1
|
Xiao Y, Liang MR, Liu CC, Wang YN, Zeng Y, Zhou J, Zhu HT, Wang Q, Zou Y, Zeng SY. Overexpression of P16 reversed the MDR1-mediated DDP resistance in the cervical adenocarcinoma by activating the ERK1/2 signaling pathway. Cell Div 2019; 14:6. [PMID: 31312250 PMCID: PMC6612198 DOI: 10.1186/s13008-019-0048-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/18/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND To investigate the role of P16 (INK4a)-extracellular signal related kinase 1/2 (ERK1/2) signaling pathway in cisplatin (DDP) resistance induced by multidrug resistance protein 1 (MDR1), also known as P-glycoprotein (P-gp), in cervical adenocarcinoma. METHODS A human DDP-resistant HeLa cell line (HeLa/DDP) was constructed using the combination of incremental and intermittent administration of DDP. Cell Counting Kit-8 (CCK-8) assay was used to measure the IC50 and resistance index (RI) of cells. The morphological changes and population doubling time were observed under an inverted microscope. Plate cloning formation assay was performed to evaluate the cell proliferation and tumorigenic ability. Cell invasion and migration were determined by transwell assays. Besides, the expression of P16, phosphorylated extracellular signal related kinase 1 and 2 (pERK1/2), total ERK1/2 and MDR1 were measured using western blot analysis. The ERK-specific inhibitor U0126 and agonist TPA was used to explore the role of ERK. RESULTS The DDP-resistant cervical adenocarcinoma HeLa/DDP cell line was successfully established, which showed stronger cell growth, invasion, and migration. In the HeLa/DDP cells, pERK1/2 was downregulated, P-gp was upregulated and P16 was downregulated. Overexpression of P16 led to a significant decrease in the proliferation rate, migration ability, and invasion ability of the HeLa/DDP cells. Furthermore, overexpression of P16 increased and the decreased expression of pERK1/2 and P-gp in the HeLa/DDP cells, respectively. Treatment of HeLa/DDP cells transfected with P16 plasmid with ERK-specific inhibitor U0126 significantly decreased the expression of pERK1/2 and increased the expression of P-gp from 6 h to 48 h. Moreover, after 72 h, the expression of pERK1/2 was up-regulated and the expression of P-gp was inhibited. CONCLUSION Overexpression of P16 could partially reverse the MDR1-mediated DDP resistance in the cervical adenocarcinoma by the enhancement of phosphorylation of ERK signaling pathway, which provided a theoretical basis for the treatment of DDP resistance in cervical adenocarcinoma.
Collapse
Affiliation(s)
- Yun Xiao
- Medical College of Nanchang University, No.461, Bayi Street, Nanchang, 330006 Jiangxi China
- Department of Radiotherapy, Jiangxi Tumor Hospital, No. 519, Beijingdong Street, Nanchang, 330029 Jiangxi China
| | - Mei-rong Liang
- Medical College of Nanchang University, No.461, Bayi Street, Nanchang, 330006 Jiangxi China
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Street, Nanchang, 330006 Jiangxi China
| | - Cheng-cheng Liu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Street, Nanchang, 330006 Jiangxi China
| | - Ya-nan Wang
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Street, Nanchang, 330006 Jiangxi China
| | - Yang Zeng
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Street, Nanchang, 330006 Jiangxi China
| | - Jun Zhou
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Street, Nanchang, 330006 Jiangxi China
| | - Hui-ting Zhu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Street, Nanchang, 330006 Jiangxi China
| | - Qin Wang
- Department of Obstetrics and Gynecology, Duchang Maternal and Child Health Hospital, No. 79, Dongfeng Street, Duchang, 332600 Jiangxi China
| | - Yang Zou
- Center Laboratory, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Street, Nanchang, 330006 Jiangxi China
| | - Si-yuan Zeng
- Medical College of Nanchang University, No.461, Bayi Street, Nanchang, 330006 Jiangxi China
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Street, Nanchang, 330006 Jiangxi China
| |
Collapse
|
2
|
Gentilin E, Minoia M, Bondanelli M, Tagliati F, Degli Uberti EC, Zatelli MC. Growth Hormone differentially modulates chemoresistance in human endometrial adenocarcinoma cell lines. Endocrine 2017; 56:621-632. [PMID: 27585662 DOI: 10.1007/s12020-016-1085-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
