1
|
Zorila B, Necula G, Janosi L, Turcu I, Bacalum M, Radu M. Interaction of Arginine and Tryptophan-Rich Short Antimicrobial Peptides with Membrane Models: A Combined Fluorescence, Simulations, and Theoretical Approach. J Chem Inf Model 2025; 65:3723-3736. [PMID: 40178359 DOI: 10.1021/acs.jcim.5c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The augmented increase in bacterial antimicrobial resistance necessitates the discovery of alternative antimicrobial molecules such as short antimicrobial peptides (AMPs) with antimicrobial activity and low cytotoxicity. While many such peptides have been studied, their selective affinity for bacterial versus mammalian membranes remains unclear. Here, we propose a complementary approach using state-of-the-art fluorescence experiments, molecular dynamics simulations, and theoretical techniques. The main goal of this approach is to unravel the energetics and molecular interactions of AMPs with different membrane models at the lipid-water interface. We use short Trp- and Arg-rich AMPs, pure phosphatidylcholine (PC), and an 85:15 mixture of PC with phosphatidylglycerol (PG) lipids for the mammalian and bacterial model membranes, respectively. First, we found that the electrostatic interaction of PG headgroups with Arg enhances the peptide interaction with mixed bilayers by 25-30%, leading to increased hydrogen bonding and stronger membrane adhesion. Second, the obtained Gibbs free energies revealed significantly distinct partitioning of the AMP at the interface for the two bilayers, suggesting a qualitatively different insertion method of cationic AMPs into each of the two membrane models. These results highlight the potential of our approach to unravel the membrane selectivity of an AMP in the context of AMP-based rational design of antibiotics.
Collapse
Affiliation(s)
- Bogdan Zorila
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - George Necula
- Department of Computational Physics and Information Technologies, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Lorant Janosi
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Istotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Ioan Turcu
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Istotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Mihai Radu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125 Magurele, Romania
| |
Collapse
|
2
|
Park SC, Lee JK, Kim YM, Lee JR. Effects of structural changes on antibacterial activity and cytotoxicity due to proline substitutions in chimeric peptide HnMc. Biochem Biophys Res Commun 2023; 679:139-144. [PMID: 37696067 DOI: 10.1016/j.bbrc.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Owing to the rapidly increasing emergence of multidrug-resistant pathogens, antimicrobial peptides (AMPs) are being explored as next-generation antibiotics. However, AMPs present in nature are highly toxic and exhibit low antibacterial activity. Simple modifications, such as amino acid substitution, can enhance antimicrobial activity and cell selectivity. Herein, we show that HnMc-W, substituted by the Phe1Trp analog of HnMc, a chimeric peptide, resulted in membranolytic antibacterial action and enhanced salt tolerance, whereas HnMc-WP1 with one Ser9Pro substitution resulted in a proline-kink helical structure that increased salt-tolerant antibacterial effects and reduced cytotoxicity. In addition, the HnMc-WP2 peptide, designed with a PXXP motif, had a flexible central hinge in its α-helical structure due to the introduction of two Pro and two Gln (X positions, by deletion of two Gln at positions 16 and 17) residues instead of Ser at position. HnMc-WP2 exhibited excellent antibacterial effects without cytotoxicity in vitro. Moreover, its potent antibacterial activity was demonstrated in a drug-resistant Pseudomonas aeruginosa-infected mouse model in vivo. Our findings provide valuable information for the design of peptides with high antibacterial activity and cell selectivity.
Collapse
Affiliation(s)
- Seong-Cheol Park
- Department of Chemical Engineering, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jong-Kook Lee
- Department of Chemical Engineering, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Young-Min Kim
- Department of Chemical Engineering, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jung Ro Lee
- LMO Team, National Institute of Ecology (NIE), Seocheon, 33657, Republic of Korea; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA.
| |
Collapse
|
3
|
Ajish C, Yang S, Kumar SD, Kim EY, Min HJ, Lee CW, Shin SH, Shin SY. A novel hybrid peptide composed of LfcinB6 and KR-12-a4 with enhanced antimicrobial, anti-inflammatory and anti-biofilm activities. Sci Rep 2022; 12:4365. [PMID: 35288606 PMCID: PMC8921290 DOI: 10.1038/s41598-022-08247-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Hybridizing two known antimicrobial peptides (AMPs) is a simple and effective strategy for designing antimicrobial agents with enhanced cell selectivity against bacterial cells. Here, we generated a hybrid peptide Lf-KR in which LfcinB6 and KR-12-a4 were linked with a Pro hinge to obtain a novel AMP with potent antimicrobial, anti-inflammatory, and anti-biofilm activities. Lf-KR exerted superior cell selectivity for bacterial cells over sheep red blood cells. Lf-KR showed broad-spectrum antimicrobial activities (MIC: 4–8 μM) against tested 12 bacterial strains and retained its antimicrobial activity in the presence of salts at physiological concentrations. Membrane depolarization and dye leakage assays showed that the enhanced antimicrobial activity of Lf-KR was due to increased permeabilization and depolarization of microbial membranes. Lf-KR significantly inhibited the expression and production of pro-inflammatory cytokines (nitric oxide and tumor necrosis factor‐α) in LPS-stimulated mouse macrophage RAW264.7 cells. In addition, Lf-KR showed a powerful eradication effect on preformed multidrug-resistant Pseudomonas aeruginosa (MDRPA) biofilms. We confirmed using confocal laser scanning microscopy that a large portion of the preformed MDRPA biofilm structure was perturbed by the addition of Lf-KR. Collectively, our results suggest that Lf-KR can be an antimicrobial, anti-inflammatory, and anti-biofilm candidate as a pharmaceutical agent.
Collapse
|
4
|
Kim GC, Cheon DH, Lee Y. Challenge to overcome current limitations of cell-penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140604. [PMID: 33453413 DOI: 10.1016/j.bbapap.2021.140604] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The penetration of biological membranes is a prime obstacle for the delivery of pharmaceutical drugs. Cell-penetrating peptide (CPP) is an efficient vehicle that can deliver various cargos across the biological membranes. Since the discovery, CPPs have been rigorously studied to unveil the underlying penetrating mechanism as well as to exploit CPPs for various biomedical applications. This review will focus on the various strategies to overcome current limitations regarding stability, selectivity, and efficacy of CPPs.
