD package. A series of 1 ns trajectories of NHases shows that the protonation state of the active site affects the dynamics of the catalytic water and NO ligand close to the metal center. MD simulations support the catalytic mechanism in which a water molecule bound to the metal ion directly attacks the nitrile carbon.
Collapse
Affiliation(s)
- Karina Kubiak
- Institute of Physics, Nicolaus Copernicus University, 87-100 Torun, Poland
| | | |
Collapse
|
38
|
Hopmann KH, Himo F. Theoretical Investigation of the Second-Shell Mechanism of Nitrile Hydratase. Eur J Inorg Chem 2008. [DOI: 10.1002/ejic.200701137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Hopmann KH, Guo JD, Himo F. Theoretical Investigation of the First-Shell Mechanism of Nitrile Hydratase. Inorg Chem 2007; 46:4850-6. [PMID: 17497847 DOI: 10.1021/ic061894c] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first-shell mechanism of nitrile hydratase (NHase) is investigated theoretically using density functional theory. NHases catalyze the conversion of nitriles to amides and are classified into two groups, the non-heme Fe(III) NHases and the non-corrinoid Co(III) NHases. The active site of the non-heme iron NHase comprises a low-spin iron (S=1/2) with a remarkable set of ligands, including two deprotonated backbone nitrogens and both cysteine-sulfenic and cysteine-sulfinic acids. A widely proposed reaction mechanism of NHase is the first-shell mechanism in which the nitrile substrate binds directly to the low-spin iron in the sixth coordination site. We have used quantum chemical models of the NHase active site to investigate this mechanism. We present potential energy profiles for the reaction and provide characterization of the intermediates and transition-state structures for the NHase-mediated conversion of acetonitrile. The results indicate that the first-shell ligand Cys114-SO- could be a possible base in the nitrile hydration mechanism, abstracting a proton from the nucleophilic water molecule. The generally suggested role of the Fe(III) center as a Lewis acid, activating the substrate toward nucleophilic attack, is shown to be unlikely. Instead, the metal is suggested to provide electrostatic stabilization to the anionic imidate intermediate, thereby lowering the reaction barrier.
Collapse
Affiliation(s)
- Kathrin H Hopmann
- Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
40
|
Arakawa T, Kawano Y, Kataoka S, Katayama Y, Kamiya N, Yohda M, Odaka M. Structure of Thiocyanate Hydrolase: A New Nitrile Hydratase Family Protein with a Novel Five-coordinate Cobalt(III) Center. J Mol Biol 2007; 366:1497-509. [PMID: 17222425 DOI: 10.1016/j.jmb.2006.12.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Revised: 12/01/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
Thiocyanate hydrolase (SCNase) of Thiobacillus thioparus THI115 is a cobalt(III)-containing enzyme catalyzing the degradation of thiocyanate to carbonyl sulfide and ammonia. We determined the crystal structures of the apo- and native SCNases at a resolution of 2.0 A. SCNases in both forms had a conserved hetero-dodecameric structure, (alphabetagamma)(4). Four alphabetagamma hetero-trimers were structurally equivalent. One alphabetagamma hetero-trimer was composed of the core domain and the betaN domain, which was located at the center of the molecule and linked the hetero-trimers with novel quaternary interfaces. In both the apo- and native SCNases, the core domain was structurally conserved between those of iron and cobalt-types of nitrile hydratase (NHase). Native SCNase possessed the post-translationally modified cysteine ligands, gammaCys131-SO(2)H and gammaCys133-SOH like NHases. However, the low-spin cobalt(III) was found to be in the distorted square-pyramidal geometry, which had not been reported before in any protein. The size as well as the electrostatic properties of the substrate-binding pocket was totally different from NHases with respect to the charge distribution and the substrate accessibility, which rationally explains the differences in the substrate preference between SCNase and NHase.