Growth Hormone may influence neoplastic development of endometrial epithelium towards endometrial adenocarcinoma, which is one of the most occurring tumors in acromegalic patients. Since chemoresistance often develops in advanced endometrial adenocarcinoma, we investigated whether Growth Hormone might influence the development of chemoresistance to drugs routinely employed in endometrial adenocarcinoma treatment, such as Doxorubicin, Cisplatin, and Paclitaxel. Growth Hormone and Growth Hormone receptor expression was assessed by immunofluorescence in two endometrial adenocarcinoma cell lines, AN3 CA and HEC-1-A cells. Growth Hormone effects were assessed investigating cell viability, caspase3/7 activation, ERK1/2, and protein kinase C delta protein expression. AN3 CA and HEC-1-A cells display Growth Hormone and Growth Hormone receptor. Growth Hormone does not influence cell viability in both cells lines, but significantly reduces caspase 3/7 activation in AN3 CA cells, an effect blocked by a Growth Hormone receptor antagonist. Growth Hormone rescues AN3 CA cells from the inhibitory effects of Doxorubicin and Cisplatin on cell viability, while it has no effect on Paclitaxel. Growth Hormone does not influence the pro-apoptotic effects of Doxorubicin, but is capable of rescuing AN3 CA cells from the pro-apoptotic effects of Cisplatin. On the other hand, Growth Hormone did not influence the effects of Doxorubicin and Paclitaxel on HEC-1A cell viability. The protective action of Growth Hormone towards the effects of Doxorubicin may be mediated by ERK1/2 activation, while the pro-apoptotic effects of Cisplatin may be mediated by protein kinase C delta inhibition. All together our results indicate that Growth Hormone may differentially contribute to endometrial adenocarcinoma chemoresistance. This may provide new insights on novel therapies against endometrial adenocarcinoma chemoresistant aggressive tumors.
Collapse
Affiliation(s)
- Erica Gentilin
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mariella Minoia
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marta Bondanelli
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Federico Tagliati
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Ettore C Degli Uberti
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratorio in rete del Tecnopolo "Tecnologie delle terapie avanzate" (LTTA) of the University of Ferrara, Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy.
- Laboratorio in rete del Tecnopolo "Tecnologie delle terapie avanzate" (LTTA) of the University of Ferrara, Ferrara, Italy.
| |
Collapse
|
3
|
Wang Y, Luo X, Pan H, Huang W, Wang X, Wen H, Shen K, Jin B. Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism. Food Chem Toxicol 2015; 83:251-60. [DOI: 10.1016/j.fct.2015.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 02/05/2023]
|
4
|
Lum MA, Balaburski GM, Murphy ME, Black AR, Black JD. Heat shock proteins regulate activation-induced proteasomal degradation of the mature phosphorylated form of protein kinase C. J Biol Chem 2013; 288:27112-27127. [PMID: 23900841 DOI: 10.1074/jbc.m112.437095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although alterations in stimulus-induced degradation of PKC have been implicated in disease, mechanistic understanding of this process remains limited. Evidence supports the existence of both proteasomal and lysosomal mechanisms of PKC processing. An established pathway involves rate-limiting priming site dephosphorylation of the activated enzyme and proteasomal clearance of the dephosphorylated protein. However, here we show that agonists promote down-regulation of endogenous PKCα with minimal accumulation of a nonphosphorylated species in multiple cell types. Furthermore, proteasome and lysosome inhibitors predominantly protect fully phosphorylated PKCα, pointing to this form as a substrate for degradation. Failure to detect substantive dephosphorylation of activated PKCα was not due to rephosphorylation because inhibition of Hsp70/Hsc70, which is required for re-priming, had only a minor effect on agonist-induced accumulation of nonphosphorylated protein. Thus, PKC degradation can occur in the absence of dephosphorylation. Further analysis revealed novel functions for Hsp70/Hsc70 and Hsp90 in the control of agonist-induced PKCα processing. These chaperones help to maintain phosphorylation of activated PKCα but have opposing effects on degradation of the phosphorylated protein; Hsp90 is protective, whereas Hsp70/Hsc70 activity is required for proteasomal processing of this species. Notably, down-regulation of nonphosphorylated PKCα shows little Hsp70/Hsc70 dependence, arguing that phosphorylated and nonphosphorylated species are differentially targeted for proteasomal degradation. Finally, lysosomal processing of activated PKCα is not regulated by phosphorylation or Hsps. Collectively, these data demonstrate that phosphorylated PKCα is a direct target for agonist-induced proteasomal degradation via an Hsp-regulated mechanism, and highlight the existence of a novel pathway of PKC desensitization in cells.
