1
|
Liu S, Liu Y, Bao E, Tang S. The Protective Role of Heat Shock Proteins against Stresses in Animal Breeding. Int J Mol Sci 2024; 25:8208. [PMID: 39125776 PMCID: PMC11311290 DOI: 10.3390/ijms25158208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Heat shock proteins (HSPs) play an important role in all living organisms under stress conditions by acting as molecular chaperones. The expression of different HSPs during stress varies depending on their protective functions and anti-apoptotic activities. The application of HSPs improves the efficiency and decreases the economic cost of animal breeding. By upregulating the expression of HSPs, feed supplements can improve stress tolerance in farm animals. In addition, high expression of HSPs is often a feature of tumor cells, and inhibiting the expression of HSPs is a promising novel method for killing these cells and treating cancers. In the present review, the findings of previous research on the application of HSPs in animal breeding and veterinary medicine are summarized, and the knowledge of the actions of HSPs in animals is briefly discussed.
Collapse
Affiliation(s)
| | | | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No. 1 Road, Nanjing 210095, China; (S.L.); (Y.L.)
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No. 1 Road, Nanjing 210095, China; (S.L.); (Y.L.)
| |
Collapse
|
2
|
Enes BN, Moreira LPD, Silva BP, Grancieri M, Lúcio HG, Venâncio VP, Mertens-Talcott SU, Rosa COB, Martino HSD. Chia seed (Salvia hispanica L.) effects and their molecular mechanisms on unbalanced diet experimental studies: A systematic review. J Food Sci 2020; 85:226-239. [PMID: 31972052 DOI: 10.1111/1750-3841.15003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/05/2019] [Accepted: 11/22/2019] [Indexed: 01/06/2023]
Abstract
The aim of this review was to compile evidence and understand chia seed effects on unbalanced diet animal studies and the molecular mechanisms on metabolic biomarker modulation. A systematic review was conducted in electronic databases, following PRISMA recommendations. Risk of bias and quality was assessed using SYRCLE toll and ARRIVE guidelines. Seventeen articles were included. Throughout the studies, chia's main effects are associated with AMPK modulation: improvement of glucose and insulin tolerance, lipogenesis, antioxidant activity, and inflammation. Details about randomization and allocation concealment were insufficient, as well as information about blind protocols. Sample size, chia dose, and number of animals evaluated for each parameter were found to be lacking information among the studies. Based on experimental study data, chia has bioactive potential, and its daily consumption may reduce the risk of chronic disease development, mainly due to the antioxidant, anti-inflammatory, hypoglycemic, and hypolipidemic effects of the seed. PRACTICAL APPLICATION: The consumption of chia seeds may improve lipid profile, insulin and glucose tolerance, and reduce risk of cardiovascular disease. Whole seed or its oil presents positive effect, but the effects of chia oil can act faster than the seed.
Collapse
Affiliation(s)
- Bárbara N Enes
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Luiza P D Moreira
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Bárbara P Silva
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Mariana Grancieri
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Haira G Lúcio
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Vinícius P Venâncio
- Dept. of Nutrition and Food Science, Texas A&M Univ., College Station, TX, 77843, USA
| | | | - Carla O B Rosa
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Hércia S D Martino
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
3
|
Xu J, Tang S, Song E, Yin B, Bao E. Inhibition of heat shock protein 70 intensifies heat-stressed damage and apoptosis of chicken primary myocardial cells in vitro. Mol Med Rep 2017; 15:2881-2889. [DOI: 10.3892/mmr.2017.6337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/13/2017] [Indexed: 11/06/2022] Open
|
4
|
Moura CS, Lollo PCB, Morato PN, Risso EM, Amaya-Farfan J. Modulatory effects of arginine, glutamine and branched-chain amino acids on heat shock proteins, immunity and antioxidant response in exercised rats. Food Funct 2017; 8:3228-3238. [DOI: 10.1039/c7fo00465f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (HSPs) are endogenous proteins whose function is to maintain the cell's tolerance to insult, including intense exercise.
