1
|
Further comment on articles pertaining to: "Homocysteine as a potential predictor of cardiovascular risk in patients with COVID-19". Med Hypotheses 2021; 155:110676. [PMID: 34555782 PMCID: PMC8418050 DOI: 10.1016/j.mehy.2021.110676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/09/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022]
|
2
|
Balint B, Hergalant S, Camadro JM, Blaise S, Vanalderwiert L, Lignières L, Guéant-Rodriguez RM, Guéant JL. Fetal Programming by Methyl Donor Deficiency Produces Pathological Remodeling of the Ascending Aorta. Arterioscler Thromb Vasc Biol 2021; 41:1928-1941. [PMID: 33827257 DOI: 10.1161/atvbaha.120.315587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Brittany Balint
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux) (B.B., S.H., R.-M.G.-R., J.-L.G.), Université de Lorraine, France
| | - Sébastien Hergalant
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux) (B.B., S.H., R.-M.G.-R., J.-L.G.), Université de Lorraine, France
| | - Jean-Michel Camadro
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Université Paris Diderot, CNRS, Sorbonne Paris Cité, France (J.-M.C., L.L.)
| | | | | | - Laurent Lignières
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Université Paris Diderot, CNRS, Sorbonne Paris Cité, France (J.-M.C., L.L.)
| | - Rosa-Maria Guéant-Rodriguez
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux) (B.B., S.H., R.-M.G.-R., J.-L.G.), Université de Lorraine, France
- Department of Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center (R.-M.G.-R., J.-L.G.), Université de Lorraine, France
| | - Jean-Louis Guéant
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux) (B.B., S.H., R.-M.G.-R., J.-L.G.), Université de Lorraine, France
- Department of Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center (R.-M.G.-R., J.-L.G.), Université de Lorraine, France
| |
Collapse
|
3
|
Cui K, Luan Y, Tang Z, Li CC, Wang T, Wang SG, Chen Z, Liu JH. Human tissue kallikrein-1 protects against the development of erectile dysfunction in a rat model of hyperhomocysteinemia. Asian J Androl 2020; 21:508-515. [PMID: 30618416 PMCID: PMC6732897 DOI: 10.4103/aja.aja_111_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the mechanism by which a diet inducing high hyperhomocysteinemia (HHcy) leads to the deterioration of erectile function in rats and whether this is inhibited by expression of the human tissue kallikrein-1 (hKLK1) gene. We established a rat model of HHcy by feeding methionine (Met)-rich diets to male Sprague-Dawley (SD) rats. Male wild-type SD rats (WTRs) and transgenic rats harboring the hKLK1 gene (TGRs) were fed a normal diet until 10 weeks of age. Then, 30 WTRs were randomly divided into three groups as follows: the control (n = 10) group, the low-dose (4% Met, n = 10) group, and the high-dose (7% Met, n = 10) group. Another 10 age-matched TGRs were fed the high-dose diet and designated as the TGR+7% Met group. After 30 days, in all four groups, erectile function was measured and penile tissues were harvested to determine oxidative stress, endothelial cell content, and penis fibrosis. Compared with the 7% Met group, the TGR+7% Met group showed diminished HHcy-induced erectile dysfunction (ED), indicating the improvement caused by hKLK1. Regarding corpus cavernosum endothelial cells, hKLK1 preserved endothelial cell-cell junctions and endothelial cell content, and activated protein kinase B/endothelial nitric oxide synthase (Akt/eNOS) signaling. Fibrosis assessment indicated that hKLK1 preserved normal penis structure by inhibiting apoptosis in the corpus cavernosum smooth muscle cells. Taken together, these findings showed that oxidative stress, impaired corpus cavernosum endothelial cells, and severe penis fibrosis were involved in the induction of ED by HHcy in rats, whereas hKLK1 preserved erectile function by inhibiting these pathophysiological changes.
