1
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Clayton NS, Fox M, Vicenté-Garcia JJ, Schroeder CM, Littlewood TD, Wilde JI, Krishnan K, Brown MJB, Crafter C, Mott HR, Owen D. Assembly of nuclear dimers of PI3K regulatory subunits is regulated by the Cdc42-activated tyrosine kinase ACK. J Biol Chem 2022; 298:101916. [PMID: 35429500 PMCID: PMC9127371 DOI: 10.1016/j.jbc.2022.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Activated Cdc42-associated kinase (ACK) is an oncogenic nonreceptor tyrosine kinase associated with poor prognosis in several human cancers. ACK promotes proliferation, in part by contributing to the activation of Akt, the major effector of class 1A phosphoinositide 3-kinases (PI3Ks), which transduce signals via membrane phosphoinositol lipids. We now show that ACK also interacts with other key components of class 1A PI3K signaling, the PI3K regulatory subunits. We demonstrate ACK binds to all five PI3K regulatory subunit isoforms and directly phosphorylates p85α, p85β, p50α, and p55α on Tyr607 (or analogous residues). We found that phosphorylation of p85β promotes cell proliferation in HEK293T cells. We demonstrate that ACK interacts with p85α exclusively in nuclear-enriched cell fractions, where p85α phosphorylated at Tyr607 (pTyr607) also resides, and identify an interaction between pTyr607 and the N-terminal SH2 domain that supports dimerization of the regulatory subunits. We infer from this that ACK targets p110-independent p85 and further postulate that these regulatory subunit dimers undertake novel nuclear functions underpinning ACK activity. We conclude that these dimers represent a previously undescribed mode of regulation for the class1A PI3K regulatory subunits and potentially reveal additional avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Natasha S Clayton
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Millie Fox
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jonathon I Wilde
- GlaxoSmithKline Medicines Research Centre, Screening and Compound Profiling, Stevenage, Herts, United Kingdom
| | - Kadalmani Krishnan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Murray J B Brown
- GlaxoSmithKline Medicines Research Centre, Screening and Compound Profiling, Stevenage, Herts, United Kingdom
| | - Claire Crafter
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Helen R Mott
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Darerca Owen
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
The Seminiferous Epithelial Cycle of Spermatogenesis: Role of Non-receptor Tyrosine Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:1-20. [PMID: 34453729 DOI: 10.1007/978-3-030-77779-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Non-receptor tyrosine kinases (NRTKs) are implicated in various biological processes including cell proliferation, differentiation, survival, and apoptosis, as well as cell adhesion and movement. NRTKs are expressed in all mammals and in different cell types, with extraordinarily high expression in the testis. Their association with the plasma membrane and dynamic subcellular localization are crucial parameters in their activation and function. Many NRTKs are found in endosomal protein trafficking pathways, which suggests a novel mechanism to regulate the timely junction restructuring in the mammalian testis to facilitate spermiation and germ cell transport across the seminiferous epithelium.
Collapse
|
4
|
Brockhaus K, Melkonyan H, Prokosch-Willing V, Liu H, Thanos S. Alterations in Tight- and Adherens-Junction Proteins Related to Glaucoma Mimicked in the Organotypically Cultivated Mouse Retina Under Elevated Pressure. Invest Ophthalmol Vis Sci 2020; 61:46. [PMID: 32207812 PMCID: PMC7401456 DOI: 10.1167/iovs.61.3.