Collapse
Affiliation(s)
- Carolina Soares Moura
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Pablo Christiano Barboza Lollo
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Priscila Neder Morato
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Eder Muller Risso
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Jaime Amaya-Farfan
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| |
Collapse
|
5
|
|
6
|
Marineli RDS, Moura CS, Moraes ÉA, Lenquiste SA, Lollo PCB, Morato PN, Amaya-Farfan J, Maróstica MR. Chia (Salvia hispanica L.) enhances HSP, PGC-1α expressions and improves glucose tolerance in diet-induced obese rats. Nutrition 2014; 31:740-8. [PMID: 25837222 DOI: 10.1016/j.nut.2014.11.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/02/2014] [Accepted: 11/17/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of chia seed and chia oil on heat shock protein (HSP) and related parameters in diet-induced obese rats. METHODS Animals were divided in six groups: control, high-fat and high-fructose diet (HFF), and HFF with chia seed or chia oil in short (6-wk) and long (12-wk) treatments. Plasma indicators of glucose tolerance and liver damage, skeletal muscle expression of antioxidant enzymes, and proteins controlling oxidative energy metabolism were determined. The limit of significance was set at P < 0.05. RESULTS The HFF diet induced glucose intolerance, insulin resistance, oxidative stress, and altered parameters related to obesity complications. The consumption of chia seed or chia oil did not reduce body weight gain or abdominal fat accumulation. However, chia seed and chia oil in both treatments improved glucose and insulin tolerance. Chia oil in both treatments induced expression of HSP70 and HSP25 in skeletal muscle. Short treatment with chia seed increased expression of HSP70, but not HSP25. Chia oil in both treatments restored superoxide dismutase and glutathione peroxidase expression. Extended treatment with chia seed and short treatment with chia oil restored peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression. CONCLUSION Chia oil restored the antioxidant system and induced the expression of a higher number of proteins than chia seed. The present study demonstrated new properties and molecular mechanisms associated with the beneficial effects of chia seed and chia oil consumption in diet-induced obese rats.
Collapse
Affiliation(s)
- Rafaela da Silva Marineli
- Food and Nutrition Department, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Carolina Soares Moura
- Food and Nutrition Department, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Érica Aguiar Moraes
- Food and Nutrition Department, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Sabrina Alves Lenquiste
- Food and Nutrition Department, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Priscila Neder Morato
- Food and Nutrition Department, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Jaime Amaya-Farfan
- Food and Nutrition Department, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Mário Roberto Maróstica
- Food and Nutrition Department, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
7
|
Wang H, Wu G, Park HJ, Jiang PP, Sit WH, van Griensven LJ, Wan JMF. Protective effect of Phellinus linteus polysaccharide extracts against thioacetamide-induced liver fibrosis in rats: a proteomics analysis. Chin Med 2012; 7:23. [PMID: 23075396 PMCID: PMC3536605 DOI: 10.1186/1749-8546-7-23] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 10/09/2012] [Indexed: 01/10/2023] Open
Abstract
Background The hepatoprotective potential of Phellinus linteus polysaccharide (PLP) extracts has been described. However, the molecular mechanism of PLP for the inhibition of liver fibrosis is unclear. This study aims to investigate the molecular protein signatures involved in the hepatoprotective mechanisms of PLP via a proteomics approach using a thioacetamide (TAA)-induced liver fibrosis rat model. Methods Male Sprague–Dawley rats were divided into three groups of six as follows: Normal group; TAA group, in which rats received TAA only; and PLP group, in which rats received PLP and TAA. Liver fibrosis was induced in the rats by repeated intraperitoneal injections of TAA at a dose of 200 mg/kg body weight twice a week for 4 weeks. PLP was given orally at a dose of 50 mg/kg body weight twice a day from the beginning of the TAA treatment until the end of the experiment. The development of liver cirrhosis was verified by histological examination. Liver proteomes were established by two-dimensional gel electrophoresis. Proteins with significantly altered expression levels were identified by matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry and the differentially expressed proteins were validated by immunohistochemical staining and reverse transcription polymerase chain reaction. Results Histological staining showed a remarkable reduction in liver fibrosis in the rats with PLP treatment. A total of 13 differentially expressed proteins including actin, tubulin alpha-1C chain, preprohaptoglobin, hemopexin, galectin-5, glutathione S-transferase alpha-4 (GSTA4), branched chain keto acid dehydrogenase hterotetrameric E1 subunit alpha (BCKDHA), glutathione S-transferase mu (GSTmu); glyceraldehyde-3-phosphate dehydrogenase (GAPDH); thiosulfate sulfurtransferase (TFT); betaine-homocysteine S-methyltransferase 1 (BHMT1); quinoid dihydropteridine reductase (QDPR); ribonuclease UK114 were observed between the TAA and PLP groups. These proteins are involved in oxidative stress, heme and iron metabolism, cysteine metabolism, and branched-chain amino acid catabolism. Conclusion The proteomics data indicate that P. linteus may be protective against TAA-induced liver fibrosis via regulation of oxidative stress pathways, heat shock pathways, and metabolic pathways for amino acids and nucleic acids.