Collapse
Affiliation(s)
- Gyu Chan Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae Hee Cheon
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
5
|
Ogawa D, Suzuki M, Inamura Y, Saito K, Hasunuma I, Kobayashi T, Kikuyama S, Iwamuro S. Antimicrobial Property and Mode of Action of the Skin Peptides of the Sado Wrinkled Frog, Glandirana susurra, against Animal and Plant Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9080457. [PMID: 32751229 PMCID: PMC7460468 DOI: 10.3390/antibiotics9080457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
The Sado wrinkled frog Glandirana susurra has recently been classified as a new frog species endemic to Sado Island, Japan. In this study, we cloned 12 cDNAs encoding the biosynthetic precursors for brevinin-2SSa–2SSd, esculentin-2SSa, ranatuerin-2SSa, brevinin-1SSa–1SSd, granuliberin-SSa, and bradykinin-SSa from the skin of G. susurra. Among these antimicrobial peptides, we focused on brevinin-2SSb, ranatuerin-2SSa, and granuliberin-SSa, using their synthetic replicates to examine their activities against different reference strains of pathogenic microorganisms that infect animals and plants. In broth microdilution assays, brevinin-2SSb displayed antimicrobial activities against animal pathogens Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, and Candida albicans and plant pathogens Xanthomonas oryzae pv. oryzae, Clavibacter michiganensis subsp. michiganensis, and Pyricularia oryzae. Ranatuerin-2SSa and granuliberin-SSa were active against C. albicans and C. michiganensis subsp. michiganensis, and granuliberin-SSa also was active against the other plant pathogenic microbes. Scanning electron microscopic observations demonstrated that brevinin-2SSb, ranatuerin-2SSa, and granuliberin-SSa induced morphological abnormalities on the cell surface in a wide range of the reference pathogens. To assess the bacterial-endotoxin-binding ability of the peptides, we developed an enzyme-linked endotoxin-binding assay system and demonstrated that brevinin-2SSb and ranatuerin-2SSa both exhibited high affinity to lipopolysaccharide and moderate affinity to lipoteichoic acid.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan; (D.O.); (M.S.); (Y.I.); (K.S.); (I.H.)
| | - Manami Suzuki
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan; (D.O.); (M.S.); (Y.I.); (K.S.); (I.H.)
| | - Yuriko Inamura
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan; (D.O.); (M.S.); (Y.I.); (K.S.); (I.H.)
| | - Kaito Saito
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan; (D.O.); (M.S.); (Y.I.); (K.S.); (I.H.)
| | - Itaru Hasunuma
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan; (D.O.); (M.S.); (Y.I.); (K.S.); (I.H.)
| | - Tetsuya Kobayashi
- Department of Regulatory Biology, Faculty of Sciences, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan;
| | - Sakae Kikuyama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Center for Advanced Biomedical Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan;
| | - Shawichi Iwamuro
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan; (D.O.); (M.S.); (Y.I.); (K.S.); (I.H.)
- Correspondence: ; Tel.: +81-47-472-5206
| |
Collapse
|
6
|
Dong N, Wang C, Li X, Guo Y, Li X. Simplified Head-to-Tail Cyclic Polypeptides as Biomaterial-Associated Antimicrobials with Endotoxin Neutralizing and Anti-Inflammatory Capabilities. Int J Mol Sci 2019; 20:ijms20235904. [PMID: 31775224 PMCID: PMC6928678 DOI: 10.3390/ijms20235904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
The therapeutic application of antimicrobial peptides (AMPs), a potential type of peptide-based biomaterial, is impeded by their poor antimicrobial activity and potential cytotoxicity as a lack of understanding of their structure–activity relationships. In order to comprehensively enhance the antibacterial and clinical application potency of AMPs, a rational approach was applied to design amphiphilic peptides, including head-to-tail cyclic, linear and D-proline antimicrobial peptides using the template (IR)nP(IR)nP (n = 1, 2 and 3). Results showed that these amphiphilic peptides demonstrated antimicrobial activity in a size-dependent manner and that cyclic peptide OIR3, which contained three repeating units (IR)3, had greater antimicrobial potency and cell selectivity than liner peptide IR3, DIR3 with D-Pro and gramicidin S (GS). Surface plasmon resonance and endotoxin neutralization assays indicated that OIR3 had significant endotoxin neutralization capabilities, which suggested that the effects of OIR3 were mediated by binding to lipopolysaccharides (LPS). Using fluorescence spectrometry and electron microscopy, we found that OIR3 strongly promoted membrane disruption and thereby induced cell lysis. In addition, an LPS-induced inflammation assay showed that OIR3 inhibited the pro-inflammatory factor TNF-α in RAW264.7 cells. OIR3 was able to reduce oxazolone-induced skin inflammation in allergic dermatitis mouse model via the inhibition of TNF-α, IL-1β and IL-6 mRNA expression. Collectively, the engineered head-to-tail cyclic peptide OIR3 was considerable potential candidate for use as a clinical therapeutic for the treatment of bacterial infections and skin inflammation.
Collapse
Affiliation(s)
- Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (N.D.); (C.W.); (X.L.)
| | - Chensi Wang
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (N.D.); (C.W.); (X.L.)
| | - Xinran Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (N.D.); (C.W.); (X.L.)
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +(86-010)-6273-3900
| | - Xiaoli Li
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
7
|
Rajasekaran G, Kumar SD, Yang S, Shin SY. Improving Cell Selectivity of Fowlicidin‐1 by Swapping Residues between Pro‐7 and Tyr‐20. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ganesan Rajasekaran
- Department of Medical Science, Graduate School, School of MedicineChosun University Gwangju 61452 Republic of Korea
| | - S. Dinesh Kumar
- Department of Medical Science, Graduate School, School of MedicineChosun University Gwangju 61452 Republic of Korea
| | - Sungtae Yang
- Department of Medical Science, Graduate School, School of MedicineChosun University Gwangju 61452 Republic of Korea
- Department of Microbiology, School of MedicineChosun University Gwangju 61452 Republic of Korea
| | - Song Yub Shin
- Department of Medical Science, Graduate School, School of MedicineChosun University Gwangju 61452 Republic of Korea
- Department of Cellular and Molecular Medicine, School of MedicineChosun University Gwangju 61452 Republic of Korea
| |
Collapse
|
8
|
Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:175-214. [DOI: 10.1007/978-981-13-3588-4_11] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Influence of Proline Substitution on the Bioactivity of Mammalian-Derived Antimicrobial Peptide NK-2. Probiotics Antimicrob Proteins 2018; 10:118-127. [PMID: 29043494 DOI: 10.1007/s12602-017-9335-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multidrug-resistant bacteria are emerging as a global threat, making the search for alternative compounds urgent. Antimicrobial peptides (AMPs) became a promising hotspot due to their distinct action mechanism and possibility to be used as an alternative or complement to traditional antibiotics. However, gaining a better understanding about the relationship between antimicrobial peptides structure and its bioactivity is crucial for the development of next generation of antimicrobial agents. NK-2, derived from mammalian protein NK-lysin, has potent antitumor and bactericidal abilities. As proline was considered to be an effective α-helix breaker due to its restricted conformation, to better comprehend the effects of proline in the structure-activity relationship of NK-2, we constructed two NK-2 analogs. We examined the biological activities of NK-2 and its proline substitution analogs and analyzed the resulting conformational changes. Our results showed that introducing proline into the primary sequence of NK-2 significantly decreased the antitumor, antibacterial, and cytotoxic effects, as well as DNA binding activity by changing the α-helix content. However, α-helical content was not the only determining factor, the position of proline inserted was also critical. This study will allow for clearer insight into the role of proline in structure and bioactivity of NK-2 and provide a foundation for future studies.