Collapse
Affiliation(s)
- Kai Cui
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Luan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuan-Chang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ji-Hong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Deng J, Liu J, Cao L, Wang Q, Zhang H, Liu X, Guo W. The Association between Hyperhomocysteinemia and Thoracoabdominal Aortic Aneurysms in Chinese Population. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4691026. [PMID: 32775423 PMCID: PMC7407013 DOI: 10.1155/2020/4691026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To shed light on the association between hyperhomocysteinemia (HHcy) and thoracoabdominal aortic aneurysms (TAAAs). METHODS From July 2013 to March 2017, we conducted a matched case-control study involving individuals who presented to the Chinese People's Liberation Army General Hospital and underwent thoracoabdominal magnetic resonance angiography or computed tomography angiography. A total of 73 patients with TAAAs were enrolled in the case group, and 219 sex-matched subjects without TAAAs were included in the control group. We then examined the relationship between HHcy and TAAAs by logistic regression models and subgroup as well as interaction analyses. RESULTS Serum total homocysteine (tHcy) concentrations and the proportion of HHcy were significantly higher in the patients with TAAAs than in those without TAAAs (P < 0.001). Furthermore, the multivariate logistic regression models indicated that participants with HHcy had a 2.14-fold higher risk of TAAAs than those with a normal serum tHcy level (adjusted odds ratio (OR), 2.14; 95% confidence interval, 1.00-4.56). Similarly, each 1 μmol/L increase in the serum tHcy concentration was associated with a 4% higher risk of TAAAs (adjusted OR, 1.04; 95% confidence interval, 1.00-1.07). Subgroup analyses indicated that HHcy tended to be associated with a greater risk of TAAAs in all stratified subgroups (adjusted ORs > 1). Furthermore, the interaction analyses revealed no interactive role in the association between HHcy and TAAAs. CONCLUSIONS The present case-control study suggests that HHcy is an independent risk factor for TAAAs. Larger prospective cohort studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Jianqing Deng
- Department of Vascular and Endovascular Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jie Liu
- Department of Vascular and Endovascular Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Long Cao
- Department of Vascular and Endovascular Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of General Surgery, Chinese PLA No.983 Hospital, Tianjin, China
| | - Qun Wang
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hongpeng Zhang
- Department of Vascular and Endovascular Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaoping Liu
- Department of Vascular and Endovascular Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wei Guo
- Department of Vascular and Endovascular Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Plasma and Aorta Biochemistry and MMPs Activities in Female Rabbit Fed Methionine Enriched Diet and Their Offspring. J Nutr Metab 2017; 2017:2785142. [PMID: 28133545 PMCID: PMC5241488 DOI: 10.1155/2017/2785142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/22/2016] [Indexed: 11/24/2022] Open
Abstract
This study investigated whether a high Met diet influences biochemical parameters, MMPs activities in plasma, and biochemical and histological remodeling in aorta, in both pregnant female rabbits and their offspring. Four female rabbit groups are constituted (each n = 8), nonpregnant control (NPC), pregnant control (PC) that received normal commercial chow, nonpregnant Met (NPMet), and pregnant Met (PMet) that received the same diet supplemented with 0,35% L-methionine (w/w) for 3 months (500 mg/d). All pregnant females realize 3 successive pregnancies. Plasma results showed that Met excess increased Hcy, raised CRP in NPMet and decreased it in PMet, enhanced significantly proMMP-2 and proMMP-9 activities in NPMet, and reduced them in PMet. Aorta showed a rise in collagen level, essentially in PMet, a reduction of elastin content in both PMet and NPMet, and a significant decrease in lipid content in PMet, with histological changes that are more pronounced in NPMet than PMet. Met excess enhanced proMMP-9 activities in NPMet while it decreased them in PMet. PMet newborn presented increase in uremia and CRP and significant rise of active MMP-2 and MMP-9 forms. In aorta, media and adventitia thickness increased, total lipids content decreased, proMMP-9 activity decreased, and proMMP-2 activity increased.
Collapse
|
6
|
Zhou F, Chen B, Chen C, Huang J, Chen S, Guo F, Hu Z. Elevated homocysteine levels contribute to larger hematoma volume in patients with intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2015; 24:784-8. [PMID: 25620712 DOI: 10.1016/j.jstrokecerebrovasdis.2014.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND We investigate whether plasma homocysteine (HCY) levels are associated with hematoma volume and outcome in patients with intracerebral hemorrhage (ICH). METHODS A total of 69 patients admitted within 24 hours after ICH onset was divided into 2 groups based on admission plasma HCY levels (low homocysteinemia [LHCY] group, plasma HCY concentrations ≤14.62 μmol/L, versus high homocysteinemia [HHCY] group, >14.62 μmol/L). RESULTS Mean hematoma volumes for 2 groups (LHCY and HHCY) were 13.18 and 23.09 mL (P = .012), respectively, in patients with thalamoganglionic ICH, but hematoma volumes between 2 groups had no significant difference among patients with lobar or infratentorial ICH. On multivariate linear regression analysis, elevated HCY levels significantly correlated with larger hematoma volume in patients with thalamoganglionic ICH (B = .604, P = .004) after adjustment for confounding factors. Poor outcomes (6-month modified Rankin Scale scores ≥3) were not significantly different between 2 groups (low homocysteinemia group, 31.4%, versus high homocysteinemia group, 41.2%, P = .400). CONCLUSIONS Elevated plasma HCY levels were associated with larger hematoma volume only in patients with thalamoganglionic ICH. HCY levels might not be predictors of the 6-month clinical outcome in patients with ICH.