Collapse
Affiliation(s)
- Hualin Wang
- Food and Nutrition Division, School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Bliek BJB, Guzel C, de Klein A, Stingl C, Luider TM, Lindemans J, Steegers EAP, Steegers-Theunissen RPM. Peptide fingerprinting of folate-responsive proteins in human B lymphoblasts and orofacial clefting. Eur J Clin Invest 2012; 42:738-50. [PMID: 22896855 DOI: 10.1111/j.1365-2362.2011.02639.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Maternal periconceptional use of folic acid contributes to the prevention of neural crest-related congenital malformations including orofacial clefts. The underlying biological pathways affected by folic acid,however, are still not clarified. In an explorative study, we identify folate-responsive proteins and pathways by advanced proteomic techniques and their possible role in orofacial development in young children. MATERIALS AND METHODS At 15 months of age, we obtained B lymphoblasts from 10 children with and 10 children without an orofacial cleft. Folate-responsive protein expression was determined in folate-free B-lymphoblast cultures, supplemented with 5-methyltetrahydrofolate to reach the target concentration 30 nM. Folate-associated differences of peptide and protein expressions were assessed by analysing samples before and after folate addition. Samples were trypsin digested and measured by nano-liquid chromatography coupled online to a LTQ-Orbitrap mass spectrometer. Significantly differentiating peptides were determined using a McNemar’s test, and correlations with proteins and existing pathways were visualized using Ingenuity Pathway Analysis. RESULTS We found 39 folate-responsive peptides that were assigned to 30 proteins. Those proteins consisted of histones, ribosomal and heat shock proteins (HSP), and proteins involved in antioxidant reactions, cytoskeleton,glycolysis, energy production, protein processing, signal transduction and translation. CONCLUSIONS Histones, ribosomal and HSP were mainly found in the case group, and we confirm that almost 60% of these proteins were also found in a subset of the samples in our previous study using microarray on folate-responsive gene expression. The proteins were compared with known biological pathways and matched with recent relevant literature.