Collapse
|
10
|
Shao C, Tian H, Wang T, Wang Z, Chou S, Shan A, Cheng B. Central β-turn increases the cell selectivity of imperfectly amphipathic α-helical peptides. Acta Biomater 2018; 69:243-255. [PMID: 29355714 DOI: 10.1016/j.actbio.2018.01.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/19/2022]
Abstract
Although membrane lytic antimicrobial peptides (AMPs) show enormous potential for addressing mounting global antibiotic resistance, therapeutic applications are hindered by their weak antimicrobial activity, high toxicity, salt sensitivity and poor understanding of structure-activity relationships. To investigate the effects of different parameters on the biological activities of AMPs, a rational approach was adopted to design a series of short cationic α-helical peptides comprising the Ac-WxKyWxzzyKxWyK-NH2 sequence, where x: cationic residues (Arg or Lys), y: hydrophobic residues (Ala, Val, Ile or Leu), and zz: β-turn (rigid D-Pro-Gly turn or flexible Gly-Gly turn). The peptides showed a more helical structure as the concentration of membrane-mimetic solution increased. The peptide RL with a central D-Pro-Gly turn (x: Arg, y: Lys, zz = D-Pro-Gly) exhibited broad-spectrum antimicrobial activities (2-8 μM) against ten types of clinically relevant microorganisms and even maintained its activity in the presence of physiological salts and showed excellent selectivity toward bacterial cells over human red blood cells and mammalian cells. However, the toxicity was increased after the removal of D-Pro-Gly turn. Additionally, the bactericidal activity was reduced when the D-Pro-Gly turn was replaced by a Gly-Gly turn. Fluorescence spectroscopy and electron microscopy analyses indicated that RL and its derivatives killed microbial cells by permeabilizing the cell membrane and damaging membrane integrity. In conclusion, these findings clearly generalized a potential method for designing or optimizing AMPs, and the peptide RL is a promising therapeutic candidate to combat antibiotic resistance. STATEMENT OF SIGNIFICANCE We proposed a rational approach to design imperfectly amphiphilic peptides and identified RL (Ac-WRKLWRpGLKRWLK-NH2) in particular that shows strong antibacterial properties, low toxicity and high salt resistance. The β-turn unit inserted into the central position of cationic α-helical peptides, especially the D-Pro-Gly turn, significantly increase the cell selectivity of the synthetic amphiphiles. The findings demonstrate a potential method for designing and/or optimizing AMPs, which would facilitate the development of strategies to design peptide-based antimicrobial biomaterials in a variety of biotechnological and clinical applications.
Collapse
|
11
|
Rajasekaran G, Shin SY. Fowlicidin-3 Analog with Improved Cell Selectivity Synthesized by Shifting a PXXP Motif from the N-Terminus to a Central Position. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ganesan Rajasekaran
- Department of Cellular & Molecular Medicine; School of Medicine, Chosun University; Gwangju 501-759 Republic of Korea
| | - Song Yub Shin
- Department of Cellular & Molecular Medicine; School of Medicine, Chosun University; Gwangju 501-759 Republic of Korea
| |
Collapse
|
12
|
Jeon D, Jeong MC, Jacob B, Bang JK, Kim EH, Cheong C, Jung ID, Park Y, Kim Y. Investigation of cationicity and structure of pseudin-2 analogues for enhanced bacterial selectivity and anti-inflammatory activity. Sci Rep 2017; 7:1455. [PMID: 28469145 PMCID: PMC5431190 DOI: 10.1038/s41598-017-01474-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
Pseudin-2 (Ps), isolated from the frog Pseudis paradoxa, exhibits potent antibacterial activity and cytotoxicity. To develop antimicrobial peptides with anti-inflammatory activity and low cytotoxicity, we designed Ps analogues with Lys substitutions, resulting in elevated amphipathic α-helical structure and cationicity. We further substituted Gly11 with Pro (Ps-P analogues) to increase bacterial cell selectivity. Ps analogues retained antimicrobial activity and exhibited reduced cytotoxicity, whereas Ps-P analogues exhibited lower cytotoxicity and antimicrobial activity. Tertiary structures revealed that Ps has a linear α-helix from Leu2 to Glu24, whereas Ps-P has a bend at Pro11 between two short α-helixes. Using various biophysical experiments, we found that Ps analogues produced much higher membrane depolarization than Ps-P analogues, whereas Ps-P analogues may penetrate bacterial cell membranes. Ps and its analogue Ps-K18 exhibited potent anti-inflammatory activity in LPS-stimulated RAW264.7 and mouse dendritic cells via a mechanism involving the Toll-like receptor 4 (TLR4) pathway. These activities may arise from their direct inhibition of the formation of TLR4-MD-2_LPS complex, implying that amphipathic α-helical structure with an optimum balance between enhanced cationicity and hydrophobicity may be essential for their anti-inflammatory activity. The bent structure provided by Pro substitution plays an important role in enhancing bacterial cell selectivity and cell penetration.
Collapse
Affiliation(s)
- Dasom Jeon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Cheol Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Binu Jacob
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, 28119, Korea
| | - Eun-Hee Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, 28119, Korea
| | - Chaejoon Cheong
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, 28119, Korea
| | - In Duk Jung
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, 380-701, Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, 61452, Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
13
|
Antimicrobial Peptide Potency is Facilitated by Greater Conformational Flexibility when Binding to Gram-negative Bacterial Inner Membranes. Sci Rep 2016; 6:37639. [PMID: 27874065 PMCID: PMC5118786 DOI: 10.1038/srep37639] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/28/2016] [Indexed: 11/24/2022] Open
Abstract
The interaction of antimicrobial peptides (AMPs) with the inner membrane of Gram-negative bacteria is a key determinant of their abilities to exert diverse bactericidal effects. Here we present a molecular level understanding of the initial target membrane interaction for two cationic α-helical AMPs that share structural similarities but have a ten-fold difference in antibacterial potency towards Gram-negative bacteria. The binding and insertion from solution of pleurocidin or magainin 2 to membranes representing the inner membrane of Gram-negative bacteria, comprising a mixture of 128 anionic and 384 zwitterionic lipids, is monitored over 100 ns in all atom molecular dynamics simulations. The effects of the membrane interaction on both the peptide and lipid constituents are considered and compared with new and published experimental data obtained in the steady state. While both magainin 2 and pleurocidin are capable of disrupting bacterial membranes, the greater potency of pleurocidin is linked to its ability to penetrate within the bacterial cell. We show that pleurocidin displays much greater conformational flexibility when compared with magainin 2, resists self-association at the membrane surface and penetrates further into the hydrophobic core of the lipid bilayer. Conformational flexibility is therefore revealed as a key feature required of apparently α-helical cationic AMPs for enhanced antibacterial potency.