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To scrutinize alterations in cellular interactions and cell signaling in the glaucomatous retina, mouse retinal explants were exposed to elevated pressure. Methods Retinal explants were prepared from C57bl6 mice and cultivated in a pressure chamber under normotensive (atmospheric pressure + 0 mm Hg), moderately elevated (30 mm Hg), and highly elevated (60 mm Hg) pressure conditions. The expression levels of proteins involved in the formation of tight junctions (zonula occludens 1 [ZO-1], occludin, and claudin-5) and adherens junctions (VE-cadherin and β-catenin) and in cell-signaling cascades (Cdc42 and activated Cdc42 kinase 1 [ACK1]), as well as the expression levels of the growth-factor receptors platelet-derived growth factor receptor beta and vascular endothelial growth factor receptors 1 and 2 (VEGFR-1, VEGFR-2) and of diverse intracellular proteins (β-III-tubulin, glial fibrillary acidic protein transcript variant 1, α-smooth muscle actin, vimentin, and von Willebrand factor VIII), were analyzed using immunohistochemistry, western blotting, and quantitative real-time polymerase chain reactions. Results The retinal explants were well preserved when cultured in the pressure chambers used in this study. The responses to pressure elevation varied among diverse retinal cells. Under elevated pressure, the expression of ZO-1 increased in the large vessels, neuronal cells began to express VEGFR-1, and the Cdc42 expression in the optic nerve head was downregulated. Overall we found significant transcriptional downregulation of VE-cadherin, β-catenin, VEGFR-1, VEGFR-2, vimentin, Cdc42, and ACK1. Western blotting and immunohistochemistry indicated a loss of VE-cadherin with pressure elevation, whereas the protein levels of ZO-1, occludin, VEGFR-1, and ACK1 increased. Conclusions The pressure chamber used for cultivating mouse retinal explants can serve as an in vitro model system for investigating molecular alterations in glaucoma. In this system, responses of the entire retinal cells toward elevated pressure with conspicuous changes in the vasculature and the optic nerve head can be seen. In particular, our investigations indicate that changes in the blood–retina barrier and in cellular signaling are induced by pressure elevation.
Collapse
|
5
|
The non-receptor tyrosine kinase ACK: regulatory mechanisms, signalling pathways and opportunities for attACKing cancer. Biochem Soc Trans 2020; 47:1715-1731. [PMID: 31845724 DOI: 10.1042/bst20190176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Activated Cdc42-associated kinase or ACK, is a non-receptor tyrosine kinase and an effector protein for the small G protein Cdc42. A substantial body of evidence has accumulated in the past few years heavily implicating ACK as a driver of oncogenic processes. Concomitantly, more is also being revealed regarding the signalling pathways involving ACK and molecular details of its modes of action. Some details are also available regarding the regulatory mechanisms of this kinase, including activation and regulation of its catalytic activity, however, a full understanding of these aspects remains elusive. This review considers the current knowledge base concerning ACK and summarizes efforts and future prospects to target ACK therapeutically in cancer.
Collapse
|
6
|
Burkholder NT, Sipe SN, Escobar EE, Venkatramani M, Irani S, Yang W, Wu H, Matthews WM, Brodbelt JS, Zhang Y. Mapping RNAPII CTD Phosphorylation Reveals That the Identity and Modification of Seventh Heptad Residues Direct Tyr1 Phosphorylation. ACS Chem Biol 2019; 14:2264-2275. [PMID: 31553563 DOI: 10.1021/acschembio.9b00610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The C-terminal domain (CTD) of the largest subunit in eukaryotic RNA polymerase II has a repetitive heptad sequence of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 which is responsible for recruiting transcriptional regulatory factors. The seventh heptad residues in mammals are less conserved and subject to various post-translational modifications, but the consequences of such variations are not well understood. In this study, we use ultraviolet photodissociation mass spectrometry, kinetic assays, and structural analyses to dissect how different residues or modifications at the seventh heptad position alter Tyr1 phosphorylation. We found that negatively charged residues in this position promote phosphorylation of adjacent Tyr1 sites, whereas positively charged residues discriminate against it. Modifications that alter the charges on seventh heptad residues such as arginine citrullination negate such distinctions. Such specificity can be explained by conserved, positively charged pockets near the active sites of ABL1 and its homologues. Our results reveal a novel mechanism for variations or modifications in the seventh heptad position directing subsequent phosphorylation of other CTD sites, which can contribute to the formation of various modification combinations that likely impact transcriptional regulation.
