1
|
Katnahji N, Matthes J. Opposite effects of Gα i2 or Gα i3 deficiency on reduced basal density and attenuated β-adrenergic response of ventricular Ca 2+ currents in myocytes of mice overexpressing the cardiac β 1-adrenoceptor. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03999-y. [PMID: 40163150 DOI: 10.1007/s00210-025-03999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025]
Abstract
Ca2+ currents (ICaL) carried by ventricular L-type Ca2+ channels (LTCC) are altered in failing hearts, and increased LTCC activity is discussed as a cause of cardiomyopathy. We have shown that lack of the inhibitory G-protein isoform Gαi3 improves cardiac outcome and survival in a murine heart-failure model of cardiac β1-adrenoceptor (β1-AR) overexpression (β1-tg), while lack of the Gαi2 isoform was detrimental in the same heart-failure model. Given the potential role of LTCC and their modulation by β-adrenergic signalling, we now analysed ventricular ICaL in β1-tg mice and in β1-tg mice lacking either Gαi2 or Gαi3. Using the patch-clamp technique, we recorded whole-cell ICaL in ventricular myocytes freshly isolated from adult mice. Compared to age-matched wild-type littermates, basal ICaL was reduced in myocytes from β1-tg mice both under basal conditions (- 8.1 ± 1.6 vs. - 5.5 ± 1.5 pA/pF) and upon β-adrenergic stimulation with 1 µM isoproterenol (- 14.3 ± 5.6 vs. - 7.4 ± 1.9 pA/pF). Lack of Gαi3 normalised basal ICaL to nearly wild-type levels (- 7.5 ± 1.6 pA/pF), while β-adrenergic response remained attenuated (- 9.5 ± 3.6 pA/pF). In contrast, the absence of Gαi2 did not restore basal ICaL (- 5.7 ± 1.8 pA/pF), but restored the β-adrenergic response of ICaL, with the difference from basal current even exceeding that in wild-type mice (- 12.2 ± 2.9 pA/pF).We propose that by restoring basal ICaL, Gαi3 deficiency might contribute to the restoration of contractility in β1-tg mice, while maintaining attenuation of the ICaL response upon β-adrenergic stimulation protects against deleterious effects mediated by enhanced β-AR signalling. In contrast, restored and even enhanced ICaL response to β-adrenergic stimulation might contribute to detrimental effects of Gαi2 deficiency observed in β1-tg mice previously.
Collapse
Affiliation(s)
- Nour Katnahji
- Center of Pharmacology, Department II, University of Cologne and University Hospital Cologne, Gleueler Strasse 24, Cologne, 50931, Germany
| | - Jan Matthes
- Center of Pharmacology, Department II, University of Cologne and University Hospital Cologne, Gleueler Strasse 24, Cologne, 50931, Germany.
| |
Collapse
|
2
|
Abstract
Each heartbeat is initiated by the action potential, an electrical signal that depolarizes the plasma membrane and activates a cycle of calcium influx via voltage-gated calcium channels, calcium release via ryanodine receptors, and calcium reuptake and efflux via calcium-ATPase pumps and sodium-calcium exchangers. Agonists of the sympathetic nervous system bind to adrenergic receptors in cardiomyocytes, which, via cascading signal transduction pathways and protein kinase A (PKA), increase the heart rate (chronotropy), the strength of myocardial contraction (inotropy), and the rate of myocardial relaxation (lusitropy). These effects correlate with increased intracellular concentration of calcium, which is required for the augmentation of cardiomyocyte contraction. Despite extensive investigations, the molecular mechanisms underlying sympathetic nervous system regulation of calcium influx in cardiomyocytes have remained elusive over the last 40 years. Recent studies have uncovered the mechanisms underlying this fundamental biologic process, namely that PKA phosphorylates a calcium channel inhibitor, Rad, thereby releasing inhibition and increasing calcium influx. Here, we describe an updated model for how signals from adrenergic agonists are transduced to stimulate calcium influx and contractility in the heart.
