1
|
Zhu MY, Raza MU, Zhan Y, Fan Y. Norepinephrine upregulates the expression of tyrosine hydroxylase and protects dopaminegic neurons against 6-hydrodopamine toxicity. Neurochem Int 2019; 131:104549. [PMID: 31539561 DOI: 10.1016/j.neuint.2019.104549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
Abstract
As a classic neurotransmitter in the brain, norepinephrine (NE) also is an important modulator to other neuronal systems. Using primary cultures from rat ventral mesencephalon (VM) and dopaminergic cell line MN9D, the present study examined the neuroprotective effects of NE and its effects on the expression of tyrosine hydroxylase (TH). The results showed that NE protected both VM cultures and MN9D cells against 6-hydroxydopamine-caused apoptosis, with possible involvement of adrenal receptors. In addition, treatment with NE upregulated TH protein levels in dose- and time-dependent manner. Further experiments to investigate the potential mechanisms underlying this NE-induced upregulation of TH demonstrated a marked increase in protein levels of the brain-derived neurotrophic factor (BDNF) and the phosphorylated extracellular signal-regulated protein kinase 1 and 2 (pERK1/2) in VM cultures treated with NE. In MN9D cells, a significantly increase of TH and pERK1/2 protein levels were observed after their transfection with BDNF cDNA or exposure to BDNF peptides. Treatment of VM cultures with K252a, an antagonist of the tropomyosin-related kinase B, blocked the upregulatory effects of NE on TH, BDNF and pERK1/2. Administration of MEK1 & MEK2 inhibitors also reversed NE-induced upregulation of TH and pERK1/2. Moreover, ChIP assay showed that treatment with NE or BDNF increased H4 acetylation in the TH promoter. These results suggest that the neuroprotection and modulation of NE on dopaminergic neurons are mediated via BDNF and MAPK/ERK pathways, as well as through epigenetic histone modification, which may have implications for the improvement of therapeutic strategies for Parkinson's disease.
Collapse
Affiliation(s)
- Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| | - Muhammad U Raza
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Yanqiang Zhan
- Department of Neurology, Remin Hospital of the Wuhan University, Wuhan, China
| | - Yan Fan
- Department of Biochemistry, Nantong University College of Medicine, Nantong, China
| |
Collapse
|
2
|
Zhu MY. Noradrenergic Modulation on Dopaminergic Neurons. Neurotox Res 2018; 34:848-859. [DOI: 10.1007/s12640-018-9889-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
|
3
|
Tavakol S, Musavi SMM, Tavakol B, Hoveizi E, Ai J, Rezayat SM. Noggin Along with a Self-Assembling Peptide Nanofiber Containing Long Motif of Laminin Induces Tyrosine Hydroxylase Gene Expression. Mol Neurobiol 2016; 54:4609-4616. [DOI: 10.1007/s12035-016-0006-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022]
|
4
|
Pratap UP, Patil A, Sharma HR, Hima L, Chockalingam R, Hariharan MM, Shitoot S, Priyanka HP, ThyagaRajan S. Estrogen-induced neuroprotective and anti-inflammatory effects are dependent on the brain areas of middle-aged female rats. Brain Res Bull 2016; 124:238-53. [PMID: 27242078 DOI: 10.1016/j.brainresbull.2016.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Reproductive aging in females is characterized by fluctuations and precipitous decline in estrogen levels, which may lead to reduction in cognitive function and age-associated neurodegenerative disorders. The nature of estrogen-mediated neuronal plasticity is unknown during reproductive aging. We hypothesize that estrogen treatment of early middle-aged ovariectomized rats may exert specific effects in the brain by modulating signaling pathways regulating metabolic enzymes, inflammatory markers, antioxidant status, cholinergic function and survival signals. PURPOSE To investigate the mechanisms of estrogen-induced effects on neuroprotection and neuroinflammation through the involvement of intracellular signaling pathways in brain areas of ovariectomized (OVX) middle-aged (MA) female rats. METHODS Ovariectomized early MA female Sprague-Dawley rats (n=8/group) were implanted with 17β-estradiol (E2) 30-day release