Collapse
|
14
|
Lv X, Ma Q, Zhu D, Shao C, Lv Y, Shan A. The C-terminal sequences of porcine thrombin are active as antimicrobial peptides. Chem Biol Drug Des 2016; 88:905-914. [PMID: 27439393 DOI: 10.1111/cbdd.12824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/04/2016] [Accepted: 07/09/2016] [Indexed: 02/01/2023]
Abstract
The C-terminal sequences of porcine thrombin encode a series of peptides with the characteristics of net positive charge and hydrophobicity, suggesting antimicrobial potential. In this study, we synthesized truncated C-terminal peptides to explore their antimicrobial potency and structure-activity relationship. The results showed that some peptides exerted antimicrobial activity against Gram-positive and Gram-negative bacteria, with selectivity for microbial membranes. The antimicrobial potency of the peptides increased with the extension of chain length. Considering toxicity to red blood cells, the 21-mer peptide T-6 displayed the highest therapeutic index of 43.4, suggesting its higher cell selectivity. Typical α-helical conformations were observed upon binding to a bacteria-mimicking environment. The derivatives tended to interact preferentially with negatively charged vesicles compared to zwitterionic vesicles. Flow cytometry and electron microscopy revealed that the peptides targeted bacterial cell membranes and disrupted cytoplasmic membrane integrity, thereby causing the release of cellular contents leading to cell death. Peptide-membrane interaction experiments provided evidence that the peptides killed bacteria via a membrane-mediating mechanism. In summary, the C-terminal sequence of porcine thrombin has antimicrobial functions.
Collapse
Affiliation(s)
- Xiting Lv
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P R China
| | - Qingquan Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P R China
| | - Dandan Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P R China
| | - Changxuan Shao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P R China
| | - Yinfeng Lv
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P R China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P R China.
| |
Collapse
|
15
|
Zhu X, Zhang L, Wang J, Ma Z, Xu W, Li J, Shan A. Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity. Acta Biomater 2015; 18:155-67. [PMID: 25735802 DOI: 10.1016/j.actbio.2015.02.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/14/2015] [Accepted: 02/23/2015] [Indexed: 11/29/2022]
Abstract
Antimicrobial peptides (AMPs) serve as a defense mechanism within multicellular organisms and are attracting increasing attention because of their potential application in the treatment of multidrug-resistant infections. Amphipathicity has long been believed to be the most important consideration for the structural modification and design of both naturally occurring and synthetic AMPs. Previous studies indicated that disruptive amphipathicity formed by replacing the paired charged amino acid residues on the polar face of an amphipathic helix with tryptophan residues linked with hydrogen bonds on the basis of α-helical protein folding principles endowed the AMPs with increased cell selectivity. In an attempt to augment and hone this strategy further, we designed a series of imperfect amphipathic peptides by placing different types of amino acid residues at the hydrogen bond linked positions of α-helix structures to characterize their antimicrobial properties and mechanism of action. The d-Trp-substituted sequence (PRW4-d) showed greater antimicrobial potency than Cys-(C4), Asp-(D4), Ile-(I4), and Pro-(P4) substituted sequences, comparable to the l-Trp-substituted parent sequence (PRW4). Furthermore, the total replacement of Lys residues with Arg residues along the peptide sequence (PRW4-R) exhibited enhanced antimicrobial activity and cell selectivity. In addition, no cytotoxicity was observed among these synthetic peptides. PRW4-d and PRW4-R maintained their activities in the presence of physiological salts and human serum. The fluorescence spectroscopy, flow cytometry, and electron microscopy observations indicated that the optimized sequences exhibited excellent antimicrobial potency by inducing cytoplasmic membrane potential loss, membrane permeabilization and disruption. Collectively, the results could be useful for designing short AMPs with great antimicrobial activity and cell selectivity.
Collapse
Affiliation(s)
- Xin Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jue Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Zhi Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Wei Xu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
16
|
Shin SY. Effect of Double Replacement of L-Pro, D-Pro, D-Leu or Nleu in Hydrophobic Face of Amphipathic α-Helical Model Antimicrobial Peptide on Structure, Cell Selectivity and Mechanism of Action. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.11.3267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Cationic amphipathic D-enantiomeric antimicrobial peptides with in vitro and ex vivo activity against drug-resistant Mycobacterium tuberculosis. Tuberculosis (Edinb) 2014; 94:678-89. [PMID: 25154927 DOI: 10.1016/j.tube.2014.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/01/2014] [Accepted: 08/01/2014] [Indexed: 11/24/2022]
Abstract
Tuberculosis (TB) is the leading cause of bacterial death worldwide. Due to the emergence of multi-drug resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), and the persistence of latent infections, a safe and effective TB therapy is highly sought after. Antimicrobial peptides (AMPs) have therapeutic potential against infectious diseases and have the ability to target microbial pathogens within eukaryotic cells. In the present study, we investigated the activity of a family of six AMPs containing all-D amino acids (D-LAK peptides) against MDR and XDR clinical strains of Mycobacterium tuberculosis (Mtb) both in vitro and, using THP-1 cells as a macrophage model, cultured ex vivo. All the D-LAK peptides successfully inhibited the growth of Mtb in vitro and were similarly effective against MDR and XDR strains. D-LAK peptides effectively broke down the heavy clumping of mycobacteria in broth culture, consistent with a 'detergent-like effect' that could reduce the hydrophobic interactions between the highly lipidic cell walls of the mycobacteria, preventing bacteria cell aggregation. Furthermore, though not able to eradicate the intracellular mycobacteria, D-LAK peptides substantially inhibited the intracellular growth of drug-resistant Mtb clinical isolates at concentrations that were well tolerated by THP-1 cells. Finally, combining D-LAK peptide with isoniazid could enhance the anti-TB efficacy. D-LAK peptide, particularly D-LAK120-A, was effective as an adjunct agent at non-toxic concentration to potentiate the efficacy of isoniazid against drug-resistant Mtb in vitro, possibly by facilitating the access of isoniazid into the mycobacteria by increasing the surface permeability of the pathogen.
Collapse
|
18
|
Ma Q, Jiao W, Lv Y, Dong N, Zhu X, Shan A. Structure–Function Relationship of Val/Arg‐rich Peptides: Effects of Net Charge and Pro on Activity. Chem Biol Drug Des 2014; 84:348-53. [DOI: 10.1111/cbdd.12325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/10/2014] [Accepted: 03/04/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Qingquan Ma
- Institute of Animal Nutrition Northeast Agricultural University Harbin 150030 China
| | - Wenjing Jiao
- Institute of Animal Nutrition Northeast Agricultural University Harbin 150030 China
| | - Yinfeng Lv
- Institute of Animal Nutrition Northeast Agricultural University Harbin 150030 China
| | - Na Dong
- Institute of Animal Nutrition Northeast Agricultural University Harbin 150030 China
| | - Xin Zhu
- Institute of Animal Nutrition Northeast Agricultural University Harbin 150030 China
| | - Anshan Shan
- Institute of Animal Nutrition Northeast Agricultural University Harbin 150030 China
| |
Collapse
|
19
|
Henriksen JR, Etzerodt T, Gjetting T, Andresen TL. Side chain hydrophobicity modulates therapeutic activity and membrane selectivity of antimicrobial peptide mastoparan-X. PLoS One 2014; 9:e91007. [PMID: 24621994 PMCID: PMC3951324 DOI: 10.1371/journal.pone.0091007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/07/2014] [Indexed: 11/29/2022] Open
Abstract
The discovery of new anti-infective compounds is stagnating and multi-resistant bacteria continue to emerge, threatening to end the “antibiotic era”. Antimicrobial peptides (AMPs) and lipo-peptides such as daptomycin offer themselves as a new potential class of antibiotics; however, further optimization is needed if AMPs are to find broad use as antibiotics. In the present work, eight analogues of mastoparan-X (MPX) were investigated, having side chain modifications in position 1, 8 and 14 to modulate peptide hydrophobicity. The self-association properties of the peptides were characterized, and the peptide-membrane interactions in model membranes were compared with the bactericidal and haemolytic properties. Alanine substitution at position 1 and 14 resulted in higher target selectivity (red blood cells versus bacteria), but also decreased bactericidal potency. For these analogues, the gain in target selectivity correlated to biophysical parameters showing an increased effective charge and reduction in the partitioning coefficient for membrane insertion. Introduction of an unnatural amino acid, with an octyl side chain by amino acid substitution, at positions 1, 8 and 14 resulted in increased bactericidal potency at the expense of radically reduced membrane target selectivity. Overall, optimized membrane selectivity or bactericidal potency was achieved by changes in side chain hydrophobicity of MPX. However, enhanced potency was achieved at the expense of selectivity and vice versa in all cases.