Collapse
Affiliation(s)
- Fangfang Zhou
- Department of Neurology, Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Botao Chen
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Jinjin Huang
- Department of Hemotology, Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Shiyu Chen
- Department of Neurology, Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Fulin Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital of Central South University, Changsha, P.R. China.
| |
Collapse
|
7
|
The potential role of homocysteine mediated DNA methylation and associated epigenetic changes in abdominal aortic aneurysm formation. Atherosclerosis 2013; 228:295-305. [PMID: 23497786 DOI: 10.1016/j.atherosclerosis.2013.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 12/26/2022]
Abstract
Previous studies have suggested that homocysteine (Hcy) has wide-ranging biological effects, including accelerating atherosclerosis, impairing post injury endothelial repair and function, deregulating lipid metabolism and inducing thrombosis. However, the biochemical basis by which hyperhomocysteinemia (HHcy) contributes to cardiovascular diseases (CVDs) remains largely unknown. Several case-control studies have reported an association between HHcy and the presence of abdominal aortic aneurysms (AAA) and there are supportive data from animal models. Genotypic data concerning the association between variants of genes involved in the methionine cycle and AAA are conflicting probably due to problems such as reverse causality and confounding. The multifactorial nature of AAA suggests the involvement of additional epigenetic factors in disease formation. Elevated Hcy levels have been previously linked to altered DNA methylation levels in various diseases. Folate or vitamin B12 based methods of lowering Hcy have had disappointingly limited effects in reducing CVD events. One possible reason for the limited efficacy of such therapy is that they have failed to reverse epigenetic changes induced by HHcy. It is possible that individuals with HHcy have an "Hcy memory effect" due to epigenetic alterations which continue to promote progression of cardiovascular complications even after Hcy levels are lowered. It is possible that deleterious effect of prior, extended exposure to elevated Hcy concentrations have long-lasting effects on target organs and genes, hence underestimating the benefit of Hcy lowering therapies in CVD patients. Therapies targeting the epigenetic machinery as well as lowering circulating Hcy concentrations may have a more efficacious effect in reducing the incidence of cardiovascular complications.
Collapse
|
8
|
Homocysteine and metalloprotease-3 and -9 in patients with ascending aorta aneurysms. Thromb Res 2011; 128:e95-9. [PMID: 21802713 DOI: 10.1016/j.thromres.2011.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/06/2011] [Accepted: 07/07/2011] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Matrix metalloprotease (MMP) activity is increased in ascending and abdominal aortic aneurysms. Elevated plasma homocysteine (Hc) levels have been reported in patients with abdominal aneurysms. However, there are no published reports correlating, Hc and MMP levels in patients with ascending aortic aneurysms (AAAs). MATERIALS AND METHODS This study attempts to determine whether serum or tissue Hc in patients undergoing surgery for AAAs is associated with aneurysm diameter, circulating and tissue levels of MMP-3 and MMP-9 assessed by Enzyme-linked immunosorbent assay (ELISA) and their mRNA tissue expression assessed by real-time PCR. Twenty-seven patients were recruited in the study. RESULTS Forty-three percent of the patients had abnormal Hc serum levels (>35.9 μmol/L). Circulating MMP-3 (6.44±4.20 ng/mL) and MMP-9 levels (134±11.4 ng/mL) were elevated compared to healthy controls (p<0.001). Positive correlations were observed between circulating MMP-9, tissue MMP-3 and MMP-9 concentrations with serum Hc (r=0.773, p=0.011; r=0.461, p=0.014; r=0.526, p=0.024, respectively). MMP-9 mRNA was expressed in 21% of the aneurysms. No MMP-3 mRNA expression was detected in the studied specimens. A negative correlation between tissue Hc and aneurysm diameter was detected. No associations of serum Hc, MMP-3 and MMP-9 levels in both serum and tissue with aneurysm diameter were noted. CONCLUSION Our results suggest that Hc, even in patients with mild hyperhomocysteinaemia, is involved in the pathophysiology of AAA, through the regulation of MMP-3 and MMP-9 activity.