pellets (0.6μg and 300μg). At the end of the treatment period, frontal cortex (FC), striatum (STR), medial basal hypothalamus (MBH), and hippocampus (HP) were isolated and examined for the expression of tyrosine hydroxylase (p-TH), nerve growth factor (NGF), p-NF-κB (p50 and p65)and p-ERK, p-CREB, p-Akt, and activities of cholinesterases and antioxidant enzymes, key regulatory enzymes of metabolic pathways, and nitric oxide production. RESULTS E2 enhanced p-TH expression in FC and HP, reduced NGF expression in HP, and suppressed p-NF-κB expression in FC and STR. It also increased the expression of molecular markers (p-ERK, p-CREB and p-Akt), and nitric oxide production in various brain areas, while differentially regulating the activities of metabolic enzymes and cholinesterases. CONCLUSION Estrogen modulates the neural and inflammatory factors, and intracellular markers depending on the brain areas that may influence differential remodeling of neuronal circuitry which can be used to develop therapeutic strategies in cognitive impairment and neurodegenerative disorders in aging.
Collapse
Affiliation(s)
- Uday P Pratap
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Anushree Patil
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Himanshu R Sharma
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Lalgi Hima
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Ramanathan Chockalingam
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Murali M Hariharan
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Sushrut Shitoot
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Hannah P Priyanka
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Srinivasan ThyagaRajan
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
5
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
6
|
Complex molecular regulation of tyrosine hydroxylase. J Neural Transm (Vienna) 2014; 121:1451-81. [PMID: 24866693 DOI: 10.1007/s00702-014-1238-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/04/2014] [Indexed: 12/16/2022]
Abstract
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is strictly controlled by several interrelated regulatory mechanisms. Enzyme synthesis is controlled by epigenetic factors, transcription factors, and mRNA levels. Enzyme activity is regulated by end-product feedback inhibition. Phosphorylation of the enzyme is catalyzed by several protein kinases and dephosphorylation is mediated by two protein phosphatases that establish a sensitive process for regulating enzyme activity on a minute-to-minute basis. Interactions between tyrosine hydroxylase and other proteins introduce additional layers to the already tightly controlled production of catecholamines. Tyrosine hydroxylase degradation by the ubiquitin-proteasome coupled pathway represents yet another mechanism of regulation. Here, we revisit the myriad mechanisms that regulate tyrosine hydroxylase expression and activity and highlight their physiological importance in the control of catecholamine biosynthesis.
Collapse
|
7
|
Lenartowski R, Goc A. Epigenetic, transcriptional and posttranscriptional regulation of the tyrosine hydroxylase gene. Int J Dev Neurosci 2011; 29:873-83. [PMID: 21803145 DOI: 10.1016/j.ijdevneu.2011.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 07/14/2011] [Indexed: 01/12/2023] Open
Abstract
The activity of tyrosine hydroxylase (TH, EC 1.14.16.2) gene and protein determines the catecholamine level, which, in turn, is crucial for the organism homeostasis. The TH gene expression is regulated by near all possible regulatory mechanisms on epigenetic, transcriptional and posttranscriptional levels. Ongoing molecular characteristic of the TH gene reveals some of the cis and trans elements necessary for its proper expression but most of them especially these responsible for tissue specific expression remain still obscure. This review will focus on some aspects of TH regulation including spatial chromatin organization of the TH locus and TH gene, regulatory elements mediating basal, induced and cell-specific activity, transcriptional elongation, alternative TH RNA processing, and the regulation of TH RNA stability in the cell.