Collapse
Affiliation(s)
- Jonas R. Henriksen
- DTU Chemistry, Department of Chemistry, Technical University of Denmark, Center for Nanomedicine and Theranostics, Kongens Lyngby, Denmark
- * E-mail:
| | - Thomas Etzerodt
- DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Center for Nanomedicine and Theranostics, Kongens Lyngby, Denmark
| | - Torben Gjetting
- DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Center for Nanomedicine and Theranostics, Kongens Lyngby, Denmark
| | - Thomas L. Andresen
- DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Center for Nanomedicine and Theranostics, Kongens Lyngby, Denmark
| |
Collapse
|
20
|
Bobone S, Bocchinfuso G, Park Y, Palleschi A, Hahm KS, Stella L. The importance of being kinked: role of Pro residues in the selectivity of the helical antimicrobial peptide P5. J Pept Sci 2013; 19:758-69. [DOI: 10.1002/psc.2574] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Sara Bobone
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Yoonkyung Park
- Department of Cellular & Molecular Medicine, School of Medicine; Chosun University; Gwangju 501-759 Korea
| | - Antonio Palleschi
- Department of Cellular & Molecular Medicine, School of Medicine; Chosun University; Gwangju 501-759 Korea
| | - Kyung-Soo Hahm
- BioLeaders Corp.; 559 Yongsan-Dong, Yuseong-Ku Daejeon 305-500 Korea
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| |
Collapse
|
21
|
Vermeer LS, Lan Y, Abbate V, Ruh E, Bui TT, Wilkinson LJ, Kanno T, Jumagulova E, Kozlowska J, Patel J, McIntyre CA, Yam WC, Siu G, Atkinson RA, Lam JKW, Bansal SS, Drake AF, Mitchell GH, Mason AJ. Conformational flexibility determines selectivity and antibacterial, antiplasmodial, and anticancer potency of cationic α-helical peptides. J Biol Chem 2012; 287:34120-33. [PMID: 22869378 PMCID: PMC3464521 DOI: 10.1074/jbc.m112.359067] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We used a combination of fluorescence, circular dichroism (CD), and NMR spectroscopies in conjunction with size exclusion chromatography to help rationalize the relative antibacterial, antiplasmodial, and cytotoxic activities of a series of proline-free and proline-containing model antimicrobial peptides (AMPs) in terms of their structural properties. When compared with proline-free analogs, proline-containing peptides had greater activity against Gram-negative bacteria, two mammalian cancer cell lines, and intraerythrocytic Plasmodium falciparum, which they were capable of killing without causing hemolysis. In contrast, incorporation of proline did not have a consistent effect on peptide activity against Mycobacterium tuberculosis. In membrane-mimicking environments, structures with high α-helix content were adopted by both proline-free and proline-containing peptides. In solution, AMPs generally adopted disordered structures unless their sequences comprised more hydrophobic amino acids or until coordinating phosphate ions were added. Proline-containing peptides resisted ordering induced by either method. The roles of the angle subtended by positively charged amino acids and the positioning of the proline residues were also investigated. Careful positioning of proline residues in AMP sequences is required to enable the peptide to resist ordering and maintain optimal antibacterial activity, whereas varying the angle subtended by positively charged amino acids can attenuate hemolytic potential albeit with a modest reduction in potency. Maintaining conformational flexibility improves AMP potency and selectivity toward bacterial, plasmodial, and cancerous cells while enabling the targeting of intracellular pathogens.
Collapse
Affiliation(s)
- Louic S Vermeer
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units. Amino Acids 2012; 43:2527-36. [PMID: 22699557 DOI: 10.1007/s00726-012-1334-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
Abstract
Typical peptides composed of Phe, Ile, and Arg residues have not been reported, and the effect of the helix-forming unit (HFU) composed of the tripeptide core on biological activity remains unclear. In this study, multimers of the 3-residue HFU were designed to investigate the structure-function relationships. The in vitro biological activities of the peptides were determined. We used synthetic lipid vesicles and intact bacteria to assess the interactions of the peptides with cell membranes. The well-studied peptide melittin was chosen as a control peptide. The results showed that the antimicrobial and hemolytic activities of the peptides increased with the number of HFUs. HFU3 had optimal cell selectivity as determined by the therapeutic index. HFU3 and HFU4 exhibited strong resistance to salts, pH, and heat. CD spectra revealed that the peptides except HFU2 displayed α-helix-rich secondary structures in the presence of SDS or trifluoroethanol (TFE). The peptides interacted weakly with zwitterionic phospholipids (mimicking mammalian membranes) but strongly with negatively charged phospholipids (mimicking bacterial membranes), which corresponds well with the data for the biological activities. There was a correlation between the cell selectivity of the peptides and their high binding affinity with negatively charged phospholipids. Cell membrane permeability experiments suggest that the peptides targeted the cell membrane, and HFU3 showed higher permeabilization of the inner membrane but lower permeabilization of the outer membrane than melittin. These findings provide the new insights to design antimicrobial peptides with antimicrobial potency by trimers.
Collapse
|
23
|
Etzerodt T, Henriksen JR, Rasmussen P, Clausen MH, Andresen TL. Selective acylation enhances membrane charge sensitivity of the antimicrobial peptide mastoparan-x. Biophys J 2011; 100:399-409. [PMID: 21244836 DOI: 10.1016/j.bpj.2010.11.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/17/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022] Open
Abstract
The partitioning of the wasp venom peptide mastoparan-X (MPX) into neutral and negatively charged lipid membranes has been compared with two new synthetic analogs of MPX where the N(α)-terminal of MPX was acylated with propanoic acid (PA) and octanoic acid (OA). The acylation caused a considerable change in the membrane partitioning properties of MPX and it was found that the shorter acylation with PA gave improved affinity and selectivity toward negatively charged membranes, whereas OA decreased the selectivity. Based on these findings, we hypothesize that minor differences in the embedding and positioning of the peptide in the membrane caused by either PA or OA acylation play a critical role in the fine-tuning of the effective charge of the peptide and thereby the fine-tuning of the peptide's selectivity between neutral and negatively charged lipid membranes. This finding is unique compared to previous reports where peptide acylation enhanced membrane affinity but also resulted in impaired selectivity. Our result may provide a method of enhancing selectivity of antimicrobial peptides toward bacterial membranes due to their high negative charge-a finding that should be investigated for other, more potent antimicrobial peptides in future studies.