Collapse
|
7
|
Cheung LWT, Yu S, Zhang D, Li J, Ng PKS, Panupinthu N, Mitra S, Ju Z, Yu Q, Liang H, Hawke DH, Lu Y, Broaddus RR, Mills GB. Naturally occurring neomorphic PIK3R1 mutations activate the MAPK pathway, dictating therapeutic response to MAPK pathway inhibitors. Cancer Cell 2014; 26:479-94. [PMID: 25284480 PMCID: PMC4198486 DOI: 10.1016/j.ccell.2014.08.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 06/05/2014] [Accepted: 08/26/2014] [Indexed: 12/17/2022]
Abstract
PIK3R1 (p85α regulatory subunit of PI3K) is frequently mutated across cancer lineages. Herein, we demonstrate that the most common recurrent PIK3R1 mutation PIK3R1(R348∗) and a nearby mutation PIK3R1(L370fs), in contrast to wild-type and mutations in other regions of PIK3R1, confers an unexpected sensitivity to MEK and JNK inhibitors in vitro and in vivo. Consistent with the response to inhibitors, PIK3R1(R348∗) and PIK3R1(L370fs) unexpectedly increase JNK and ERK phosphorylation. Surprisingly, p85α R348(∗) and L370fs localize to the nucleus where the mutants provide a scaffold for multiple JNK pathway components facilitating nuclear JNK pathway activation. Our findings uncover an unexpected neomorphic role for PIK3R1(R348∗) and neighboring truncation mutations in cellular signaling, providing a rationale for therapeutic targeting of these mutant tumors.
Collapse
Affiliation(s)
- Lydia W T Cheung
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Shuangxing Yu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dong Zhang
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Li
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick K S Ng
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nattapon Panupinthu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Shreya Mitra
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenlin Ju
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qinghua Yu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David H Hawke
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiling Lu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Russell R Broaddus
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Anam K, Davis TA. Comparative analysis of gene transcripts for cell signaling receptors in bone marrow-derived hematopoietic stem/progenitor cell and mesenchymal stromal cell populations. Stem Cell Res Ther 2013; 4:112. [PMID: 24405801 PMCID: PMC3854681 DOI: 10.1186/scrt323] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/12/2013] [Indexed: 12/25/2022] Open
Abstract
Introduction Knowing the repertoire of cell signaling receptors would provide pivotal insight into the developmental and regenerative capabilities of bone marrow cell (BMC)-derived hematopoietic stem/progenitor cells (HSPCs) and bone marrow mesenchymal stromal cells (BMMSCs). Methods Murine HSPCs were enriched from fluorescence-activated cell sorting (FACS)-sorted Lin–c-Kit+Sca-1+ BMCs isolated from the tibia and femoral marrow compartments. Purified BMMSCs (CD73+, CD90+, CD105+, and CD45–, CD34–, CD31–, c-Kit–) with extensive self-renewal potential and multilineage differentiation capacity (into different mesodermal cell lineages including osteocytes, chrondrocytes, adipocytes) were derived from adherent BMC cultures after CD45+ cell depletion. Adherent colony-forming cells were passaged two to three times and FACS analysis was used to assess cell purity and validate cell-specific surface marker phenotype prior to experimentation. Gene transcripts for a number of cell signaling molecules were assessed using a custom quantitative real-time RT-PCR low-density microarray (94 genes; TaqMan® technology). Results We identified 16 mRNA transcripts that were specifically expressed in BMC-derived HSPC (including Ptprc, c-Kit, Csf3r, Csf2rb2, Ccr4, Cxcr3 and Tie-1), and 14 transcripts specifically expressed in BMMSCs (including Pdgfra, Ddr2, Ngfr, Mst1r, Fgfr2, Epha3, and Ephb3). We also identified 27 transcripts that were specifically upregulated (≥2-fold expression) in BMMSCs relative to HSPCs (Axl, Bmpr1a, Met, Pdgfrb, Fgfr1, Mertk, Cmkor1, Egfr, Epha7, and Ephb4), and 19 transcripts that were specifically upregulated in HSPCs relative to BMMSCs (Ccr1, Csf1r, Csf2ra, Epor, IL6ra, and IL7r). Eleven transcripts were equally expressed (<2-fold upregulation) in HSPCs and BMMSCs (Flt1, Insr, Kdr, Jak1, Agtrl1, Ccr3, Ednrb, Il3ra, Hoxb4, Tnfrsf1a, and Abcb1b), whilst another seven transcripts (Epha6, Epha8, Musk, Ntrk2, Ros1, Srms, and Tnk1) were not expressed in either cell population. Conclusions We demonstrate that besides their unique immunophenotype and functional differences, BMC-derived HSPCs and BMMSCs have different molecular receptor signaling transcript profiles linked to cell survival, growth, cell differentiation status, growth factor/cytokine production and genes involved in cell migration/trafficking/adhesion that may be critical to maintain their pluripotency, plasticity, and stem cell function.
