1
|
Nakamura T, Ohyama C, Sakamoto M, Toma T, Tateishi H, Matsuo M, Chirifu M, Ikemizu S, Morioka H, Fujita M, Inoue JI, Yamagata Y. TIFAB regulates the TIFA-TRAF6 signaling pathway involved in innate immunity by forming a heterodimer complex with TIFA. Proc Natl Acad Sci U S A 2024; 121:e2318794121. [PMID: 38442163 PMCID: PMC10945758 DOI: 10.1073/pnas.2318794121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Nuclear factor κB (NF-κB) is activated by various inflammatory and infectious molecules and is involved in immune responses. It has been elucidated that ADP-β-D-manno-heptose (ADP-Hep), a metabolite in gram-negative bacteria, activates NF-κB through alpha-kinase 1 (ALPK1)-TIFA-TRAF6 signaling. ADP-Hep stimulates the kinase activity of ALPK1 for TIFA phosphorylation. Complex formation between phosphorylation-dependent TIFA oligomer and TRAF6 promotes the polyubiquitination of TRAF6 for NF-κB activation. TIFAB, a TIFA homolog lacking a phosphorylation site and a TRAF6 binding motif, is a negative regulator of TIFA-TRAF6 signaling and is implicated in myeloid diseases. TIFAB is indicated to regulate TIFA-TRAF6 signaling through interactions with TIFA and TRAF6; however, little is known about its biological function. We demonstrated that TIFAB forms a complex not with the TIFA dimer, an intrinsic form of TIFA involved in NF-κB activation, but with monomeric TIFA. The structural analysis of the TIFA/TIFAB complex and the biochemical and cell-based analyses showed that TIFAB forms a stable heterodimer with TIFA, inhibits TIFA dimer formation, and suppresses TIFA-TRAF6 signaling. The resultant TIFA/TIFAB complex is a "pseudo-TIFA dimer" lacking the phosphorylation site and TRAF6 binding motif in TIFAB and cannot form the orderly structure as proposed for the phosphorylated TIFA oligomer involved in NF-κB activation. This study elucidated the molecular and structural basis for the regulation of TIFA-TRAF6 signaling by TIFAB.
Collapse
Affiliation(s)
- Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Chiaki Ohyama
- School of Pharmacy, Kumamoto University, Kumamoto862-0973, Japan
| | - Madoka Sakamoto
- School of Pharmacy, Kumamoto University, Kumamoto862-0973, Japan
| | - Tsugumasa Toma
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Hiroshi Tateishi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Mihoko Matsuo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Mami Chirifu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Shinji Ikemizu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Hiroshi Morioka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Mikako Fujita
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Jun-ichiro Inoue
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), 4-6-1 Shirokanedai, Minato-ku, Tokyo108-0071, Japan
| | - Yuriko Yamagata
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
- Shokei University and Shokei University Junior College, Kumamoto862-8678, Japan
| |
Collapse
|
2
|
Ma J, Na S, Wang P, Li J, He S, Liu F. miR-626 Inhibition Enhanced the Radiosensitivity to Oral Squamous Cell Carcinoma via the Downregulation of Nuclear Factor Kappa-B Signaling. Cancer Biother Radiopharm 2024; 39:144-152. [PMID: 35549438 DOI: 10.1089/cbr.2021.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: The effect of miR-626 on the radiosensitivity to oral squamous cell carcinoma (OSCC) was evaluated in this study. Materials and Methods: The level of miR-626 in OSCC patients was determined by analyzing the data of miRNA microarray GSE113956. miR-626 was overexpressed by miR-626 mimics and knockdown were performed by miR-626 inhibitor. The level of miR-626 was detected by quantitative real-time polymerase chain reaction. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assays were used to detect the effect of miR-626 on the growth of OSCC cells. Flow cytometry was used to detect the apoptosis of OSCC cells. Western blot and dual luciferase reporter assays were used to explore the underlying mechanism of miR-626 regulating the radiosensitivity to OSCC. The effect of miR-626 on the radiosensitivity to OSCC were examined in an in vivo xenograft model. Results: The serum miR-626 level of OSCC patients was significantly higher than that of healthy controls. miR-626 mimics significantly promoted the OSCC cell growth, but the miR-626 inhibitor significantly suppressed the OSCC cell growth. Radiation combined with the miR-626 inhibitor significantly suppressed the cell proliferation and promoted the apoptosis of SCC-4 and HSC4 cells. Moreover, miR-626 regulates the nuclear factor kappa-B (NF-κB) signaling mediated by TRAF-interacting protein with forkhead-associated domain B. Furthermore, inhibition of miR-626 enhances the radiosensitivity to OSCC in nude mice. Conclusions: miR-626 inhibition enhanced the radiosensitivity to OSCC through the downregulation of NF-κB signaling.