Collapse
Affiliation(s)
- Bart J B Bliek
- Department of Obstetrics and Gynecology ⁄ Division of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cao F, Cheng H, Cheng S, Li L, Xu F, Yu W, Yuan H. Expression of selected Ginkgo biloba heat shock protein genes after cold treatment could be induced by other abiotic stress. Int J Mol Sci 2012; 13:5768-5788. [PMID: 22754330 PMCID: PMC3382825 DOI: 10.3390/ijms13055768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/26/2012] [Accepted: 05/02/2012] [Indexed: 11/16/2022] Open
Abstract
Heat shock proteins (HSPs) play various stress-protective roles in plants. In this study, three HSP genes were isolated from a suppression subtractive hybridization (SSH) cDNA library of Ginkgo biloba leaves treated with cold stress. Based on the molecular weight, the three genes were designated GbHSP16.8, GbHSP17 and GbHSP70. The full length of the three genes were predicted to encode three polypeptide chains containing 149 amino acids (Aa), 152 Aa, and 657 Aa, and their corresponding molecular weights were predicted as follows: 16.67 kDa, 17.39 kDa, and 71.81 kDa respectively. The three genes exhibited distinctive expression patterns in different organs or development stages. GbHSP16.8 and GbHSP70 showed high expression levels in leaves and a low level in gynoecia, GbHSP17 showed a higher transcription in stamens and lower level in fruit. This result indicates that GbHSP16.8 and GbHSP70 may play important roles in Ginkgo leaf development and photosynthesis, and GbHSP17 may play a positive role in pollen maturation. All three GbHSPs were up-regulated under cold stress, whereas extreme heat stress only caused up-regulation of GbHSP70, UV-B treatment resulted in up-regulation of GbHSP16.8 and GbHSP17, wounding treatment resulted in up-regulation of GbHSP16.8 and GbHSP70, and abscisic acid (ABA) treatment caused up-regulation of GbHSP70 primarily.
Collapse
Affiliation(s)
- Fuliang Cao
- Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratory, Huanggang Normal University, Huanggang 438000, China; E-Mails: (H.C.); (L.L.); (F.X.)
- College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (F.C.); (S.C.); Tel./Fax: +86-713-8833599 (S.C.)
| | - Hua Cheng
- Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratory, Huanggang Normal University, Huanggang 438000, China; E-Mails: (H.C.); (L.L.); (F.X.)
- College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China; E-Mail:
- College of Chemistry and life science, Huanggang Normal University, Huanggang 438000, China; E-Mail:
| | - Shuiyuan Cheng
- Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratory, Huanggang Normal University, Huanggang 438000, China; E-Mails: (H.C.); (L.L.); (F.X.)
- College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China; E-Mail:
- College of Chemistry and life science, Huanggang Normal University, Huanggang 438000, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (F.C.); (S.C.); Tel./Fax: +86-713-8833599 (S.C.)
| | - Linling Li
- Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratory, Huanggang Normal University, Huanggang 438000, China; E-Mails: (H.C.); (L.L.); (F.X.)
- College of Chemistry and life science, Huanggang Normal University, Huanggang 438000, China; E-Mail:
| | - Feng Xu
- Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratory, Huanggang Normal University, Huanggang 438000, China; E-Mails: (H.C.); (L.L.); (F.X.)
| | - Wanwen Yu
- College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China; E-Mail:
| | - Honghui Yuan
- College of Chemistry and life science, Huanggang Normal University, Huanggang 438000, China; E-Mail:
| |
Collapse
|
10
|
Xue H, Sufit AJD, Wischmeyer PE. Glutamine therapy improves outcome of in vitro and in vivo experimental colitis models. JPEN J Parenter Enteral Nutr 2011; 35:188-97. [PMID: 21378248 DOI: 10.1177/0148607110381407] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pharmacologic doses of glutamine (GLN) can improve clinical outcome following acute illness and injury. Recent studies indicate enhanced heat shock protein (HSP) expression is a key mechanism underlying GLN's protection. However, such a link has not yet been tested in chronic inflammatory states, such as experimental inflammatory bowel disease (IBD). METHODS Experimental colitis was induced in Sprague-Dawley rats via oral 5% dextran sulfate sodium (DSS) for 7 days. GLN (0.75 g/kg/d) or sham was administered to rats by oral gavage during 7-day DSS treatment. In vitro inflammatory injury was studied using YAMC colonic epithelial cells treated with varying concentrations of GLN and cytokines (tumor necrosis factor-α/interferon-γ). RESULTS Pharmacologic dose, bolus GLN attenuated DSS-induced colitis in vivo with decreased area under curve for bleeding (8.06 ± 0.87 vs 10.38 ± 0.79, P < .05) and diarrhea (6.97 ± 0.46 vs 8.53 ± 0.39, P < .05). This was associated with enhanced HSP25 and HSP70 in colonic mucosa. In vitro, GLN enhanced cell survival and reduced proapoptotic caspase3 and poly(ADP-ribose) polymerase cleavage postcytokine injury. Cytokine-induced inducible nitric oxide synthase expression and nuclear translocation of nuclear factor-κB p65 subunit were markedly attenuated at GLN concentrations above 0.5 mmol/L. GLN increased cellular HSP25 and HSP70 in a dose-dependent manner. CONCLUSIONS These data demonstrate the therapeutic potential of GLN as a "pharmacologically acting nutrient" in the setting of experimental IBD. GLN sufficiency is crucial for the colonic epithelium to mount a cell-protective, antiapoptotic, and anti-inflammatory response against inflammatory injury. The enhanced HSP expression observed following GLN treatment may be responsible for this protective effect.