Collapse
|
9
|
Jiao X, Kopecky DJ, Liu J, Liu J, Jaen JC, Cardozo MG, Sharma R, Walker N, Wesche H, Li S, Farrelly E, Xiao SH, Wang Z, Kayser F. Synthesis and optimization of substituted furo[2,3-d]-pyrimidin-4-amines and 7H-pyrrolo[2,3-d]pyrimidin-4-amines as ACK1 inhibitors. Bioorg Med Chem Lett 2012; 22:6212-7. [PMID: 22929232 DOI: 10.1016/j.bmcl.2012.08.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 07/25/2012] [Accepted: 08/01/2012] [Indexed: 01/16/2023]
Affiliation(s)
- XianYun Jiao
- Department of Medicinal Chemistry, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fujimoto Y, Ochi H, Maekawa T, Abe H, Hayes CN, Kumada H, Nakamura Y, Chayama K. A single nucleotide polymorphism in activated Cdc42 associated tyrosine kinase 1 influences the interferon therapy in hepatitis C patients. J Hepatol 2011; 54:629-39. [PMID: 21129804 DOI: 10.1016/j.jhep.2010.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS Cdc42 is a Rho family GTPase protein and was recently implicated in mediating hepatitis C virus (HCV) infectivity. This study examines the association between Cdc42-related gene and interferon (IFN) therapy in HCV patients. METHODS We analyzed the associations between the outcome of IFN therapy and 17 tagging single nucleotide polymorphisms (SNPs) within two genes involved in Cdc42 signaling (CDC42 and ACK1). A total of 295 out of the 409 study subjects were sustained responders (SR) and 114 were non-responders (NR). Replication was performed using an independent set of 794 IFN-treated patients. RESULTS SNP rs2278034 [A/G] in intron 11 of activated Cdc42 associated tyrosine kinase (ACK) 1 was associated with the outcome of IFN therapy (p=6.4 × 10(-4)). Replication analysis confirmed the association (p=2.2 × 10(-3)) for patients treated with IFN monotherapy, but the association was not significant for pegylated-IFN-plus ribavirin therapy. Analysis using published HapMap expression data revealed that ACK1 expression correlates with IFN-stimulated gene (ISG) expression independently of ethnicity, but the relationship between rs2278034 and ACK1 expression was observed only within Asian populations. Over-expression of ACK1, but not the kinase-inactive mutant, increased ISG transcription in Huh7 cells. ACK1 expression enhanced the IFN-stimulated response element (ISRE) and interferon-γ-activated site (GAS) promoter activity through tyrosine phosphorylation of signal transducers and activators of transcription (STAT) 1. Furthermore, ACK1 over-expression in HCV-N replicon cells inhibited HCV replication. CONCLUSIONS SNP rs2278034 in ACK1 is associated with IFN therapy outcome in patients with HCV. ACK1 may play a role in innate and IFN-induced antiviral action against HCV.
Collapse
Affiliation(s)
- Yoshifumi Fujimoto
- The Institute of Physical and Chemical Research, Katsumi, Minami-ku, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Upadhyay G, Tiwari MN, Prakash O, Jyoti A, Shanker R, Singh MP. Involvement of multiple molecular events in pyrogallol-induced hepatotoxicity and silymarin-mediated protection: evidence from gene expression profiles. Food Chem Toxicol 2010; 48:1660-70. [PMID: 20362636 DOI: 10.1016/j.fct.2010.03.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/22/2010] [Accepted: 03/26/2010] [Indexed: 11/26/2022]
Abstract
In this study, the involvement of various molecular events in pyrogallol-mediated hepatotoxicity was deciphered by differential mRNA transcription profiles of control and pyrogallol treated mice liver. The modulatory effects of silymarin on pyrogallol-induced differentially expressed transcripts were also looked into. Swiss albino mice were treated with or without pyrogallol. In some set of experiments, mice were also treated with silymarin 2 h prior to pyrogallol. Total RNA was isolated from liver and polyadenylated RNA was reverse-transcribed into Cye 3 or Cye 5 labelled cDNA. Equal amounts of labelled cDNA from two different groups were mixed and hybridized with mouse 15 k array. The hybridized arrays were scanned, analyzed and the expression level of each transcript was calculated. The differential expression was validated by quantitative real time polymerase chain reaction. Comparative transcription pattern showed an alteration in the expression of 183 transcripts (150 up-regulated and 33 down-regulated) associated with oxidative stress, cell cycle, cytoskeletal network, cell-cell adhesion, extra-cellular matrix, inflammation, apoptosis, cell-signaling and intermediary metabolism in pyrogallol-exposed liver and silymarin pre-treatment modulated the expression of many of these transcripts. Results obtained thus suggest that pyrogallol induces multiple molecular events leading to hepatotoxicity and silymarin effectively counteracts pyrogallol-mediated alterations.