Collapse
Affiliation(s)
- Michelle A Lum
- From The Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950; Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | | | | - Adrian R Black
- From The Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950; Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Jennifer D Black
- From The Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950; Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263.
| |
Collapse
|
5
|
Basu A, Krishnamurthy S. Cellular responses to Cisplatin-induced DNA damage. J Nucleic Acids 2010; 2010:201367. [PMID: 20811617 PMCID: PMC2929606 DOI: 10.4061/2010/201367] [Citation(s) in RCA: 335] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 06/28/2010] [Indexed: 12/29/2022] Open
Abstract
Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Alakananda Basu
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center and Institute for Cancer Research, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Soumya Krishnamurthy
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center and Institute for Cancer Research, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|
6
|
Shankar E, Basu C, Adkins B, Siede W, Basu A. NSC109268 potentiates cisplatin-induced cell death in a p53-independent manner. J Mol Signal 2010; 5:4. [PMID: 20459745 PMCID: PMC2889948 DOI: 10.1186/1750-2187-5-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 05/10/2010] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Ovarian cancer is the leading cause of death among gynecological cancers. Cisplatin is one of the most effective anticancer drugs used in the treatment of ovarian cancer. Development of resistance to cisplatin limits its therapeutic use. Most of the anticancer drugs, including cisplatin, are believed to kill cancer cells by inducing apoptosis and a defect in apoptotic signaling can contribute to drug resistance. The tumor suppressor protein p53 plays a critical role in DNA damage-induced apoptosis. During a yeast-based drug screening, NSC109268 was identified to enhance cellular sensitivity to cisplatin. The objective of the present study is to determine if p53 is responsible for cisplatin sensitization by NSC109268. RESULTS NSC109268 enhanced sensitivity of ovarian cancer 2008 cells and its cisplatin resistant counterpart 2008/C13* cells which express wild-type p53. The potentiation of cisplatin sensitivity by NSC109268 was greater in 2008/C13* cells compared to 2008 cells. Cisplatin caused a concentration-dependent increase in p53 in 2008 and 2008/C13* cells, and the induction of p53 correlated with cisplatin-induced apoptosis as determined by the cleavage of PARP. NSC109268 alone had no effect on p53 but it enhanced p53 level in response to cisplatin. Knockdown of p53 by siRNA, however, did not attenuate cell death in response to cisplatin or combination of NSC109268 and cisplatin. CONCLUSIONS These results demonstrate that NSC109268 enhances sensitivity of ovarian cancer 2008 cells to cisplatin independent of p53.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Molecular Biology and Immunology, University of North Texas, Health Science Center, Fort Worth, Texas, USA.