Collapse
Affiliation(s)
- Robert Lenartowski
- Nicolaus Copernicus University, Institute of General and Molecular Biology, Department of Genetics, Gagarina 9, 87-100 Toruń, Poland
| | | |
Collapse
|
8
|
He DY, Ron D. Glial cell line-derived neurotrophic factor reverses ethanol-mediated increases in tyrosine hydroxylase immunoreactivity via altering the activity of heat shock protein 90. J Biol Chem 2008; 283:12811-8. [PMID: 18343820 PMCID: PMC2442340 DOI: 10.1074/jbc.m706216200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 02/01/2008] [Indexed: 12/25/2022] Open
Abstract
We previously found that glial cell line-derived neurotrophic factor (GDNF) in the midbrain ventral tegmental area (VTA) negatively regulates alcohol drinking (He, D. Y., McGough, N. N., Ravindranathan, A., Jeanblanc, J., Logrip, M. L., Phamluong, K., Janak, P. H., and Ron, D. (2005) J. Neurosci. 25, 619-628). Several studies suggest a role for GDNF in the regulation of tyrosine hydroxylase (TH) levels in the midbrain (Georgievska, B., Kirik, D., and Bjorklund, A. (2004) J. Neurosci. 24, 6437-6445). Up-regulation of TH levels has been reported as a hallmark of biochemical adaptations to in vivo chronic exposure to drugs of abuse, including ethanol (Ortiz, J., Fitzgerald, L. W., Charlton, M., Lane, S., Trevisan, L., Guitart, X., Shoemaker, W., Duman, R. S., and Nestler, E. J. (1995) Synapse 21, 289-298). We hypothesized that GDNF plays an important role in regulating prolonged ethanol-mediated increases in TH protein levels. Using the SH-SY5Y dopaminergic-like cell line, we found that the increase in TH levels in the presence of ethanol required the activation of the cAMP/PKA pathway and was reversed by GDNF. Ethanol treatment did not alter the mRNA level or protein translation of TH, but enhanced the stability of the protein that was decreased by GDNF. Interestingly, we observed that ethanol treatment resulted in an increase in TH association with the chaperone heat shock protein (HSP90) that was mediated by the cAMP/PKA pathway and inhibited by GDNF. Taken together, these data suggest that prolonged ethanol exposure leads to increased association of TH and HSP90 via the cAMP/PKA pathway, resulting in the stabilization and subsequent accumulation of TH. GDNF reverses this ethanol-mediated adaptation by inhibiting the interaction of TH with HSP90.
Collapse
Affiliation(s)
- Dao-Yao He
- Ernest Gallo Research Center, University of California at San Francisco, Emeryville, California 94608, USA
| | | |
Collapse
|
9
|
Andres R, Herraez-Baranda LA, Thompson J, Wyatt S, Davies AM. Regulation of sympathetic neuron differentiation by endogenous nerve growth factor and neurotrophin-3. Neurosci Lett 2007; 431:241-6. [PMID: 18162309 DOI: 10.1016/j.neulet.2007.11.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/23/2007] [Accepted: 11/28/2007] [Indexed: 11/16/2022]
Abstract
Nerve growth factor (NGF) and neurotrophin-3 (NT3) play distinctive roles in sympathetic axon growth and target field innervation and are required for sympathetic neuron survival in vivo. To ascertain if these neurotrophins selectively regulate the expression of genes that determine the functional characteristics of differentiated sympathetic neurons, we measured the mRNA levels for several such genes in the superior cervical ganglion of NGF(-/-), NT3(-/-) and wild type mouse embryos at a stage before excessive neuronal loss occurs in the absence of these neurotrophins. Despite the extensively documented ability of NGF to regulate the noradrenergic phenotype of sympathetic neurons, we found that tyrosine hydroxylase (TH) and dopamine beta hydroxylase (DbetaH) mRNA levels were normal in NGF(-/-) embryos, but significantly reduced in NT3(-/-) embryos. In contrast, the beta2 nicotinic acetylcholine receptor and PACAP receptor 1 mRNA levels were normal in NT3(-/-) embryos, but significantly reduced in NGF(-/-) embryos. Studies of mice lacking neurotrophin receptors suggested that the effects of NGF on gene expression require TrkA whereas those of NT3 require TrkA and p75(NTR). These findings demonstrate that endogenous NGF and NT3 have distinctive and separate effects on gene expression in early sympathetic neurons and that these selective effects on gene expression require a different combination of neurotrophin receptors.