Collapse
|
9
|
Abstract
High blood pressure (BP) and elevated homocysteine are reported as independent risk factors for CVD and stroke in particular. The main genetic determinant of homocysteine concentrations is homozygosity (TT genotype) for the C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene, typically found in approximately 10% of Western populations. The B-vitamins folate, vitamin B12and vitamin B6are the main nutritional determinants of homocysteine, with riboflavin more recently identified as a potent modulator specifically in individuals with the TT genotype. Although observational studies have reported associations between homocysteine and BP, B-vitamin intervention studies have shown little or no BP response despite decreases in homocysteine. Such studies, however, have not considered the MTHFR C677T polymorphism, which has been shown to be associated with BP. It has been shown for the first time that riboflavin is an important determinant of BP specifically in individuals with the TT genotype. Research generally suggests that 24 h ambulatory BP monitoring provides a more accurate measure of BP than casual measurements and its use in future studies may also provide important insights into the relationship between the MTHFR polymorphism and BP. Further research is also required to investigate the association between specific B-vitamins and BP in individuals with different MTHFR genotypes in order to confirm whether any genetic predisposition to hypertension is correctable by B-vitamin intervention. The present review will investigate the evidence linking the MTHFR C677T polymorphism to BP and the potential modulating role of B-vitamins.
Collapse
|
10
|
Homocysteine modulates the proteolytic potential of human arterial smooth muscle cells through a reactive oxygen species dependant mechanism. Mol Cell Biochem 2009; 335:203-10. [PMID: 19787299 DOI: 10.1007/s11010-009-0270-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 09/16/2009] [Indexed: 02/06/2023]
Abstract
Pathological levels of homocysteine induce a dramatic degradation of arterial elastic structures. This severe metalloproteinase-dependant elastolysis affects elastic structures all over the media suggesting that smooth muscle cells (SMC) may participate to this process induced by homocysteine. Therefore, we investigated the effect of physiological (10 microM) and pathological (50, 100, and 500 microM) concentrations of homocysteine on the metalloproteinase-dependant proteolytic potential of human arterial SMC in culture. Pathological levels of homocysteine increased concomitantly the secretion of latent MMP-2 and TIMP-2 while the secretion of other elastolytic matrix metalloproteinases (MMPs) and expression of MT1-MMP were not altered. The increased secretion of latent MMP-2 induced by homocysteine was associated with an increased production of reactive oxygen species (ROS). Moreover, the increased secretion of latent MMP-2 induced by homocysteine was inhibited by antioxidant superoxide dismutase alone or in combination with catalase. These results suggest that SMC could participate, through an oxidative stress dependant secretion of elastolytic MMP-2, to the metalloproteinase-dependant degradation of arterial elastic structures induced by homocysteine.
Collapse
|
11
|
Giusti B, Gori AM, Marcucci R, Sestini I, Saracini C, Sticchi E, Gensini F, Fatini C, Abbate R, Gensini GF. Role of C677T and A1298C MTHFR, A2756G MTR and -786 C/T eNOS gene polymorphisms in atrial fibrillation susceptibility. PLoS One 2007; 2:e495. [PMID: 17551576 PMCID: PMC1876814 DOI: 10.1371/journal.pone.0000495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/09/2007] [Indexed: 11/19/2022] Open
Abstract
Background Hyperhomocysteinemia has been suggested to play a role in the NonValvular Atrial Fibrillation (NVAF) pathogenesis. Polymorphisms in genes coding for homocysteine (Hcy) metabolism enzymes may be associated with hyperhomocysteinemia and NVAF. Methodologies 456 NVAF patients and 912 matched controls were genotyped by an electronic microchip technology for C677T and A1298C MTHFR, A2756G MTR, and -786C/T eNOS gene polymorphisms. Hcy was determined by an immunoassay method. Principal Findings The genotype distribution of the four polymorphisms as well as genotype combinations did not differ in patients and controls. Hcy was higher in patients than in controls (15.2, 95%CI 14.7–15.7 vs 11.3, 95%CI 11.0–11.6 µmol/L; p<0.0001). In both populations, a genotype-phenotype association (p<0.0001) between Hcy and C677T MTHFR polymorphism was observed; in controls a significant (p = 0.029) association between tHcy and −786C/T eNOS polymorphism was also observed. At the multivariate analysis the NVAF risk significantly increased in the upper quartiles of Hcy compared to the lowest: OR from 2.8 (1.68–4.54 95%CI) in Q2 to 12.9 (7.96–21.06 95%CI) in Q4. Conclusions Our data demonstrated the four polymorphisms, although able, at least in part, to affect Hcy, were not associated with an increased risk of NVAF per se or in combination.