Collapse
Affiliation(s)
- Hongyu Xue
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.
| | | | | |
Collapse
|
11
|
Kalmar B, Greensmith L. Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 2009; 61:310-8. [PMID: 19248813 DOI: 10.1016/j.addr.2009.02.003] [Citation(s) in RCA: 338] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/14/2009] [Indexed: 10/21/2022]
Abstract
Heat shock proteins (Hsps) have been studied for many years and there is now a large body of evidence that demonstrates the role of Hsp upregulation in tissue and cell protection in a wide variety of stress conditions. Oxidative stress is known to be involved in a number of pathological conditions, including neurodegeneration, cardiovascular disease and stroke, and even plays a role in natural aging. In this review we summarize the current understanding of the role of Hsps and the heat shock response (HSR) in these pathological conditions and discuss the therapeutic potential of an Hsp therapy for these disorders. However, although an Hsp based therapy appears to be a promising approach for the treatment of diseases that involve oxidative damage, there are some significant hurdles that must be overcome before this approach can be successful. For example, to be effective an Hsp based therapy will need to ensure that the upregulation of Hsps occurs in the right place (i.e. be cell specific), at the right time and to a level and specificity that ensures that all the important binding partners, namely the co-chaperones, are also present at the appropriate levels. It is therefore unlikely that strategies that involve genetic modifications that result in overexpression of specific Hsps will achieve such sophisticated and coordinated effects. Similarly, it is likely that some pharmaceutical inducers of Hsps may be too generic to achieve the desired specific effects on Hsp expression, or may simply fail to reach their target cells due to delivery problems. However, if these difficulties can be overcome, it is clear that an effective Hsp based therapy would be of great benefit to the wide range of depilating conditions in which oxidative stress plays a critical role.
Collapse
Affiliation(s)
- Bernadett Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, UK.
| | | |
Collapse
|
12
|
|
13
|
Ciancio MJ, Chang EB. Do heat shock proteins play any role in gut inflammation? Inflamm Bowel Dis 2008; 14 Suppl 2:S102-3. [PMID: 18816666 DOI: 10.1002/ibd.20697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mae J Ciancio
- Department of Medicine, University of Chicago, Illinois, USA
| | | |
Collapse
|
14
|
Zhu T, Chen R, Li A, Liu J, Gu D, Liu Q, C Chang H, Zhou J. JWA as a novel molecule involved in oxidative stress-associated signal pathway in myelogenous leukemia cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:1399-411. [PMID: 16766476 DOI: 10.1080/15287390500360612] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Previous data showed that JWA might be a novel environmental responsive gene regulated by environmental stressors such as heat shock and oxidative stress. However, the molecular mechanism underlying JWA gene function involved in oxidative stress is still unknown. In this study, the potential role of JWA was further investigated in hydrogen peroxide (H2O2) induced DNA damage and cell apoptosis in K562 cells. Series of the oxidative stress models were established to observe if JWA was involved in DNA damage or cell apoptosis induced by H2O2 exposure. These results indicated that the inhibitory effect on K562 cells' viability induced by H2O2 was concentration and time dependent. JWA was more sensitive to H2O2 (0.01 mmol/L) than the heat-shock proteins (hsp70 and hsp27), and its expression pattern was similar to that of hsp70. In addition, JWA, hsp70, hsp27, and p53 were overexpressed and the expression patterns of JWA, hsp70, and p53 were similar during cell apoptosis. H2O2 led to the cleavage and activation of procaspase-3. In conclusion, these results suggested that JWA might be an effective environmental responsive gene that functions as a parallel with hsp70 in oxidative stress-responsive pathways in K562 cells. Like hsp70, JWA might enhance intracellular defenses and function against H2O2-induced oxidative stress in leukemia cells. At the same time, JWA was involved in the p53-associated signal pathways of oxidative stress-induced apoptosis, which is also caspase-3 dependent.