Collapse
Affiliation(s)
- Rosa Andres
- Life Sciences Building, School of Biosciences, Museum Avenue, Cardiff CF10 3US, Wales, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Uchiyama Y, Cheng CC, Danielson KG, Mochida J, Albert TJ, Shapiro IM, Risbud MV. Expression of acid-sensing ion channel 3 (ASIC3) in nucleus pulposus cells of the intervertebral disc is regulated by p75NTR and ERK signaling. J Bone Miner Res 2007; 22:1996-2006. [PMID: 17696763 DOI: 10.1359/jbmr.070805] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Although a recent study has shown that skeletal tissues express ASICs, their function is unknown. We show that intervertebral disc cells express ASIC3; moreover, expression is uniquely regulated and needed for survival in a low pH and hypoeromsotic medium. These findings suggest that ASIC3 may adapt disc cells to their hydrodynamically stressed microenvironment. INTRODUCTION The nucleus pulposus is an avascular, hydrated tissue that permits the intervertebral disc to resist compressive loads to the spine. Because the tissue is hyperosmotic and avascular, the pH of the nucleus pulposus is low. To determine the mechanisms by which the disc cells accommodate to the low pH and hypertonicity, the expression and regulation of the acid sensing ion channel (ASIC)3 was examined. MATERIALS AND METHODS Expression of ASICs in cells of the intervertebral disc was analyzed. To study its regulation, we cloned the 2.8-kb rat ASIC3 promoter and performed luciferase reporter assays. The effect of pharmacological inhibition of ASICs on disc cell survival was studied by measuring MTT and caspase-3 activities. RESULTS ASIC3 was expressed in discal tissues and cultured disc cells in vitro. Because studies of neuronal cells have shown that ASIC3 expression and promoter activity is induced by nerve growth factor (NGF), we examined the effect of NGF on nucleus pulposus cells. Surprisingly, ASIC3 promoter activity did not increase after NGF treatment. The absence of induction was linked to nonexpression of tropomyosin-related kinase A (TrkA), a high-affinity NGF receptor, although a modest expression of p75NTR was seen. When treated with p75NTR antibody or transfected with dominant negative-p75NTR plasmid, there was significant suppression of ASIC3 basal promoter activity. To further explore the downstream mechanism of control of ASIC3 basal promoter activity, we blocked p75NTR and measured phospho extracellular matrix regulated kinase (pERK) levels. We found that DN-p75NTR suppressed NGF mediated transient ERK activation. Moreover, inhibition of ERK activity by dominant negative-mitogen activated protein kinase kinase (DN-MEK) resulted in a dose-dependent suppression of ASIC3 basal promoter activity, whereas overexpression of constitutively active MEK1 caused an increase in ASIC3 promoter activity. Finally, to gain insight in the functional importance of ASIC3, we suppressed ASIC activity in nucleus pulposus cells. Noteworthy, under both hyperosmotic and acidic conditions, ASIC3 served to promote cell survival and lower the activity of the pro-apoptosis protein, caspase-3. CONCLUSIONS Results of this study indicate that NGF serves to maintain the basal expression of ASIC3 through p75NTR and ERK signaling in discal cells. We suggest that ASIC3 is needed for adaptation of the nucleus pulposus and annulus fibrosus cells to the acidic and hyperosmotic microenvironment of the intervertebral disc.