| | | | | | | | | |
Collapse
|
7
|
Basu A, Sridharan S, Persaud S. Regulation of protein kinase C delta downregulation by protein kinase C epsilon and mammalian target of rapamycin complex 2. Cell Signal 2009; 21:1680-5. [PMID: 19632318 PMCID: PMC2748237 DOI: 10.1016/j.cellsig.2009.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/13/2009] [Indexed: 11/12/2022]
Abstract
Phosphorylation and dephosphorylation of PKCs can regulate their activity, stability and function. We have previously shown that downregulation of PKC delta by tumor promoting phorbol esters was compromised when HeLa cells acquired resistance to cisplatin (HeLa/CP). In the present study, we have used these cells to understand the mechanism of PKC delta downregulation. A brief treatment of HeLa cells with phorbol 12,13-dibutyrate (PDBu) induced phosphorylation of PKC delta at the activation loop (Thr505), turn motif (Ser643), hydrophobic motif (Ser662) and Tyr-311 sites to a greater extent in HeLa/CP cells compared to HeLa cells. Prolonged treatment with PDBu led to downregulation of PKC delta in HeLa but not in HeLa/CP cells. The PKC inhibitor Gö 6983 inhibited PDBu-induced downregulation of PKC delta, decreased Thr505 phosphorylation and increased PKC delta tyrosine phosphorylation at Tyr-311 site. However, knockdown of c-Abl, c-Src, Fyn and Lyn had little effect on PKC delta downregulation and Tyr311 phosphorylation. Pretreatment with the phosphatidylinositol 3-kinase inhibitor Ly294002 and mTOR inhibitor rapamycin restored the ability of PDBu to downregulate PKC delta in HeLa/CP cells. Knockdown of mTOR and rictor but not raptor facilitated PKC delta downregulation. Depletion of PKC epsilon also enhanced PKC delta downregulation by PDBu. These results suggest that downregulation of PKC delta is regulated by PKC epsilon and mammalian target of rapamycin complex 2 (mTORC2).
Collapse
Affiliation(s)
- Alakananda Basu
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA.
| | | | | |
Collapse
|
8
|
Muscella A, Urso L, Calabriso N, Vetrugno C, Rochira A, Storelli C, Marsigliante S. Anti-apoptotic effects of protein kinase C-delta and c-fos in cisplatin-treated thyroid cells. Br J Pharmacol 2009; 156:751-63. [PMID: 19254279 DOI: 10.1111/j.1476-5381.2008.00049.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE We showed previously that cisplatin inititates a signalling pathway mediated by PKC-delta/extracellular signal-regulated kinase (ERK), important for maintaining viability in PC Cl3 thyroid cells. The studies described herein examined whether c-fos was associated with cisplatin resistance and the signalling link between c-fos and PKC-delta/ERK. EXPERIMENTAL APPROACH Cells were treated with various pharmacological inhibitors of PKCs and ERK, or were depleted of c-fos, PKC-delta, PKC-epsilon and caspase-3 by small interfering RNA (siRNA), then incubated with cisplatin and cytotoxicity assessed. KEY RESULTS Cisplatin provokes the induction of c-fos and the activation of conventional PKC-beta, and novel PKC-delta and -epsilon. The cisplatin-provoked c-fos induction was decreased by Gö6976, a PKC-beta inhibitor; by siRNA for PKC-delta- but not that for PKC-epsilon or by PD98059, a mitogen-activated protein kinase/ERK kinase inhibitor. Expression of c-fos was abolished by GF109203X, an inhibitor of all PKC isoforms, or by PD98059 plus Gö6976 or by PKC-delta-siRNA plus Gö6976. When c-fos expression was blocked by siRNA, cisplatin cytotoxicity was strongly enhanced with increased caspase-3 activation. In PKC-delta-depleted cells treated with cisplatin, caspase-3 activation was increased and cell viability decreased. In these PKC-delta-depleted cells, PD98059 did not affect caspase-3 activation. CONCLUSIONS AND IMPLICATIONS In PC Cl3 cells, in the cell signalling pathways that lead to cisplatin resistance, PKC-delta controls ERK activity and, together with PKC-beta, also the induction of c-fos. Hence, the protective role of c-fos in thyroid cells has the potential to provide new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Komatsu M, Hiyama K, Tanimoto