Collapse
Affiliation(s)
- Thomas Etzerodt
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | |
Collapse
|
24
|
Xie Y, Fleming E, Chen JL, Elmore DE. Effect of proline position on the antimicrobial mechanism of buforin II. Peptides 2011; 32:677-82. [PMID: 21277926 PMCID: PMC3060972 DOI: 10.1016/j.peptides.2011.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/14/2011] [Accepted: 01/14/2011] [Indexed: 01/03/2023]
Abstract
Buforin II (BF2) is a histone-derived antimicrobial peptide that causes cell death by translocating across membranes and interacting with nucleic acids. It contains one proline residue critical for its function. Previous research found that mutations replacing proline lead to decreased membrane translocation and antimicrobial activity as well as increased membrane permeabilization. This study further investigates the role of proline in BF2's antimicrobial mechanism by considering the effect of changing proline position on membrane translocation, membrane permeabilization, and antimicrobial activity. For this purpose, four mutants were made with proline substitution (P11A) or relocation (P11A/G7P, P11A/V12P, P11A/V15P). These mutations altered the amount of helical content. Although antimicrobial activity correlated with the α-helical content for the peptides containing proline, membrane translocation did not. This observation suggests that factors in BF2's bactericidal mechanism other than translocation must be altered by these mutations. To better explain these trends we also measured the nucleic acid binding and membrane permeabilization of the mutant peptides. A comparison of mutant and wild type BF2 activity revealed that BF2 relies principally on membrane translocation and nucleic acid binding for antimicrobial activity, although membrane permeabilization may play a secondary role for some BF2 variants. A better understanding of the role of proline in the BF2 antimicrobial mechanism will contribute to the further design and development of BF2 analogs. Moreover, since proline residues are prevalent among other antimicrobial peptides, this systematic characterization of BF2 provides general insights that can promote our understanding of other systems.
Collapse
Affiliation(s)
- Yang Xie
- Department of Chemistry; Wellesley College; 106 Central St.; Wellesley, MA 02481
| | - Eleanor Fleming
- Department of Chemistry; Wellesley College; 106 Central St.; Wellesley, MA 02481
| | - Jessica L. Chen
- Department of Chemistry; Wellesley College; 106 Central St.; Wellesley, MA 02481
| | - Donald E. Elmore
- Department of Chemistry; Wellesley College; 106 Central St.; Wellesley, MA 02481
| |
Collapse
|
25
|
Ma QQ, Shan AS, Dong N, Gu Y, Sun WY, Hu WN, Feng XJ. Cell selectivity and interaction with model membranes of Val/Arg-rich peptides. J Pept Sci 2011; 17:520-6. [PMID: 21425418 DOI: 10.1002/psc.1360] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 11/09/2022]
Abstract
Antimicrobial peptides are major components of the innate self-defence system and a large number of peptides have been designed to study the mechanism of action. In the present study, a small combinatorial library was designed to study whether the biological activity of Val/Arg-rich peptides is associated with targeted cell membranes. The peptides were produced by segregating hydrophilic residues on the polar side and hydrophobic residues on the opposite side. The peptides displayed strong antimicrobial activity against Gram-negative and Gram-positive bacteria, but weak haemolysis even at a concentration of 256 µM. CD spectra showed that the peptides formed α-helical-rich structure in the presence of negatively charged membranes. The tryptophan fluorescence and quenching experiments indicated that the peptides bound preferentially to negatively charged phospholipids over zwitterionic phospholipids, which corresponds well with the biological activity data. In the in vivo experiment, the peptide G6 decreased the bacterial counts in the mouse peritoneum and increased survival after 7 days. Overall, a high binding affinity with negatively charged phospholipids correlated closely with the cell selectivity of the peptides and some peptides in this study may be likely candidates for the development of antibacterial agents.
Collapse
Affiliation(s)
- Qing-Quan Ma
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Wang P, Nan YH, Shin SY. Candidacidal mechanism of a Leu/Lys-rich α-helical amphipathic model antimicrobial peptide and its diastereomer composed of D,L-amino acids. J Pept Sci 2011; 16:601-6. [PMID: 20665599 DOI: 10.1002/psc.1268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated the mechanism of candidacidal action of a Lys/Leu-rich α-helical model antimicrobial peptide (K(9)L(8)W) and its diastereomeric peptide (D(9)-K(9)L(8)W) composed of D,L-amino acids. K(9)L(8)W killed completely Candida albicans within 30 min, but D(9)-K(9)L(8)W killed only 72% of C. albicans even after 100 min. Tryptophan fluorescence spectroscopy indicated that the fungal cell selectivity of D(9)-K(9)L(8)W is closely correlated with a selective interaction with the negatively charged PC/PE/PI/ergosterol (5:2.5:2.5:1, w/w/w/w) phospholipids, which mimic the outer leaflet of the plasma membrane of C. albicans. K(9)L(8)W was able to induce almost 100% calcein leakage from PC/PE/PI/ergosterol (5:2.5:2.5:1, w/w/w/w) liposomes at a peptide:lipid molar ratio of 1:16, whereas D(9)-K(9)L(8)W caused only 25% dye leakage even at a peptide:lipid molar ratio of 1:2. Confocal laser-scanning microscopy revealed that FITC-labeled D(9)-K(9)L(8)W penetrated the cell wall and cell membrane and accumulated inside the cells, whereas FITC-labeled K(9)L(8)W did not penetrate but associated with the membranes. Collectively, our results demonstrated that the candidacidal activity of K(9)L(8) W and D(9)-K(9)L(8)W may be due to the transmembrane pore/channel formation or perturbation of the fungal cytoplasmic membranes and the inhibition of intracellular functions, respectively. Finally, D(9)-K(9)L(8)W with potent anti-Candida activity but no hemolytic activity may be potentially a useful lead compound for the development of novel antifungal agents.