Collapse
Affiliation(s)
- Yoshiyasu Uchiyama
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Brynczka C, Labhart P, Merrick BA. NGF-mediated transcriptional targets of p53 in PC12 neuronal differentiation. BMC Genomics 2007; 8:139. [PMID: 17540029 PMCID: PMC1894799 DOI: 10.1186/1471-2164-8-139] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 05/31/2007] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND p53 is recognized as a critical regulator of the cell cycle and apoptosis. Mounting evidence also suggests a role for p53 in differentiation of cells including neuronal precursors. We studied the transcriptional role of p53 during nerve growth factor-induced differentiation of the PC12 line into neuron-like cells. We hypothesized that p53 contributed to PC12 differentiation through the regulation of gene targets distinct from its known transcriptional targets for apoptosis or DNA repair. RESULTS Using a genome-wide chromatin immunoprecipitation cloning technique, we identified and validated 14 novel p53-regulated genes following NGF treatment. The data show p53 protein was transcriptionally activated and contributed to NGF-mediated neurite outgrowth during differentiation of PC12 cells. Furthermore, we describe stimulus-specific regulation of a subset of these target genes by p53. The most salient differentiation-relevant target genes included wnt7b involved in dendritic extension and the tfcp2l4/grhl3 grainyhead homolog implicated in ectodermal development. Additional targets included brk, sdk2, sesn3, txnl2, dusp5, pon3, lect1, pkcbpb15 and other genes. CONCLUSION Within the PC12 neuronal context, putative p53-occupied genomic loci spanned the entire Rattus norvegicus genome upon NGF treatment. We conclude that receptor-mediated p53 transcriptional activity is involved in PC12 differentiation and may suggest a contributory role for p53 in neuronal development.
Collapse
Affiliation(s)
- Christopher Brynczka
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Paul Labhart
- Genpathway, Inc., San Diego, California 92121, USA
| | - B Alex Merrick
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
12
|
Nakagawasai O, Yamadera F, Iwasaki K, Asao T, Tan-No K, Niijima F, Arai H, Tadano T. Preventive effect of kami-untan-to on performance in the forced swimming test in thiamine-deficient mice: Relationship to functions of catecholaminergic neurons. Behav Brain Res 2007; 177:315-21. [PMID: 17207867 DOI: 10.1016/j.bbr.2006.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 11/10/2006] [Accepted: 11/13/2006] [Indexed: 11/29/2022]
Abstract
The kampo (Japanese herbal) medicine "kami-untan-to" (KUT) has been used for a long time in the treatment of neuropsychiatric disorders. We have recently reported that mice put on a thiamine-deficient (TD) diet exhibit a depressive behavior and impairment in avoidance learning after 20 days, and that this impairment was reversed by the chronic administration of KUT. In the present study, we investigated the effect of KUT on the depressive behavior observed in TD mice by using the forced swimming test. Our results show that oral administration of KUT from the 1st day of TD feeding prevented the increased duration of immobility in TD mice. Administration of KUT from the 10th day of TD feeding also had a beneficial effect on depressive behavior. To examine the relationship between the potential effects of KUT on monoaminergic neuronal functions and the depressive behavior observed in TD mice, we measured the immunohistochemical distribution of tyrosine hydroxylase (TH) in the brain using microphotometry. The fluorescence intensity of TH decreased in the limbic cortex and brainstem in TD mice compared with pair-fed mice as the control group, while KUT treatment protected against these decreases. These results suggest that KUT treatment may prevent a sign of depressive behavior, the animal immobility time, induced by TD feeding through a mechanism that involves the decrease of TH in some brain areas of TD mice.
Collapse
Affiliation(s)
- Osamu Nakagawasai
- Department of Pharmacology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim SJ, Kim JS, Cho HS, Lee HJ, Kim SY, Kim S, Lee SY, Chun HS. Carnosol, a component of rosemary (Rosmarinus officinalis L.) protects nigral dopaminergic neuronal cells. Neuroreport 2006; 17:1729-33. [PMID: 17047462 DOI: 10.1097/01.wnr.0000239951.14954.10] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carnosol, a major component of Rosmarinus officinalis, is a phenolic diterpene that has potent antioxidant and anti-inflammatory activities. In this study, we investigated the protective effects of carnosol on rotenone-induced neurotoxicity in cultured dopaminergic cells. Results showed that cell viability was significantly improved with carnosol through downregulation of caspase-3. Furthermore, carnosol significantly increased the tyrosine hydroxylase, Nurr1, and extracellular signal-regulated kinase 1/2. These results suggest that carnosol may have potential as a possible compound for the development of new agents to treat Parkinson's disease.