K, Yunokawa M, Otani K, Ohtaki M, Hiyama E, Kigawa J, Ohwada M, Suzuki M, Nagai N, Kudo Y, Nishiyama M. Prediction of individual response to platinum/paclitaxel combination using novel marker genes in ovarian cancers. Mol Cancer Ther 2006; 5:767-75. [PMID: 16546992 DOI: 10.1158/1535-7163.mct-05-0408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We attempted to identify potent marker genes using a new statistical analysis and developed a prediction system for individual response to platinum/paclitaxel combination chemotherapy in ovarian cancer patients based on the hypothesis that expression analysis of a set of the key drug sensitivity genes for platinum and paclitaxel could allow us to predict therapeutic response to the combination. From 10 human ovarian cancer cell lines, genes correlative in the expression levels with cytotoxicities of cisplatin (CDDP) and paclitaxel were chosen. We first selected five reliable prediction markers for the two drugs from 22 genes already known as sensitivity determinants and then identified another 8 novel genes through a two-dimensional mixed normal model using oligomicroarray expression data. Using expression data of genes quantified by real-time reverse transcription-PCR, we fixed the best linear model, which converted the quantified expression data into an IC(50) of each drug. Multiple regression analysis of the selected genes yielded three prediction formulae for in vitro activity of CDDP and paclitaxel. In the same way, using the same genes selected in vitro, we then attempted to develop prediction formulae for progression-free survival to the platinum/paclitaxel combination. We therefore constructed possible formulae using different sets of 13 selected marker genes (5 known and 8 novel genes): Utility confirmation analyses using another nine test samples seemed to show that the formulae using a set of 8 novel marker genes alone could accurately predict progression-free survival (r = 0.683; P = 0.042).
Collapse
Affiliation(s)
- Masaaki Komatsu
- Department of Translational Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Righetti SC, Perego P, Carenini N, Corna E, Dal Bo L, Cedrola S, La Porta CAM, Zunino F. Molecular alterations of cells resistant to platinum drugs: role of PKCalpha. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:93-100. [PMID: 16473140 DOI: 10.1016/j.bbamcr.2005.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 11/25/2005] [Accepted: 12/12/2005] [Indexed: 11/19/2022]
Abstract
Development of resistance to platinum compounds may involve not only overexpression of defence mechanisms but also alterations in cellular response to the drug-induced genotoxic stress. To investigate the cellular bases of response to platinum compounds, we examined the profile of gene expression of ovarian carcinoma cells exhibiting sensitivity (A2780) or resistance (A2780/BBR3464) to platinum compounds. Using display PCR, we found that acquisition of resistance to the multinuclear platinum complex BBR3464 was associated with modulation of several transcripts, including up-regulation of the major substrate of protein kinase C (PKC), the myristoylated alanine-rich C kinase substrate (MARCKS). This feature was associated with PKCalpha down-regulation. To explore the role of PKCalpha in cellular sensitivity to platinum compounds, resistant cells were transfected with a PKCalpha-containing vector. PKCalpha-overexpressing resistant cells exhibited a decrease in sensitivity to cisplatin, whereas no significant change in sensitivity to BBR3464 was observed. A number of approaches designed to modulate the function or expression of PKCalpha support that the isoenzyme may play a role in determining resistance only to cisplatin but not to BBR3464, which is known to activate a different pathway of cell response. In conclusion, in spite of PKCalpha down-regulation in our model, its regulatory function was not apparently implicated in the development of resistance to platinum compounds and the present results do not support a general role of PKCalpha as a determinant of the resistance status.