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Molecular Cell Biology and Toxicology, Jiangsu Provincial Key Laboratories of Human Functional Genomics and of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Many cellular signaling molecules exist in different conformations corresponding to active and inactive states. Transition between these states is regulated by reversible modifications, such as phosphorylation, or by binding of nucleotide triphosphates, their regulated hydrolysis to diphosphates, and their exchange against fresh triphosphates. Specificity and efficiency of cellular signaling is further maintained by regulated subcellular localization of signaling molecules as well as regulated protein-protein interaction. Hence, it is not surprising that molecular chaperones--proteins that are able to specifically interact with distinct conformations of other proteins--could per se interfere with cellular signaling. Hence, it is not surprising that chaperones have co-evolved as integral components of signaling networks where they can function in the maturation as well as in regulating the transition between active and inactive state of signaling molecules, such as receptors, transcriptional regulators and protein kinases. Furthermore, new classes of specific chaperones are emerging and their role in histone-mediated chromatin remodeling and RNA folding are under investigation.
Collapse
Affiliation(s)
- M Gaestel
- Institute of Biochemistry, Medical School Hannover, Germany.
| |
Collapse
|
16
|
Ohkawara T, Takeda H, Nishiwaki M, Nishihira J, Asaka M. Protective effects of heat shock protein 70 induced by geranylgeranylacetone on oxidative injury in rat intestinal epithelial cells. Scand J Gastroenterol 2006; 41:312-7. [PMID: 16497619 DOI: 10.1080/00365520500319427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Geranylgeranylacetone (GGA), an anti-ulcer agent, has recently been demonstrated to protect a variety of cells and tissues via induction of heat shock protein (HSP)70 against numerous stresses. We investigated whether GGA induces HSP70 and protects against an oxidative stressor, monocrolamine (NH(2)Cl), in a rat intestinal epithelial cell line (IEC-18). MATERIAL AND METHODS IEC-18 cells pretreated with GGA (0.1-10 microM) were subjected to injury induced by NH(2)Cl. Cell viability was assessed, and endogenous HSP70 levels were determined by enzyme-linked immunosorbent assay in IEC-18 cells. RESULTS Treatment with GGA (0.1-10 microM) was found rapidly to elevate HSP70 levels and to protect against NH(2)Cl-induced injury in IEC-18 cells. Furthermore, quercetin, an inhibitor of HSP70 synthesis, diminished the protective effects of GGA in IEC-18 cells upon NH(2)Cl-caused injury. CONCLUSIONS The results of this study suggest that GGA plays an important role in defense mechanisms against oxidative injury in the intestine, primarily via induction of HSP70.
Collapse
Affiliation(s)
- Tatsuya Ohkawara
- Department of Gastroenterology and Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
17
|
Nagami H, Yoshimoto N, Umakoshi H, Shimanouchi T, Kuboi R. Liposome-assisted activity of superoxide dismutase under oxidative stress. J Biosci Bioeng 2005; 99:423-8. [PMID: 16233812 DOI: 10.1263/jbb.99.423] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 01/27/2005] [Indexed: 11/17/2022]
Abstract
A biological membrane is the front line of defense for cells against various environmental stresses such as heat and reactive oxygen species (ROS) and is expected to play an important role in the antioxidant system with antioxidant enzymes, similarly to its chaperone-like function in cooperation with heat shock proteins. The oxidative stress response of superoxide dismutase (SOD), which is known to catalyze the dismutation of O(2)(-) to H(2)O(2), was investigated in the presence of artificial membranes, liposomes, in order to obtain fundamental information on the biological ROS scavenging system. SOD lost its activity in the presence of H(2)O(2) and was found to have two loops including one which contains an alpha-helix which presents the substrate O(2)(-) to the activity center of SOD (Cu(II)). From circular dichroism analysis of SOD in the presence of H(2)O(2), the contents of the alpha-helix in SOD were found to decrease in correspondence with the inactivation and conformational change of SOD, suggesting that the conformation of the alpha-helix loops affects SOD activity. In the presence of liposomes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), SOD was not inactivated in the presence of H(2)O(2) although the contents of its alpha-helix structure were decreased. The oxidized SOD was found to interact with the liposome surface under oxidative stress using dielectric dispersion analysis. Based on these results, a possible mechanism of SOD protection against ROS on liposomes was presented.