Collapse
Affiliation(s)
- Ghanshyam Upadhyay
- Indian Institute of Toxicology Research (Council of Scientific and Industrial Research), Lucknow, UP, India
| | | | | | | | | | | |
Collapse
|
12
|
Starkova J, Madzo J, Cario G, Kalina T, Ford A, Zaliova M, Hrusak O, Trka J. The identification of (ETV6)/RUNX1-regulated genes in lymphopoiesis using histone deacetylase inhibitors in ETV6/RUNX1-positive lymphoid leukemic cells. Clin Cancer Res 2007; 13:1726-35. [PMID: 17325341 DOI: 10.1158/1078-0432.ccr-06-2569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Chimeric transcription factor ETV6/RUNX1 (TEL/AML1) is believed to cause pathologic block in lymphoid cell development via interaction with corepressor complex and histone deacetylase. We wanted to show the regulatory effect of ETV6/RUNX1 and its reversibility by histone deacetylase inhibitors (HDACi), as well as to identify potential ETV6/RUNX1-regulated genes. EXPERIMENTAL DESIGN We used luciferase assay to show the interaction of ETV6/RUNX1 protein, ETV6/RUNX1-regulated gene, and HDACi. To identify ETV6/RUNX1-regulated genes, we used expression profiling and HDACi in lymphoid cells. Next, using the flow cytometry and quantitative reverse transcription-PCR, we measured differentiation changes in gene and protein expression after HDACi treatment. RESULTS Luciferase assay showed repression of granzyme B expression by ETV6/RUNX1 protein and the reversibility of this effect by HDACi. Proving this regulatory role of ETV6/RUNX1, we identified, using complex statistical analysis, 25 genes that are potentially regulated by ETV6/RUNX1 protein. In four selected genes with known role in the cell cycle regulation (JunD, ACK1, PDGFRB, and TCF4), we confirmed expression changes after HDACi by quantitative analysis. After HDACi treatment, ETV6/RUNX1-positive cells showed immunophenotype changes resembling differentiation process compared with other leukemic cells (BCR/ABL, ETV6/PDGFRB positive). Moreover, ETV6/RUNX1-positive leukemic cells accumulated in G(1)-G(0) phase after HDACi whereas other B-lineage leukemic cell lines showed rather unspecific changes including induction of apoptosis and decreased proliferation. CONCLUSIONS Presented data support the hypothesis that HDACi affect ETV6/RUNX1-positive cells via direct interaction with ETV6/RUNX1 protein and that treatment with HDACi may release aberrant transcription activity caused by ETV6/RUNX1 chimeric transcription factor.