Collapse
Affiliation(s)
- Takatoshi Arakawa
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
To elucidate a detailed catalytic mechanism for nitrile hydratases (NHases), the pH and temperature dependence of the kinetic constants k(cat) and K(m) for the cobalt-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) were examined. PtNHase was found to exhibit a bell-shaped curve for plots of relative activity versus pH at pH 3.2-11 and was found to display maximal activity between pH 7.2 and 7.8. Fits of these data provided pK(E)(S1) and pK(E)(S2) values of 5.9 +/- 0.1 and 9.2 +/- 0.1 (k(cat)' = 130 +/- 1 s(-1)), respectively, and pK(E)(1) and pK(E)(2) values of 5.8 +/- 0.1 and 9.1 +/- 0.1 (k(cat)'/K(m)' = (6.5 +/- 0.1) x 10(3) s(-1) mm(-1)), respectively. Proton inventory studies indicated that two protons are transferred in the rate-limiting step of the reaction at pH 7.6. Because PtNHase is stable at 60 degrees C, an Arrhenius plot was constructed by plotting ln(k(cat)) versus 1/T, providing E(a) = 23.0 +/- 1.2 kJ/mol. The thermal stability of PtNHase also allowed DeltaH(0) ionization values to be determined, thus helping to identify the ionizing groups exhibiting the pK(E)(S1) and pK(E)(S2) values. Based on DeltaH(0)(ion) data, pK(E)(S1) is assigned to betaTyr(68), whereas pK(E)(S2) is assigned to betaArg(52), betaArg(157), or alphaSer(112) (NHases are alpha(2)beta(2)-heterotetramers). A combination of these data with those previously reported for NHases and synthetic model complexes, along with sequence comparisons of both iron- and cobalt-type NHases, allowed a novel catalytic mechanism for NHases to be proposed.
Collapse
Affiliation(s)
- Sanghamitra Mitra
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| | | |
Collapse
|
42
|
Peplowski L, Kubiak K, Nowak W. Insights into catalytic activity of industrial enzyme Co-nitrile hydratase. Docking studies of nitriles and amides. J Mol Model 2007; 13:725-30. [PMID: 17333306 DOI: 10.1007/s00894-007-0181-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 01/29/2007] [Indexed: 12/01/2022]
Abstract
Nitrile hydratase (NHase) is an enzyme containing non-corrin Co3+ in the non-standard active site. NHases from Pseudonocardia thermophila JCM 3095 catalyse hydration of nitriles to corresponding amides. The efficiency of the enzyme is 100 times higher for aliphatic nitriles then aromatic ones. In order to understand better this selectivity dockings of a series of aliphatic and aromatic nitriles and related amides into a model protein based on an X-ray structure were performed. Substantial differences in binding modes were observed, showing better conformational freedom of aliphatic compounds. Distinct interactions with postranslationally modified cysteines present in the active site of the enzyme were observed. Modeling shows that water molecule activated by a metal ion may easily directly attack the docked acrylonitrile to transform this molecule into acryloamide. Thus docking studies provide support for one of the reaction mechanisms discussed in the literature.
Collapse
Affiliation(s)
- Lukasz Peplowski
- Theoretical Molecular Biophysics Group, Institute of Physics, N. Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | | | | |
Collapse
|
43
|
Yano T, Arii H, Yamaguchi S, Funahashi Y, Jitsukawa K, Ozawa T, Masuda H. CoIII Complexes with Square-Planar N2S2- and N2(SO2)2-Type Ligands as An Active Site Structural Model for Nitrile Hydratase – Biological Implications of an Amidate Coordination. Eur J Inorg Chem 2006. [DOI: 10.1002/ejic.200600507] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
|
45
|
Greene SN, Richards NGJ. Electronic structure, bonding, spectroscopy and energetics of Fe-dependent nitrile hydratase active-site models. Inorg Chem 2006; 45:17-36. [PMID: 16390037 DOI: 10.1021/ic050965p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fe-type nitrile hydratase (NHase) is a non-heme Fe(III)-dependent enzyme that catalyzes the hydration of nitriles to the corresponding amides. Despite experimental studies of the enzyme and model Fe(III)-containing complexes, many questions concerning the electronic structure and spectroscopic transitions of the metal center remain unanswered. In addition, the catalytic mechanism of nitrile hydration has not yet been determined. We now report density functional theory (B3LYP/6-31G) calculations on three models of the Fe(III) center in the active site of NHase corresponding to hypothetical intermediates in the enzyme-catalyzed hydration of acetonitrile. Together with natural bond orbital (NBO) analysis of the chemical bonding in these active-site models and INDO/S CIS calculations of their electronic spectra, this theoretical investigation gives new insight into the molecular origin of the unusual low-spin preference and spectroscopic properties of the Fe(III) center. In addition, the low-energy electronic transition observed for the active form of NHase is assigned to a dd transition that is coupled with charge-transfer transitions involving the metal and its sulfur ligands. Calculations of isodesmic ligand-exchange reaction energies provide support for coordination of the Fe(III) center in free NHase by a water molecule rather than a hydroxide ion and suggest that the activation of the nitrile substrate by binding to the metal in the sixth coordination site during catalytic turnover cannot yet be definitively ruled out.