Collapse
Affiliation(s)
- Betti Giusti
- Department of Medical and Surgical Critical Care and Center of Research, Transfer and High Education, DENOTHE, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Golubnitschaja O. Cell cycle checkpoints: the role and evaluation for early diagnosis of senescence, cardiovascular, cancer, and neurodegenerative diseases. Amino Acids 2006; 32:359-71. [PMID: 17136506 DOI: 10.1007/s00726-006-0473-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 10/24/2006] [Indexed: 11/28/2022]
Abstract
Maintenance of genomic integrity is critical for prevention of a wide variety of adverse cellular effects including apoptosis, cellular senescence, and malignant cell transformation. Under stress conditions and even during an unperturbed cell cycle, checkpoint proteins play the key role in genome maintenance by and mediating cellular response to DNA damage, and represent an essential part of the "cellular stress response proteome". Intact checkpoint signal transduction cascades check the presence of genome damage, trigger cell cycle arrest, and forward the information to the protein core of cell cycle machinery, replication apparatus, repair, and/or apoptotic protein cores. Genetic checkpoint defects lead to syndromes that demonstrate chromosomal instability, increased sensitivity to genotoxic stress, tissue degeneration, developmental retardation, premature aging, and cancer predisposition that is most extensively studied for the ATM-checkpoint mutated in Ataxia telangiectasia. Tissue specific epigenetic control over the function of cell cycle checkpoints can be, further, misregulated by aberrant DNA methylation status. The consequent checkpoint dysregulation may result in tissue specific degenerative processes such as degeneration and calcification of heart aortic valves, diabetic cardiomyopathy, hyperhomocysteinemic cerebrovascular, peripheral vascular and coronary heart diseases, neurodegenerative disorders (Alzheimer and Parkinson diseases, amyotrophic lateral sclerosis, glaucoma), and accelerated aging frequently accompanied with cancer. This review focuses on the checkpoints shown to be crucial for unperturbed cell cycle regulation, dysregulation of which might be considered as a potential molecular marker for early diagnosis of and therapy efficiency in neurodegenerative, cardiovascular and cancer diseases. An application of the most potent detection technologies such as "Disease Proteomics and Transcriptomics" also considered here, allows a most specific selection of diagnostic markers.
Collapse
Affiliation(s)
- O Golubnitschaja
- Department of Radiology, Friedrich-Wilhelms-University of Bonn, Bonn, Germany.
| |
Collapse
|
13
|
Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y, Brunet P, Dignat-George F. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost 2006; 4:566-73. [PMID: 16405517 DOI: 10.1111/j.1538-7836.2005.01780.x] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Chronic renal failure patients are at high risk of cardiovascular events and display endothelial dysfunction, a critical element in the pathogenesis of atherosclerosis. Upon activation, the endothelium sheds microparticles, considered as markers of endothelial dysfunction that also behave as vectors of bioactive molecules. AIM To measure plasma levels of endothelial microparticles (EMPs) in chronic renal failure patients (CRF), either undialyzed or hemodialyzed (HD), and to investigate the ability of uremic toxins to induce EMP release in vitro. METHODS Circulating EMPs were numerated by flow cytometry, after staining of platelet-free plasma with phycoerythrin (PE)-conjugated anti-CD144 (CD144+ EMP) or anti-CD146 (CD146+ EMP) monoclonal antibodies. Platelet MP (CD41+ PMP), leukocyte MP (CD45+ leukocyte microparticles (LMP)), and annexin-V+ MPs were also counted. In parallel, MPs were counted in supernatant of human umbilical vein endothelial cells incubated with uremic toxins [oxalate, indoxyl sulfate, p-cresol, and homocysteine (Hcy)], at concentrations found in patients. RESULTS AND CONCLUSIONS CD144+ EMP and CD146+ EMP levels were significantly higher in CRF and HD patients than in healthy subjects. Furthermore, annexin-V+ MPs were elevated in both groups of uremic patients, and CD41+ PMP and CD45+ LMP were increased in CRF and HD patients, respectively. In vitro, p-cresol and indoxyl sulfate significantly increased both CD146+ and annexin-V+ EMP release. Increased levels of circulating EMP in CRF and HD patients represent a new marker of endothelial dysfunction in uremia. The ability of p-cresol and indoxyl sulfate to increase EMP release in vitro suggests that specific uremic factors may be involved in EMP elevation in patients.