Collapse
Affiliation(s)
- Peng Wang
- Department of Bio-Materials, Graduate School, Chosun University, Gwangju 501-759, Republic of Korea
| | | | | |
Collapse
|
27
|
Suh HJ, Lee KS, Kim SR, Shin MH, Park S, Park S. Determination of singlet oxygen quenching and protection of biological systems by various extracts from seed of Rumex crispus L. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 102:102-7. [DOI: 10.1016/j.jphotobiol.2010.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/07/2010] [Accepted: 09/16/2010] [Indexed: 01/10/2023]
|
28
|
Crusca E, Rezende AA, Marchetto R, Mendes-Giannini MJS, Fontes W, Castro MS, Cilli EM. Influence of N-terminus modifications on the biological activity, membrane interaction, and secondary structure of the antimicrobial peptide hylin-a1. Biopolymers 2011; 96:41-8. [DOI: 10.1002/bip.21454] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Identification and characterisation of a novel antimicrobial polypeptide from the skin secretion of a Chinese frog (Rana chensinensis). Int J Antimicrob Agents 2009; 33:538-42. [DOI: 10.1016/j.ijantimicag.2008.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 11/22/2022]
|
30
|
Zhu WL, Shin SY. Effects of dimerization of the cell-penetrating peptide Tat analog on antimicrobial activity and mechanism of bactericidal action. J Pept Sci 2009; 15:345-52. [DOI: 10.1002/psc.1120] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Zhu WL, Shin SY. Antimicrobial and cytolytic activities and plausible mode of bactericidal action of the cell penetrating peptide penetratin and its lys-linked two-stranded peptide. Chem Biol Drug Des 2009; 73:209-15. [PMID: 19207423 DOI: 10.1111/j.1747-0285.2008.00769.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cell penetrating peptide, penetratin (RQIKIWFQNRRMKWKK-NH2) showed potent antimicrobial activity (MIC: 0.5-4 microM) without any cytotoxicity against mammalian cells. This study investigated the effect of linking together two peptide chains of penetratin on antimicrobial and cytolytic activities and plausible mode of bactericidal action. Two-stranded penetratin was prepared by a simultaneous solid-phase synthesis of the two strands of a single lysine residue attached to the solid support. Two-stranded penetratin markedly increased cytolytic activity against human erythrocytes and NIH-3T3 mouse fibroblast cells without a significant effect on antimicrobial activity. This finding suggested that penetratin is active as a monomer to bacterial cells but as an oligomer to mammalian cells. Circular dichroism analysis revealed that the alpha-helical content of the membrane-bound penetratin was unaffected by two-stranded Lys-linkage. Penetratin had very weak ability in the depolarization of membrane potential of intact Staphylococcus aureus cells and the fluorescent dye leakage of calcein-entrapped negatively charged bacterial membrane-mimicking vesicles. In contrast, two-stranded penetratin significantly caused membrane depolarization and dye leakage. These results suggest that the two-stranded penetratin induces a significant change in its mode of bactericidal action from the intracellular-target mechanism to the membrane-targeting mechanism.
Collapse
Affiliation(s)
- Wan Long Zhu
- Department of Bio-Materials, Graduate School, Research Center for Proteineous Materials and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju 501-759, Korea
| | | |
Collapse
|
32
|
Park KH, Nan YH, Park Y, Kim JI, Park IS, Hahm KS, Shin SY. Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1193-203. [PMID: 19285481 DOI: 10.1016/j.bbamem.2009.02.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/29/2009] [Accepted: 02/27/2009] [Indexed: 10/21/2022]
Abstract
To develop novel short Trp-rich antimicrobial peptides (AMPs) with potent cell specificity (targeting bacteria but not eukaryotic cells) and anti-inflammatory activity, a series of 11-meric Trp-rich model peptides with different ratios of Leu and Lys/Arg residues, XXWXXWXXWXX-NH(2) (X indicates Leu or Lys/Arg), was synthesized. K(6)L(2)W(3) displayed an approximately 40-fold increase in cell specificity, compared with the natural Trp-rich AMP indolicidin (IN). Lys-containing peptides (K(8)W(3), K(7)LW(3) and K(6)L(2)W(3)) showed approximately 2- to 4-fold higher cell specificities than did their counterparts, the Arg-containing peptides (R(8)W(3), R(7)LW(3) and R(6)L(2)W(3)), indicating that multiple Lys residues are more important than multiple Arg residues in the design of AMPs with good cell specificity. The excellent resistance of d-enantiomers (K(6)L(2)W(3)-D and R(6)L(2)W(3)-D) and Orn/Nle-containing peptides (O(6)L(2)W(3) and O(6)L(2)W(3)) to trypsin digestion compared with the rapid breakdown of the l-enantiomers (K(6)L(2)W(3) and R(6)L(2)W(3)), highlights the clinical potential of such peptides. K(6)L(2)W(3), R(6)L(2)W(3), K(6)L(2)W(3)-D and R(6)L(2)W(3)-D caused weak dye leakage from bacterial membrane-mimicking negatively charged EYPG/EYPE (7:3, v/v) liposomes. Confocal microscopy showed that these peptides penetrated the cell membrane of Escherichia coli and accumulated in the cytoplasm, as observed for buforin-2. Gel retardation studies revealed that the peptides bound more strongly to DNA than did IN. These results suggested that one possible peptide bactericidal mechanism may relate to the inhibition of intracellular functions via interference with DNA/RNA synthesis. Furthermore, some model peptides, containing K(6)L(2)W(3), K(5)L(3)W(3), R(6)L(2)W(3), O(6)L(2)W(3), O(6)L(2)W(3), and K(6)L(2)W(3)-D inhibited LPS-induced inducible nitric oxide synthase (iNOS) mRNA expression, the release of nitric oxide (NO) following LPS stimulation in RAW264.7 cells and had powerful LPS binding activities at bactericidal concentrations. Collectively, our results indicated that these peptides have potential for future development as novel antimicrobial and anti-inflammatory agents.
Collapse
Affiliation(s)
- Ka Hyon Park
- Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci U S A 2008; 105:2794-9. [PMID: 18287037 DOI: 10.1073/pnas.0708254105] [Citation(s) in RCA: 504] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides (AMPs) and their mimics are emerging as promising antibiotic agents. We present a library of "ampetoids" (antimicrobial peptoid oligomers) with helical structures and biomimetic sequences, several members of which have low-micromolar antimicrobial activities, similar to cationic AMPs like pexiganan. Broad-spectrum activity against six clinically relevant BSL2 pathogens is also shown. This comprehensive structure-activity relationship study, including circular dichroism spectroscopy, minimum inhibitory concentration assays, hemolysis and mammalian cell toxicity studies, and specular x-ray reflectivity measurements shows that the in vitro activities of ampetoids are strikingly similar to those of AMPs themselves, suggesting a strong mechanistic analogy. The ampetoids' antibacterial activity, coupled with their low cytotoxicity against mammalian cells, make them a promising class of antimicrobials for biomedical applications. Peptoids are biostable, with a protease-resistant N-substituted glycine backbone, and their sequences are highly tunable, because an extensive diversity of side chains can be incorporated via facile solid-phase synthesis. Our findings add to the growing evidence that nonnatural foldamers will emerge as an important class of therapeutics.