Collapse
Affiliation(s)
- Shannon N Greene
- Department of Chemistry, University of Florida, Gainesville, 32611-7200, USA
| | | |
Collapse
|
46
|
Wang YJ, Zheng YG, Zheng RC, Shen YC. Stability study on the nitrile hydratase of Nocardia sp. 108: From resting cells to crude enzyme preparation. APPL BIOCHEM MICRO+ 2006. [DOI: 10.1134/s0003683806040077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Taştan Bishop AO, Sewell T. A new approach to possible substrate binding mechanisms for nitrile hydratase. Biochem Biophys Res Commun 2006; 343:319-25. [PMID: 16540090 DOI: 10.1016/j.bbrc.2006.02.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Accepted: 02/21/2006] [Indexed: 12/01/2022]
Abstract
We combined normal mode analysis (NMA) with cavity calculations as a method to get more insight into static crystal structures. We used nitrile hydratase (NHase) as a case study, and the crystal structure of a complex of Pseudonocardia thermophila NHase (1UGP) with n-butyric acid was chosen as a reference structure. The reference structure was compared with the other available NHase crystal structures. Cavity calculations of the static structures showed the entrances to the active site and also a possible function of the N-terminal in the substrate selection of the Co-type NHase. When NMA was combined with cavity calculations, a closing-opening passage was observed. Analysis of low frequency modes combined with cavity calculations led us to propose "breathing" and "flip-flop" mechanisms which might be a key part of the substrate binding mechanism.
Collapse
Affiliation(s)
- A Ozlem Taştan Bishop
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa.
| | | |
Collapse
|
48
|
Hourai S, Ishii T, Miki M, Takashima Y, Mitsuda S, Yanagi K. Cloning, purification, crystallization and preliminary X-ray diffraction analysis of nitrile hydratase from the themophilic Bacillus smithii SC-J05-1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:974-7. [PMID: 16511211 PMCID: PMC1978134 DOI: 10.1107/s1744309105030939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 09/27/2005] [Indexed: 11/10/2022]
Abstract
Nitrile hydratase (NHase) converts nitriles to the corresponding amides and is recognized as having important industrial applications. Purification, cloning, crystallization and initial crystallographic studies of the NHase from Bacillus smithii SC-J05-1 (Bs NHase) were conducted to analyze the activity, specificity and thermal stability of this hydrolytic enzyme. Bs NHase was purified to homogeneity from microbial cells of B. smithii SC-J05-1 and the nucleotide sequences of both the alpha- and beta-subunits were determined. Purified Bs NHase was used for crystallization and several crystal forms were obtained by the vapour-diffusion method. Microseeding and the addition of magnesium ions were essential components to obtain crystals suitable for X-ray diffraction analysis.
Collapse
Affiliation(s)
- Shinji Hourai
- Sumitomo Chemical Co. Ltd Environmental Health Science Laboratory, 3-1-98 Kasugade-naka, Konohanaku, Osaka 554-8558, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Cameron RA, Sayed M, Cowan DA. Molecular analysis of the nitrile catabolism operon of the thermophile Bacillus pallidus RAPc8. Biochim Biophys Acta Gen Subj 2005; 1725:35-46. [PMID: 15955632 DOI: 10.1016/j.bbagen.2005.03.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 03/24/2005] [Accepted: 03/28/2005] [Indexed: 11/19/2022]
Abstract
The gene cluster containing the nitrile hydratase (NHase) and amidase genes of a moderate thermophile, B. pallidus RAPc8 has been cloned and sequenced. The (5.9 kb) section of cloned DNA contained eight complete open reading frames, encoding (in order), amidase (belonging to the nitrilase related aliphatic amidase family), nitrile hydratase beta and alpha subunits (of the cobalt containing class), a 122-amino acid accessory protein, designated P14K, a homologue of the 2Fe-2S class of ferredoxins and three putative proteins with distinct homology to the cobalt uptake proteins cbiM, cbiN and cbiQ of the S. typhimurium LT2 cobalamin biosynthesis pathway. The amidase and nitrile hydratase genes were subcloned and inducibly expressed in Escherichia coli, to levels of approximately 37 U/mg and 49 U/mg, respectively, without the co-expression of additional flanking genes. However, co-expression of P14K with the NHase structural genes significantly enhanced the specific activity of the recombinant NHase. This is the first description of an accessory protein involved in thermostable NHase expression. Modelling of the P14K protein structure has suggested that this protein functions as a subunit-specific chaperone, aiding in the folding of the NHase alpha subunit prior to alpha-beta subunit association and the formation of alpha(2)beta(2) NHase holoenzyme.
Collapse
Affiliation(s)
- Rory A Cameron
- Advanced Research Centre for Applied Microbiology, Department of Biotechnology, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | | | | |
Collapse
|
50
|
Nitrile Degradation by Rhodococcus: Useful Microbial Metabolism for Industrial Productions. ACTA ACUST UNITED AC 2005. [DOI: 10.3209/saj.19.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|