Collapse
Affiliation(s)
- Julia Starkova
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology/Oncology, 2nd Medical School, Charles University Prague, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lieu AS, Li JZ, Webb DJ, Hankins GR, Howng SL, Helm GA. Functions of G protein-coupled receptor kinase interacting protein 1 in human neuronal (NT2N) cells. J Neurosurg 2006; 105:103-10. [PMID: 16871884 DOI: 10.3171/jns.2006.105.1.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Promotion of the repair and regeneration of damaged adult neurons is a major goal of neurological science. In this study, the effects of G protein-coupled receptor kinase interacting protein 1 (GIT1) overexpression in human neuron cells were tested in human neuronal cells by using an adenoviral vector. METHODS A recombinant GIT1 and enhanced green fluorescent protein (EGFP) adenoviral vector (AdGIT1) was created by using a standard viral construction procedure. Human neuronal (NT2N) cells, which had been derived from an NT2 human teratocarcinoma cell line, were used in this experiment. Immunocytochemical methods were applied to identify NT2N cells with neural features and to probe the relationship among signaling proteins. Several biological activities were assessed, including neural spine formation, cell migration, and the levels of expression of growth-associated protein-43 (GAP-43) and active Cdc42. The number of cells with spine formation and the number of migrated cells were significantly higher in the AdGIT1-treated group of NT2N cells than in untreated (control) NT2N cells or in AdEGFP-treated NT2N cells. The levels of GAP-43 and active Cdc42 expression were significantly higher in the AdGITl-treated group than that in the other two cell groups. CONCLUSIONS The results of this study demonstrate that GIT1 overexpression has the potential to promote neural spine formation and cell migration in human neuronal cells. At the same time, the increased level of GAP-43 in GIT1-overexpressed cells indicates that GIT1 may have the potential to improve growth and regeneration of damaged axons. The GIT1-beta-PIX-Cdc42-PAK pathway may play an important role in neuronal outgrowth.
Collapse
Affiliation(s)
- Ann-Shung Lieu
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
14
|
Nur-E-Kamal A, Zhang A, Keenan SM, Wang XI, Seraj J, Satoh T, Meiners S, Welsh WJ. Requirement of activated Cdc42-associated kinase for survival of v-Ras-transformed mammalian cells. Mol Cancer Res 2006; 3:297-305. [PMID: 15886301 DOI: 10.1158/1541-7786.mcr-04-0152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activated Cdc42-associated kinase (ACK) has been shown to be an important effector molecule for the small GTPase Cdc42. We have shown previously an essential role for Cdc42 in the transduction of Ras signals for the transformation of mammalian cells. In this report, we show that the ACK-1 isoform of ACK plays a critical role in transducing Ras-Cdc42 signals in the NIH 3T3 cells. Overexpression of a dominant-negative (K214R) mutant of ACK-1 inhibits Ras-induced up-regulation of c-fos and inhibits the growth of v-Ras-transformed NIH 3T3 cells. Using small interfering RNA, we knocked down the expression of ACK-1 in both v-Ha-Ras-transformed and parental NIH 3T3 cells and found that down-regulation of ACK-1 inhibited cell growth by inducing apoptosis only in v-Ha-Ras-transformed but not parental NIH 3T3 cells. In addition, we studied the effect of several tyrosine kinase inhibitors and found that PD158780 inhibits the kinase activity of ACK-1 in vitro. We also found that PD158780 inhibits the growth of v-Ha-Ras-transformed NIH 3T3 cells. Taken together, our results suggest that ACK-1 kinase plays an important role in the survival of v-Ha-Ras-transformed cells, suggesting that ACK-1 is a novel target for therapies directed at Ras-induced cancer.
Collapse
Affiliation(s)
- Alam Nur-E-Kamal
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lougheed JC, Chen RH, Mak P, Stout TJ. Crystal structures of the phosphorylated and unphosphorylated kinase domains of the Cdc42-associated tyrosine kinase ACK1. J Biol Chem 2004; 279:44039-45. [PMID: 15308621 DOI: 10.1074/jbc.m406703200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ACK1 is a multidomain non-receptor tyrosine kinase that is an effector of the Cdc42 GTPase. Members of the ACK family have a unique domain ordering and are the only tyrosine kinases known to interact with Cdc42. In contrast with many protein kinases, ACK1 has only a modest increase in activity upon phosphorylation. We have solved the crystal structures of the human ACK1 kinase domain in both the unphosphorylated and phosphorylated states. Comparison of these structures reveals that ACK1 adopts an activated conformation independent of phosphorylation. Furthermore, the unphosphorylated activation loop is structured, and its conformation resembles that seen in activated tyrosine kinases. In addition to the apo structure, complexes are also presented with a non-hydrolyzable nucleotide analog (adenosine 5'-(beta,gamma-methylenetriphosphate)) and with the natural product debromohymenialdisine, a general inhibitor of many protein kinases. Analysis of these structures reveals a typical kinase fold, a pre-organization into the activated conformation, and an unusual substrate-binding cleft.
Collapse
Affiliation(s)
- Julie C Lougheed
- Exelixis, Incorporated, South San Francisco, California 94083-0511, USA
| | | | | | | |
Collapse
|