Collapse
Affiliation(s)
- Sabina C Righetti
- Istituto Nazionale per lo Studio e la Cura dei Tumori, via Venezian 1, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mohanty S, Huang J, Basu A. Enhancement of cisplatin sensitivity of cisplatin-resistant human cervical carcinoma cells by bryostatin 1. Clin Cancer Res 2005; 11:6730-7. [PMID: 16166454 DOI: 10.1158/1078-0432.ccr-05-0450] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Bryostatin 1, a unique protein kinase C (PKC) activator, is already in the clinical trials. An understanding of complex regulation of PKC by bryostatin 1 is essential for effective use of bryostatin 1 in the clinic. We have previously shown that the ability of bryostatin 1 to enhance cisplatin sensitivity correlated with its ability to down-regulate PKCdelta in HeLa cells. We have investigated how bryostatin 1 influences PKCdelta regulation in cisplatin-resistant HeLa (HeLa/CP) cells, and if bryostatin 1 could be used to reverse cisplatin resistance. EXPERIMENTAL DESIGN Phorbol 12,13-dibutyrate (PDBu), bryostatin 1, and small interfering RNA were used to manipulate PKC level/activation status. Cell death was monitored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Annexin V dye-binding assay, and analysis of hypodiploid peak in a flow cytometer. RESULTS Bryostatin 1 elicited a biphasic concentration response on PKCdelta down-regulation and cisplatin-induced cell death in HeLa/CP cells; the maximum effect was achieved with 1 nmol/L bryostatin 1. Down-regulation of PKCalpha increased with increasing concentrations of bryostatin 1. PDBu induced down-regulation of PKCalpha in HeLa and HeLa/CP cells but it had little effect on PKCdelta down-regulation in HeLa/CP cells. However, both PDBu and bryostatin 1 enhanced the sensitivity of HeLa/CP cells to cisplatin. Knockdown of PKCdelta by small interfering RNA inhibited cisplatin-induced apoptosis but knockdown of PKCalpha enhanced cisplatin-induced cell death. CONCLUSIONS These results suggest that although PKCdelta acts as a proapoptotic protein, full-length PKCdelta may inhibit cisplatin-induced cell death. Thus, persistent activation/down-regulation of PKCdelta by bryostatin 1 was associated with cisplatin sensitization. Furthermore, PKCalpha acts as an antiapoptotic protein and down-regulation of PKCalpha by PDBu was associated with cellular sensitization to cisplatin.
Collapse
Affiliation(s)
- Sanghamitra Mohanty
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | |
Collapse
|
12
|
Iioka Y, Mishima K, Azuma N, Tsuchida A, Takagi Y, Aoki T, Saito I. Overexpression of protein kinase Cdelta enhances cisplatin-induced cytotoxicity correlated with p53 in gastric cancer cell line. Pathobiology 2005; 72:152-9. [PMID: 15860933 DOI: 10.1159/000084119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 09/15/2004] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE An important issue in cancer therapy is to investigate the mechanism for cellular sensitivity to anticancer agents such as cisplatin. Cisplatin is one of the DNA-damaging agents and several factors including p53 are related to the sensitivity to cisplatin in cancer. Protein kinase C (PKC) delta is known as a positive regulator for cisplatin-induced cell death. In our present study, we examined whether overexpression of PKCdelta and p53 increases the sensitivity of the human gastric cancer cell line, MKN28, which has a mutation of p53 gene, to cisplatin. METHODS Cell viability and DNA content were measured in MKN28 with adenovirus-mediated expression of PKCdelta and p53 after exposure to cisplatin. In addition, the active form of caspase-3 was detected by Western blotting. RESULTS Overexpression of exogenous PKCdelta did not induce cell death in MKN28 but inhibited cell growth at 1 microg/ml cisplatin as compared to that by cisplatin alone. Moreover, overexpression of both wild-type p53 and exogenous PKCdelta in MKN28 increased cisplatin-induced cell death in MKN28. CONCLUSION These results suggest that PKCdelta, in cooperation with p53, possibly regulates cisplatin-induced caspase-3-mediated cell death in gastric cancer.
Collapse
Affiliation(s)
- Yoshihiko Iioka
- Third Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|