Collapse
Affiliation(s)
- V Faure
- INSERM U608, UFR de Pharmacie, Université de la Méditerranée, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sharma P, Senthilkumar RD, Brahmachari V, Sundaramoorthy E, Mahajan A, Sharma A, Sengupta S. Mining literature for a comprehensive pathway analysis: a case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids Health Dis 2006; 5:1. [PMID: 16430779 PMCID: PMC1395315 DOI: 10.1186/1476-511x-5-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 01/23/2006] [Indexed: 02/07/2023] Open
Abstract
Homocysteine is an independent risk factor for cardiovascular diseases. It is also known to be associated with a variety of complex disorders. While there are a large number of independent studies implicating homocysteine in isolated pathways, the mechanism of homocysteine induced adverse effects are not clear. Homocysteine-induced modulation of gene expression through alteration of methylation status or by hitherto unknown mechanisms is predicted to lead to several pathological conditions either directly or indirectly. In the present manuscript, using literature mining approach, we have identified the genes that are modulated directly or indirectly by an elevated level of homocysteine. These genes were then placed in appropriate pathways in an attempt to understand the molecular basis of homocysteine induced complex disorders and to provide a resource for selection of genes for polymorphism screening and analysis of mutations as well as epigenetic modifications in relation to hyperhomocysteinemia. We have identified 135 genes in 1137 abstracts that either modulate the levels of homocysteine or are modulated by elevated levels of homocysteine. Mapping the genes to their respective pathways revealed that an elevated level of homocysteine leads to the atherosclerosis either by directly affecting lipid metabolism and transport or via oxidative stress and/or Endoplasmic Reticulum (ER) stress. Elevated levels of homocysteine also decreases the bioavailability of nitric oxide and modulates the levels of other metabolites including S-adenosyl methionine and S-adenosyl homocysteine which may result in cardiovascular or neurological disorders. The ER stress emerges as the common pathway that relates to apoptosis, atherosclerosis and neurological disorders and is modulated by levels of homocysteine. The comprehensive network collated has lead to the identification of genes that are modulated by homocysteine indicating that homocysteine exerts its effect not only through modulating the substrate levels for various catalytic processes but also through regulation of expression of genes involved in complex diseases.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Proteomics and Structural Biology, Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110007, India
| | - RD Senthilkumar
- Department of Proteomics and Structural Biology, Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Vani Brahmachari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Elayanambi Sundaramoorthy
- Department of Proteomics and Structural Biology, Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Anubha Mahajan
- Department of Proteomics and Structural Biology, Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Amitabh Sharma
- Department of Proteomics and Structural Biology, Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Shantanu Sengupta
- Department of Proteomics and Structural Biology, Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| |
Collapse
|
15
|
Dar A, Goichberg P, Shinder V, Kalinkovich A, Kollet O, Netzer N, Margalit R, Zsak M, Nagler A, Hardan I, Resnick I, Rot A, Lapidot T. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol 2005; 6:1038-46. [PMID: 16170318 DOI: 10.1038/ni1251] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 08/23/2005] [Indexed: 12/16/2022]
Abstract
Regulation of the availability of chemokine SDF-1 (CXCL12) in bone marrow is still not fully understood. Here we describe a unique function for the chemokine receptor CXCR4 expressed on bone marrow endothelial cells, which efficiently internalize circulating SDF-1, resulting in its translocation into the bone marrow. Translocated SDF-1 increased the homing of transplanted human CD34(+) hematopoietic progenitors to the bone marrow. The chemokine transporter function of CXCR4 was a characteristic of endothelial and stromal cells but not of hematopoietic cells. Thus, chemokine translocation across the blood-bone marrow barrier allows effective transfer of functional SDF-1 from the periphery to the stem cell niche in the bone marrow during both homeostasis and 'alarm' situations.
Collapse
Affiliation(s)
- Ayelet Dar
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Williams C, Kingwell BA, Burke K, McPherson J, Dart AM. Folic acid supplementation for 3 wk reduces pulse pressure and large artery stiffness independent of MTHFR genotype. Am J Clin Nutr 2005. [DOI: 10.1093/ajcn/82.1.26] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Kevin Burke
- From the Baker Heart Research Institute, Melbourne, Australia
| | - Jane McPherson
- From the Baker Heart Research Institute, Melbourne, Australia
| | - Anthony M Dart
- From the Baker Heart Research Institute, Melbourne, Australia
| |
Collapse
|