Collapse
Affiliation(s)
- Arianne Papa
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jared Kushner
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Murakami M, Xu F, Ohba T, Kobayashi T, Inoue Y, Murakami AM, Miyoshi I, Ono K, Tohse N. Requirement of the Ca 2+ channel β 2 subunit for sympathetic PKA phosphorylation. J Pharmacol Sci 2021; 145:253-261. [PMID: 33602505 DOI: 10.1016/j.jphs.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022] Open
Abstract
Facilitation of cardiac function in response to signals from the sympathetic nervous system is initiated by the phosphorylation of L-type voltage-dependent Ca2+ channels (VDCCs) by protein kinase A (PKA), which in turn is activated by β-adrenoceptors. Among the five subunits (α1, β, α2/δ, and γ) of VDCCs, the α1 subunit and the family of β subunits are substrates for PKA-catalyzed phosphorylation; however, the subunit responsible for β-adrenergic augmentation of Ca2+ channel function has yet to be specifically identified. Here we show that the VDCC β2 subunit is required for PKA phosphorylation upon sympathetic acceleration. In mice with β2 subunit-null mutations, cardiac muscle contraction in response to isoproterenol was reduced and there was no significant increase in Ca2+ channel currents upon PKA-dependent phosphorylation. These findings indicate that within the sympathetic nervous system the β2 subunit of VDCCs is required for physiological PKA-dependent channel phosphorylation.
Collapse
Affiliation(s)
- Manabu Murakami
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, Aomori, 036-8562, Japan.
| | - Feng Xu
- Department of Pharmacology, Akita University, Graduate School of Medicine, Akita, 010-8543, Japan
| | - Takayoshi Ohba
- Department of Cell Physiology, Akita University, Graduate School of Medicine, Akita, 010-8543, Japan
| | - Takeshi Kobayashi
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Yoshiro Inoue
- Division of Tumor Animals Institute for Experimental Animals, Institute of Development, Aging and Cancer, Tohoku University School of Medicine, Sendai, Japan
| | - Agnieszka M Murakami
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, Aomori, 036-8562, Japan
| | - Ichiro Miyoshi
- Animal Care Center, Tohoku University School of Medicine, Sendai, Japan
| | - Kyoichi Ono
- Department of Cell Physiology, Akita University, Graduate School of Medicine, Akita, 010-8543, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| |
Collapse
|
4
|
Exclusion of alternative exon 33 of Ca V1.2 calcium channels in heart is proarrhythmogenic. Proc Natl Acad Sci U S A 2017; 114:E4288-E4295. [PMID: 28490495 DOI: 10.1073/pnas.1617205114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alternative splicing changes the CaV1.2 calcium channel electrophysiological property, but the in vivo significance of such altered channel function is lacking. Structure-function studies of heterologously expressed CaV1.2 channels could not recapitulate channel function in the native milieu of the cardiomyocyte. To address this gap in knowledge, we investigated the role of alternative exon 33 of the CaV1.2 calcium channel in heart function. Exclusion of exon 33 in CaV1.2 channels has been reported to shift the activation potential -10.4 mV to the hyperpolarized direction, and increased expression of CaV1.2Δ33 channels was observed in rat myocardial infarcted hearts. However, how a change in CaV1.2 channel electrophysiological property, due to alternative splicing, might affect cardiac function in vivo is unknown. To address these questions, we generated mCacna1c exon 33-/--null mice. These mice contained CaV1.2Δ33 channels with a gain-of-function that included conduction of larger currents that reflects a shift in voltage dependence and a modest increase in single-channel open probability. This altered channel property underscored the development of ventricular arrhythmia, which is reflected in significantly more deaths of exon 33-/- mice from β-adrenergic stimulation. In vivo telemetric recordings also confirmed increased frequencies in premature ventricular contractions, tachycardia, and lengthened QT interval. Taken together, the significant decrease or absence of exon 33-containing CaV1.2 channels is potentially proarrhythmic in the heart. Of clinical relevance, human ischemic and dilated cardiomyopathy hearts showed increased inclusion of exon 33. However, the possible role that inclusion of exon 33 in CaV1.2 channels may play in the pathogenesis of human heart failure remains unclear.