Collapse
|
34
|
Park KH, Park Y, Park IIS, Hahm KS, Shin SY. Bacterial selectivity and plausible mode of antibacterial action of designed Pro-rich short model antimicrobial peptides. J Pept Sci 2008; 14:876-82. [DOI: 10.1002/psc.1019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Zhu WL, Song YM, Park Y, Park KH, Yang ST, Kim JI, Park IS, Hahm KS, Shin SY. Substitution of the leucine zipper sequence in melittin with peptoid residues affects self-association, cell selectivity, and mode of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1506-17. [PMID: 17462584 DOI: 10.1016/j.bbamem.2007.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 03/02/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
Melittin (ME), a non-cell-selective antimicrobial peptide, contains the leucine zipper motif, wherein every seventh amino acid is leucine or isolucine. Here, we attempted to generate novel cell-selective peptides by substituting amino acids in the leucine zipper sequence of ME with peptoid residues. We generated a series of ME analogues by replacing Leu-6, Lue-13 and Ile-20 with Nala, Nleu, Nphe, or Nlys, and we examined their secondary structure, self-association activity, cell selectivity and mode of action. Circular dichroism spectroscopy indicated that the substitutions disrupt the alpha-helical structure of ME in micelles of sodium dodecyl sulfate and on negatively charged and zwitterionic phospholipid vesicles. Substitution by Nleu, Nphe, or Nlys but not Nala disturbed the self-association in an aqueous environment, interaction with zwitterionic membranes, and toxicity to mammalian cells of ME but did not affect the interaction with negatively charged membranes or antibacterial activity. Notably, peptides with Nphe or Nlys substitution had the highest therapeutic indices, consistent with their lipid selectivity. In addition, all of peptoid residue-containing ME analogues had little or no ability to induce membrane disruption, membrane depolarization and lipid flip-flop. Taken together, our studies indicate that substitution of the leucine zipper motif in ME with peptoid residues increases its selectivity against bacterial cells by impairing self-association activity and changes its mode of antibacterial action from membrane-targeting mechanism to possible intracellular targeting mechanism. Furthermore, our ME analogues especially those with Nleu, Nphe, or Nlys substitutions, may be therapeutically useful antimicrobial peptides.
Collapse
Affiliation(s)
- Wan Long Zhu
- Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang ST, Shin SY, Kim JI. Interaction mode of a symmetric Trp-rich undeca peptide PST11-RK with lipid bilayers. FEBS Lett 2006; 581:157-63. [PMID: 17184775 DOI: 10.1016/j.febslet.2006.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 12/05/2006] [Accepted: 12/05/2006] [Indexed: 11/22/2022]
Abstract
To better understand the mode of action of the antimicrobial peptide PST11-RK, we investigated its (1) bactericidal kinetics, (2) ability to induce bacterial membrane depolarization, (3) ability to bind to liposomes, (4) cis/trans prolyl isomerization, (5) lipid binding kinetics and (6) translocation across lipid bilayers. Our findings suggest that PST11-RK acts mainly by collapsing the cytoplasmic membrane potential; it first attaches to the membrane via cationic C- and N-terminal residues and then inserts its central hydrophobic residues into the lipid interior. In addition, it seems likely that cis/trans isomerization facilitates the translocation of PST11-RK across the lipid bilayer, where it may interact with secondary intracellular targets.
Collapse
Affiliation(s)
- Sung-Tae Yang
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | | | |
Collapse
|
37
|
Zhu WL, Lan H, Park IS, Kim JI, Jin HZ, Hahm KS, Shin SY. Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Biochem Biophys Res Commun 2006; 349:769-74. [PMID: 16945333 DOI: 10.1016/j.bbrc.2006.08.094] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 08/16/2006] [Indexed: 11/26/2022]
Abstract
Here, we report the successful design of a novel bacteria-selective antimicrobial peptide, Pep-1-K (KKTWWKTWWTKWSQPKKKRKV). Pep-1-K was designed by replacing Glu-2, Glu-6, and Glu-11 in the cell-penetrating peptide Pep-1 with Lys. Pep-1-K showed strong antibacterial activity against reference strains (MIC = 1-2 microM) of Gram-positive and Gram-negative bacteria as well as against clinical isolates (MIC = 1-8 microM) of methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. In contrast, Pep-1-K did not cause hemolysis of human erythrocytes even at 200 microM. These results indicate that Pep-1-K may be a good candidate for antimicrobial drug development, especially as a topical agent against antibiotic-resistant microorganisms. Tryptophan fluorescence studies indicated that the lack of hemolytic activity of Pep-1-K correlated with its weak ability to penetrate zwitterionic phosphatidylcholine/cholesterol (10:1, w/w) vesicles, which mimic eukaryotic membranes. Furthermore, Pep-1-K caused little or no dye leakage from negatively charged phosphatidylethanolamine/phosphatidylglycerol (7:3, w/w) vesicles, which mimic bacterial membranes but had a potent ability to cause depolarization of the cytoplasmic membrane potential of intact S. aureus cells. These results suggested that Pep-1-K kills microorganisms by not the membrane-disrupting mode but the formation of small channels that permit transit of ions or protons but not molecules as large as calcein.
Collapse
Affiliation(s)
- Wan Long Zhu
- Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Lim SS, Kim Y, Park Y, Kim JI, Park IS, Hahm KS, Shin SY. The role of the central l- or d-Pro residue on structure and mode of action of a cell-selective α-helical IsCT-derived antimicrobial peptide. Biochem Biophys Res Commun 2005; 334:1329-35. [PMID: 16040002 DOI: 10.1016/j.bbrc.2005.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 07/11/2005] [Indexed: 11/24/2022]
Abstract
IsCT-P (ILKKIWKPIKKLF-NH2) is a novel alpha-helical antimicrobial peptide with bacterial cell selectivity designed from a scorpion-derived peptide IsCT. To investigate the role of L- or D-Pro kink on the structure and the mode of action of a short alpha-helical antimicrobial peptide with bacterial cell selectivity, we synthesized IsCT-p, in which D-Pro is substituted for L-Pro8 of IsCT-P. CD spectra revealed that IsCT-P adopted a typical alpha-helical structure in various membrane-mimicking conditions, whereas IsCT-p showed a random structure. This result indicated that D-Pro in the central position of a short alpha-helical peptide provides more remarkable structural flexibility than L-Pro. Despite its higher antibacterial activity, IsCT-p was much less effective at inducing dye leakage in the negatively charged liposome mimicking bacterial membrane and induced no or little membrane potential depolarization of Staphylococcus aureus. Confocal laser scanning microscopy showed that IsCT-p penetrated the bacterial cell membrane and accumulated in the cytoplasm, whereas IsCT-P remained outside or on the cell membrane. These results suggested that the major target of IsCT-P and IsCT-p is the bacterial membranes and intracellular components, respectively. Collectively, our results demonstrated that the central D-Pro kink in alpha-helical antimicrobial peptides plays an important role in penetrating bacterial membrane as well as bacterial cell selectivity.
Collapse
Affiliation(s)
- Shin Saeng Lim
- Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Antimicrobial peptides (AMPs) of innate origin are agents of the most ancient form of defense systems. They can be found in a wide variety of species ranging from bacteria through insects to humans. Through the course of evolution, host organisms developed arsenals of AMPs that protect them against a large variety of invading pathogens including both Gram-negative and Gram-positive bacteria. At a time of increasing bacterial resistance, AMPs have been the focus of investigation in a number of laboratories worldwide. Although recent studies show that some of the peptides are likely to have intracellular targets, the vast majority of AMPs appear to act by permeabilization of the bacterial cell membrane. Their activity and selectivity are governed by the physicochemical parameters of the peptide chains as well as the properties of the membrane system itself. In this review, we will summarize some of the recent developments that provide us with a better understanding of the mode of action of this unique family of antibacterial agents. Particular attention will be given to the determinants of AMP-lipid bilayer interactions as well as to the different pore formation mechanisms. The emphasis will be on linear AMPs but representatives of cysteine-bridged AMPs will also be discussed.
Collapse
Affiliation(s)
- Orsolya Toke
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|