Collapse
Affiliation(s)
- Sung-Jun Kim
- Department of Biotechnology, Research Center for Proteineous Materials, Chosun University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ito T, Suzuki T, Ichinose H. Nerve growth factor-induced expression of the GTP cyclohydrolase I gene via Ras/MEK pathway in PC12D cells. J Neurochem 2005; 95:563-9. [PMID: 16190874 DOI: 10.1111/j.1471-4159.2005.03414.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neurotrophins are essential for the development and survival of the catecholaminergic neurons. GTP cyclohydrolase I (GCH) is the first and rate-limiting enzyme in the biosynthesis of 5,6,7,8-tertahydrobiopterin (BH4), the required cofactor for tyrosine hydroxylase. Previously, we reported that TH requires the Ras/mitogen-activated protein kinase kinase (MEK) pathway for its induction by nerve growth factor (NGF). Here, we examined intracellular signals required for NGF-induced expression of the GCH gene in PC12D cells. The activity of GCH was increased up to 5-fold after the NGF treatment, and the increase was repressed by pretreatment with U0126, an MEK1/2 inhibitor, but not with protein kinase A (PKA), phosphoinositide 3-kinase (PI3K), p38 mitogen-activated protein kinase (MAPK), and c-Jun NH2-terminal kinase (JNK) inhibitors. Induction of GCH mRNA by NGF was also abolished by pretreatment with U0126. The human GCH promoter activity was significantly enhanced by NGF treatment. Deletion analysis showed that the 465-bp 5'-flanking region is responsible for NGF-enhanced promoter activity. These data suggest that the Ras-MEK pathway is required for coordinate expression of the GCH and TH genes induced by neurotrophins.
Collapse
Affiliation(s)
- Takehito Ito
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
15
|
Madziar B, Lopez-Coviella I, Zemelko V, Berse B. Regulation of cholinergic gene expression by nerve growth factor depends on the phosphatidylinositol-3'-kinase pathway. J Neurochem 2005; 92:767-79. [PMID: 15686478 DOI: 10.1111/j.1471-4159.2004.02908.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nerve growth factor (NGF) exerts anti-apoptotic, trophic and differentiating actions on sympathetic neurons and cholinergic cells of the basal forebrain and activates the expression of genes regulating the synthesis and storage of the neurotransmitter acetylcholine (ACh). We have been studying the intracellular signaling pathways involved in this process. Although, in the rat pheochromocytoma cell line PC12, NGF strongly activates the mitogen-activated protein kinase (MAPK) pathway, prolonged inhibition of MAPK kinase (MEK) activity by PD98059 or U0126 did not affect the ability of NGF to up-regulate choline acetyltransferase (ChAT) or to increase intracellular ACh levels. In contrast, the treatment with the phosphatidylinositol 3'-kinase (PI3K) inhibitor LY294002, but not with its inactive analogue LY303511, completely abolished the NGF-induced production of ACh. Inhibition of PI3K also eliminated the NGF effect on the intracellular ACh level in primary cultures of septal neurons from E18 mouse embryos. Blocking the PI3K pathway prevented the activation of cholinergic gene expression, as demonstrated in RT/PCR assays and in transient transfections of PC12 cells with cholinergic locus promoter-luciferase reporter constructs. These results indicate that the PI3K pathway, but not the MEK/MAPK pathway, is the mediator of NGF-induced cholinergic differentiation.
Collapse
Affiliation(s)
- Beata Madziar
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|