Collapse
|
5
|
Yang L, Katchman A, Samad T, Morrow J, Weinberg R, Marx SO. β-adrenergic regulation of the L-type Ca2+ channel does not require phosphorylation of α1C Ser1700. Circ Res 2013; 113:871-80. [PMID: 23825359 DOI: 10.1161/circresaha.113.301926] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RATIONALE Sympathetic nervous system triggered activation of protein kinase A, which phosphorylates several targets within cardiomyocytes, augments inotropy, chronotropy, and lusitropy. An important target of β-adrenergic stimulation is the sarcolemmal L-type Ca(2+) channel, CaV1.2, which plays a key role in cardiac excitation-contraction coupling. The molecular mechanisms of β-adrenergic regulation of CaV1.2 in cardiomyocytes, however, are incompletely known. Recently, it has been postulated that proteolytic cleavage at Ala(1800) and protein kinase A phosphorylation of Ser(1700) are required for β-adrenergic modulation of CaV1.2. OBJECTIVE To assess the role of Ala(1800) in the cleavage of α1C and the role of Ser(1700) and Thr(1704) in mediating the adrenergic regulation of CaV1.2 in the heart. METHODS AND RESULTS Using a transgenic approach that enables selective and inducible expression in mice of FLAG-epitope-tagged, dihydropyridine-resistant CaV1.2 channels harboring mutations at key regulatory sites, we show that adrenergic regulation of CaV1.2 current and fractional shortening of cardiomyocytes do not require phosphorylation of either Ser(1700) or Thr(1704) of the α1C subunit. The presence of Ala(1800) and the (1798)NNAN(1801) motif in α1C is not required for proteolytic cleavage of the α1C C-terminus, and deletion of these residues did not perturb adrenergic modulation of CaV1.2 current. CONCLUSIONS These results show that protein kinase A phosphorylation of α1C Ser(1700) does not have a major role in the sympathetic stimulation of Ca(2+) current and contraction in the adult murine heart. Moreover, this new transgenic approach enables functional and reproducible screening of α1C mutants in freshly isolated adult cardiomyocytes in a reliable, timely, cost-effective manner.
Collapse
Affiliation(s)
- Lin Yang
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - Alexander Katchman
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - Tahmina Samad
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - John Morrow
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - Richard Weinberg
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032.,Department of Pharmacology Columbia University, College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
6
|
Link S, Meissner M, Held B, Beck A, Weissgerber P, Freichel M, Flockerzi V. Diversity and developmental expression of L-type calcium channel beta2 proteins and their influence on calcium current in murine heart. J Biol Chem 2009; 284:30129-37. [PMID: 19723630 DOI: 10.1074/jbc.m109.045583] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By now, little is known on L-type calcium channel (LTCC) subunits expressed in mouse heart. We show that CaVbeta2 proteins are the major CaVbeta components of the LTCC in embryonic and adult mouse heart, but that in embryonic heart CaVbeta3 proteins are also detectable. At least two CaVbeta2 variants of approximately 68 and approximately 72 kDa are expressed. To identify the underlying CaVbeta2 variants, cDNA libraries were constructed from poly(A)(+) RNA isolated from hearts of 7-day-old and adult mice. Screening identified 60 independent CaVbeta2 cDNA clones coding for four types of CaVbeta2 proteins only differing in their 5' sequences. CaVbeta2-N1, -N4, and -N5 but not -N3 were identified in isolated cardiomyocytes by RT-PCR and were sufficient to reconstitute the CaVbeta2 protein pattern in vitro. Significant L-type Ca(2+) currents (I(Ca)) were recorded in HEK293 cells after co-expression of CaV1.2 and CaVbeta2. Current kinetics were determined by the type of CaVbeta2 protein, with the approximately 72-kDa CaVbeta2a-N1 shifting the activation of I(Ca) significantly to depolarizing potentials compared with the other CaVbeta2 variants. Inactivation of I(Ca) was accelerated by CaVbeta2a-N1 and -N4, which also lead to slower activation compared with CaVbeta2a-N3 and -N5. In summary, this study reveals the molecular LTCC composition in mouse heart and indicates that expression of various CaVbeta2 proteins may be used to adapt the properties of LTCCs to changing myocardial requirements during development and that CaVbeta2a-N1-induced changes of I(Ca) kinetics might be essential in embryonic heart.