Collapse
Affiliation(s)
- Hideto Nagami
- Department of Chemical Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | |
Collapse
|
18
|
Abstract
Correct folding is essential to protein function, which has led to the evolution of sophisticated chaperone systems. Protein folding occurs primarily in the cytoplasm and in the endoplasmic reticulum (ER). The differing redox and ionic milieus inside these two compartments, and the different functions and destinations of the client proteins folded therein, have necessitated the existence of distinct chaperone networks. Both networks exploit the exquisite sensitivity of cysteines to redox state, but they respond in opposite directions, reflecting the different conditions in the cytosol (reducing) and in the ER (more oxidizing). Thus, the cytosolic chaperone Hsp33 forms active dimers in response to oxidation, linking the responses to thermal and oxidative stress, and allows the cell to "remember" the experience: Folded proteins are released upon Hsp33 reduction, whereas unfolded substrates are released only in the presence of additional chaperone complexes that are able to refold them. In contrast, the ER oxidoreductase protein disulphide isomerase (PDI) appears to function as a chaperone primarily when reduced. Owing to the reactivity of their thiol groups, cysteines provide molecular switches that can be used to control the folding and to reversibly modify the structure and function of a protein. Cysteine oxidation provides as versatile a system as protein phosphorylation for the modification of specific substrates and the propagation of signaling cascades. Moreover, it offers the important advantage that cysteines can undergo different modifications, thus providing a molecular code that rapidly reports and responds to redox changes in the environment.
Collapse
Affiliation(s)
- Roberto Sitia
- Università Vita-Salute San Raffaele, DiBiT, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy.
| | | |
Collapse
|
19
|
Petrof EO, Ciancio MJ, Chang EB. Role and regulation of intestinal epithelial heat shock proteins in health and disease. ACTA ACUST UNITED AC 2004; 5:45-50. [PMID: 15612656 DOI: 10.1111/j.1443-9573.2004.00154.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mucosal injury and inflammation are cardinal manifestations of inflammatory bowel diseases (IBD), arising when the effects of cytotoxic factors and conditions overwhelm the cell's capacity for defense (i.e. cytoprotection) or repair. To date, most research in this area has focused primarily on agents and processes involved in producing tissue injury, with less consideration given to inherent mechanisms of cytoprotection and cellular repair. Therapeutic approaches to IBD reflect this bias, being largely directed towards down-regulating the inflammatory process by inhibiting the production of immune and inflammatory mediators. This review will focus on the cell's inherent ability to defend itself against cellular stress and injury through the production of evolutionarily conserved stress proteins called heat shock proteins (HSP). The physiological role of these proteins in maintaining intestinal epithelial cell structure and function will be reviewed, with emphasis on studies that examine the role of HSP in IBD. A clearer understanding of the innate cytoprotective mechanisms inherent in intestinal epithelial cells will foster the development of new insights into basic epithelial cell biology, which ultimately can be used to establish target-specific therapies directed at reducing or alleviating mucosal injury, thereby promoting tissue healing and repair.
Collapse
Affiliation(s)
- Elaine O Petrof
- Section of Infectious Diseases, Department of Medicine, University of Chicago, 60637, USA
| | | | | |
Collapse
|