Collapse
Affiliation(s)
- Sabine Link
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Beetz N, Hein L, Meszaros J, Gilsbach R, Barreto F, Meissner M, Hoppe UC, Schwartz A, Herzig S, Matthes J. Transgenic simulation of human heart failure-like L-type Ca2+-channels: implications for fibrosis and heart rate in mice. Cardiovasc Res 2009; 84:396-406. [PMID: 19620129 DOI: 10.1093/cvr/cvp251] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Cardiac L-type Ca(2+)-currents show distinct alterations in chronic heart failure, including increased single-channel activity and blunted adrenergic stimulation, but minor changes of whole-cell currents. Expression of L-type Ca(2+)-channel beta(2)-subunits is enhanced in human failing hearts. In order to determine whether prolonged alteration of Ca(2+)-channel gating by beta(2)-subunits contributes to heart failure pathogenesis, we generated and characterized transgenic mice with cardiac overexpression of a beta(2a)-subunit or the pore Ca(v)1.2 or both, respectively. METHODS AND RESULTS Four weeks induction of cardiac-specific overexpression of rat beta(2a)-subunits shifted steady-state activation and inactivation of whole-cell currents towards more negative potentials, leading to increased Ca(2+)-current density at more negative test potentials. Activity of single Ca(2+)-channels was increased in myocytes isolated from beta(2a)-transgenic mice. Ca(2+)-current stimulation by 8-Br-cAMP and okadaic acid was blunted in beta(2a)-transgenic myocytes. In vivo investigation revealed hypotension and bradycardia upon Ca(v)1.2-transgene expression but not in mice only overexpressing beta(2a). Double-transgenics showed cardiac arrhythmia. Interstitial fibrosis was aggravated by the beta(2a)-transgene compared with Ca(v)1.2-transgene expression alone. Overt cardiac hypertrophy was not observed in any model. CONCLUSION Cardiac overexpression of a Ca(2+)-channel beta(2a)-subunit alone is sufficient to induce Ca(2+)-channel properties characteristic of chronic human heart failure. beta(2a)-overexpression by itself did not induce cardiac hypertrophy or contractile dysfunction, but aggravated the development of arrhythmia and fibrosis in Ca(v)1.2-transgenic mice.
Collapse
Affiliation(s)
- Nadine Beetz
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fuller-Bicer GA, Varadi G, Koch SE, Ishii M, Bodi I, Kadeer N, Muth JN, Mikala G, Petrashevskaya NN, Jordan MA, Zhang SP, Qin N, Flores CM, Isaacsohn I, Varadi M, Mori Y, Jones WK, Schwartz A. Targeted disruption of the voltage-dependent calcium channel alpha2/delta-1-subunit. Am J Physiol Heart Circ Physiol 2009; 297:H117-24. [PMID: 19429829 DOI: 10.1152/ajpheart.00122.2009] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac L-type voltage-dependent Ca(2+) channels are heteromultimeric polypeptide complexes of alpha(1)-, alpha(2)/delta-, and beta-subunits. The alpha(2)/delta-1-subunit possesses a stereoselective, high-affinity binding site for gabapentin, widely used to treat epilepsy and postherpetic neuralgic pain as well as sleep disorders. Mutations in alpha(2)/delta-subunits of voltage-dependent Ca(2+) channels have been associated with different diseases, including epilepsy. Multiple heterologous coexpression systems have been used to study the effects of the deletion of the alpha(2)/delta-1-subunit, but attempts at a conventional knockout animal model have been ineffective. We report the development of a viable conventional knockout mouse using a construct targeting exon 2 of alpha(2)/delta-1. While the deletion of the subunit is not lethal, these animals lack high-affinity gabapentin binding sites and demonstrate a significantly decreased basal myocardial contractility and relaxation and a decreased L-type Ca(2+) current peak current amplitude. This is a novel model for studying the function of the alpha(2)/delta-1-subunit and will be of importance in the development of new pharmacological therapies.
Collapse
Affiliation(s)
- Geraldine A Fuller-Bicer
- Institute of Molecular Pharmacology and Biophysics, Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0828, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hullin R, Matthes J, von Vietinghoff S, Bodi I, Rubio M, D'Souza K, Friedrich Khan I, Rottländer D, Hoppe UC, Mohacsi P, Schmitteckert E, Gilsbach R, Bünemann M, Hein L, Schwartz A, Herzig S. Increased expression of the auxiliary beta(2)-subunit of ventricular L-type Ca(2)+ channels leads to single-channel activity characteristic of heart failure. PLoS One 2007; 2:e292. [PMID: 17356701 PMCID: PMC1808423 DOI: 10.1371/journal.pone.0000292] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 02/19/2007] [Indexed: 11/25/2022] Open
Abstract
Background Increased activity of single ventricular L-type Ca2+-channels (L-VDCC) is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary β-subunits as a possible explanation. Methods and Results By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC β-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac β-subunits: Unlike β1 or β3 isoforms, β2a and β2b induce a high-activity channel behavior typical of failing myocytes. In accordance, β2-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac CaV1.2 also reveal increased single-channel activity and sarcolemmal β2 expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing (“Adaptive Phase”), reveal the opposite phenotype, viz: reduced single-channel activity accompanied by lowered β2 expression. Additional evidence for the cause-effect relationship between β2-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive CaV1.2 and inducible β2 cardiac overexpression. Here in non-failing hearts induction of β2-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure. Conclusions Our study presents evidence of the pathobiochemical relevance of β2-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure.
Collapse
Affiliation(s)
- Roger Hullin
- Department of Cardiology, Swiss Heart Center Bern, University Hospital, Bern, Switzerland
- * To whom correspondence should be addressed. E-mail: (RH); (SH); (AS)
| | - Jan Matthes
- Department of Pharmacology, University of Cologne, Cologne, Germany
| | - Sibylle von Vietinghoff
- Department of Pharmacology, University of Wuerzburg, Wuerzburg, Germany
- Franz Volhard Clinic, Nephrology/Hypertension Section, Medical Faculty of the Charité, Berlin, Germany
| | - Ilona Bodi
- University of Cincinnati College of Medicine, Institute of Molecular Pharmacology and Biophysics, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Marta Rubio
- University of Cincinnati College of Medicine, Institute of Molecular Pharmacology and Biophysics, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Karen D'Souza
- University of Cincinnati College of Medicine, Institute of Molecular Pharmacology and Biophysics, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ismail Friedrich Khan
- Department of Pharmacology, University of Cologne, Cologne, Germany
- Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | | | - Uta C. Hoppe
- Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | - Paul Mohacsi
- Department of Cardiology, Swiss Heart Center Bern, University Hospital, Bern, Switzerland
| | - Eva Schmitteckert
- Department of Pharmacology, University of Wuerzburg, Wuerzburg, Germany
| | - Ralf Gilsbach
- Department of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Moritz Bünemann
- Department of Pharmacology, University of Wuerzburg, Wuerzburg, Germany
| | - Lutz Hein
- Department of Pharmacology, University of Wuerzburg, Wuerzburg, Germany
- Department of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Arnold Schwartz
- University of Cincinnati College of Medicine, Institute of Molecular Pharmacology and Biophysics, University of Cincinnati, Cincinnati, Ohio, United States of America
- * To whom correspondence should be addressed. E-mail: (RH); (SH); (AS)
| | - Stefan Herzig
- Department of Pharmacology, University of Cologne, Cologne, Germany
- Center of Molecular Medicine, University of Cologne, Cologne, Germany
- * To whom correspondence should be addressed. E-mail: (RH); (SH); (AS)
| |
Collapse
|
10
|
Walsh KB, Zhang J, Fuseler JW, Hilliard N, Hockerman GH. Adenoviral-mediated expression of dihydropyridine-insensitive L-type calcium channels in cardiac ventricular myocytes and fibroblasts. Eur J Pharmacol 2007; 565:7-16. [PMID: 17397827 DOI: 10.1016/j.ejphar.2007.02.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Cardiac voltage-gated Ca2+ channels regulate the intracellular Ca2+ concentration and are therefore essential for muscle contraction, second messenger activation, gene expression and electrical signaling. As a first step in accessing the structural versus functional properties of the L-type Ca2+ channel in the heart, we have expressed a dihydropyridine (DHP)-insensitive CaV1.2 channel in rat ventricular myocytes and fibroblasts. Following isolation and culture, cells were infected with adenovirus expressing either LacZ or a mutant CaV1.2 channel (CaV1.2DHPi) containing the double mutation (T1039Y & Q1043M). This mutation renders the channel insensitive to neutral DHP compounds such as nisoldipine. The whole-cell, L-type Ca2+ current (ICa) measured in control myocytes was inhibited in a concentration-dependent manner by nisoldipine with an IC50 of 66 nM and complete block at 250 nM. In contrast, ICa in cells infected with AdCaV1.2DHPi was inhibited by only 35% by 500 nM nisoldipine but completely blocked by 50 microM diltiazem. In order to study CaV1.2DHPi in isolation, myocytes infected with AdCaV1.2DHPi were incubated with nisoldipine. Under this condition the cells expressed a large ICa (12 pA/pF) and displayed Ca2+ transients during field stimulation. Furthermore, addition of 2 microM forskolin and 100 microM 3-isobutyl-1-methylxanthine (IBMX), to stimulate protein kinase A, strongly increased IBa in the AdCaV1.2DHPi-infected cells. A Cd2+-sensitive IBa was also recorded in cardiac fibroblasts infected with AdCaV1.2DHPi. Thus, expression of CaV1.2DHPi will provide an important tool in studies of cardiac myocyte and fibroblast function.
Collapse
Affiliation(s)
- Kenneth B Walsh
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, School of Medicine, Columbia, SC 29208, United States.
| | | | | | | | | |
Collapse
|
11
|
Herzig S, Khan IFY, Gründemann D, Matthes J, Ludwig A, Michels G, Hoppe UC, Chaudhuri D, Schwartz A, Yue DT, Hullin R. Mechanism of Ca(v)1.2 channel modulation by the amino terminus of cardiac beta2-subunits. FASEB J 2007; 21:1527-38. [PMID: 17289923 DOI: 10.1096/fj.06-7377com] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
L-type calcium channels are composed of a pore, alpha1c (Ca(V)1.2), and accessory beta- and alpha2delta-subunits. The beta-subunit core structure was recently resolved at high resolution, providing important information on many functional aspects of channel modulation. In this study we reveal differential novel effects of five beta2-subunits isoforms expressed in human heart (beta(2a-e)) on the single L-type calcium channel current. These splice variants differ only by amino-terminal length and amino acid composition. Single-channel modulation by beta2-subunit isoforms was investigated in HEK293 cells expressing the recombinant L-type ion conducting pore. All beta2-subunits increased open probability, availability, and peak current with a highly consistent rank order (beta2a approximately = beta2b > beta2e approximately = beta2c > beta2d). We show graded modulation of some transition rates within and between deep-closed and inactivated states. The extent of modulation correlates strongly with the length of amino-terminal domains. Two mutant beta2-subunits that imitate the natural span related to length confirm this conclusion. The data show that the length of amino termini is a relevant physiological mechanism for channel closure and inactivation, and that natural alternative splicing exploits this principle for modulation of the gating properties of calcium channels.
Collapse
Affiliation(s)
- Stefan Herzig
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Köln, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A. The L-type calcium channel in the heart: the beat goes on. J Clin Invest 2006; 115:3306-17. [PMID: 16322774 PMCID: PMC1297268 DOI: 10.1172/jci27167] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sydney Ringer would be overwhelmed today by the implications of his simple experiment performed over 120 years ago showing that the heart would not beat in the absence of Ca2+. Fascination with the role of Ca2+ has proliferated into all aspects of our understanding of normal cardiac function and the progression of heart disease, including induction of cardiac hypertrophy, heart failure, and sudden death. This review examines the role of Ca2+ and the L-type voltage-dependent Ca2+ channels in cardiac disease.
Collapse
Affiliation(s)
- Ilona Bodi
- Institute of Molecular Pharmacology and Biophysics, University of Cincinnati College of Medicine, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
13
|
Schröder F, Klein G, Frank T, Bastein M, Indris S, Karck M, Drexler H, Wollert KC. Src family tyrosine kinases inhibit single L-type: Ca2+ channel activity in human atrial myocytes. J Mol Cell Cardiol 2005; 37:735-45. [PMID: 15350846 DOI: 10.1016/j.yjmcc.2004.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 06/01/2004] [Accepted: 06/09/2004] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Tyrosine kinases (TKs) are important regulators of the L-type Ca(2+) channel (LTCC) current in various cell types. However, there are no data addressing the role of TKs in the control of single LTCC activity in human atrial cardiac myocytes, where changes in LTCC gating properties have been described in a number of disease states. METHODS AND RESULTS Single LTCC activity was recorded in isolated human atrial myocytes. The broad-spectrum TK inhibitor genistein and the Src family-selective TK inhibitor PP1 significantly enhanced single LTCC ensemble average current, availability, and open probability; the latter was due to significant increases of mean open time and mode 2 gating. Conversely, the tyrosine phosphatase inhibitor bisperoxo-phenanthroline-vanadate inhibited single LTCC activity, indicating that LTCC gating properties in human atrial myocytes are controlled by TKs and tyrosine phosphatases in a reciprocal fashion. The effects of genistein on single LTCC activity were not affected by stimulation (8Br-cAMP) or inhibition (Rp-8-CPT-cAMPS) of protein kinase A (PKA) or by inhibition of serine/threonine phosphatases types I and IIa (okadaic acid), indicating that TKs inhibit LTCC gating in human atrial myocytes independent of PKA and phosphatases types I and IIa. However, inhibition of protein kinase C (PKC) by staurosporine or bisindolylmaleimide reversed the stimulatory effects of genistein on single LTCC gating properties, indicating that PKC is required for the inhibitory effect of TKs on single LTCC activity. CONCLUSION Src family TKs inhibit single LTCC activity in human atrial myocytes via PKC-dependent, but PKA and phosphatase types I and IIa-independent, molecular pathways.
Collapse
Affiliation(s)
- Frank Schröder
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover 30625, Germany.
| | | | | | | | | | | | | | | |
Collapse
|