Collapse
Affiliation(s)
- Jing Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medical Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P.R. China
- Department of Endodontics and Affiliated Stomatology Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Sijia Na
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medical Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P.R. China
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Panxi Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medical Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jinyi Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medical Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Shuyang He
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medical Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P.R. China
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
3
|
Furuyama W, Shifflett K, Pinski AN, Griffin AJ, Feldmann F, Okumura A, Gourdine T, Jankeel A, Lovaglio J, Hanley PW, Thomas T, Clancy CS, Messaoudi I, O’Donnell KL, Marzi A. Rapid Protection from COVID-19 in Nonhuman Primates Vaccinated Intramuscularly but Not Intranasally with a Single Dose of a Vesicular Stomatitis Virus-Based Vaccine. mBio 2022; 13:e0337921. [PMID: 35012339 PMCID: PMC8749411 DOI: 10.1128/mbio.03379-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
The ongoing pandemic of coronavirus (CoV) disease 2019 (COVID-19) continues to exert a significant burden on health care systems worldwide. With limited treatments available, vaccination remains an effective strategy to counter transmission of severe acute respiratory syndrome CoV 2 (SARS-CoV-2). Recent discussions concerning vaccination strategies have focused on identifying vaccine platforms, number of doses, route of administration, and time to reach peak immunity against SARS-CoV-2. Here, we generated a single-dose, fast-acting vesicular stomatitis virus (VSV)-based vaccine derived from the licensed Ebola virus (EBOV) vaccine rVSV-ZEBOV, expressing the SARS-CoV-2 spike protein and the EBOV glycoprotein (VSV-SARS2-EBOV). Rhesus macaques vaccinated intramuscularly (i.m.) with a single dose of VSV-SARS2-EBOV were protected within 10 days and did not show signs of COVID-19 pneumonia. In contrast, intranasal (i.n.) vaccination resulted in limited immunogenicity and enhanced COVID-19 pneumonia compared to results for control animals. While both i.m. and i.n. vaccination induced neutralizing antibody titers, only i.m. vaccination resulted in a significant cellular immune response. RNA sequencing data bolstered these results by revealing robust activation of the innate and adaptive immune transcriptional signatures in the lungs of i.m. vaccinated animals only. Overall, the data demonstrate that VSV-SARS2-EBOV is a potent single-dose COVID-19 vaccine candidate that offers rapid protection based on the protective efficacy observed in our study. IMPORTANCE The vesicular stomatitis virus (VSV) vaccine platform rose to fame in 2019, when a VSV-based Ebola virus (EBOV) vaccine was approved by the European Medicines Agency and the U.S. Food and Drug Administration for human use against the deadly disease. Here, we demonstrate the protective efficacy of a VSV-EBOV-based COVID-19 vaccine against challenge in nonhuman primates (NHPs). When a single dose of the VSV-SARS2-EBOV vaccine was administered intramuscularly (i.m.), the NHPs were protected from COVID-19 within 10 days. In contrast, if the vaccine was administered intranasally, there was no benefit from the vaccine and the NHPs developed pneumonia. The i.m. vaccinated NHPs quickly developed antigen-specific IgG, including neutralizing antibodies. Transcriptional analysis highlighted the development of protective innate and adaptive immune responses in the i.m. vaccination group only.
Collapse
Affiliation(s)
- Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kyle Shifflett
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Amanda N. Pinski
- Department of Molecular Biology and Biochemistry, University of California—Irvine, Irvine, California, USA
| | - Amanda J. Griffin
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Tylisha Gourdine
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, University of California—Irvine, Irvine, California, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Chad S. Clancy
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California—Irvine, Irvine, California, USA
| | - Kyle L. O’Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
4
|
So J, Tai AK, Lichtenstein AH, Wu D, Lamon-Fava S. Sexual dimorphism of monocyte transcriptome in individuals with chronic low-grade inflammation. Biol Sex Differ 2021; 12:43. [PMID: 34321081 PMCID: PMC8320037 DOI: 10.1186/s13293-021-00387-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/15/2021] [Indexed: 01/29/2023] Open
Abstract
Sexual dimorphism in the immune system is evidenced by a higher prevalence of autoimmune diseases in women and higher susceptibility to infectious diseases in men. However, the molecular basis of these sex-based differences is not fully understood. We have characterized the transcriptome profiles of peripheral blood monocytes from males and postmenopausal females with chronic low-grade inflammation. We identified 41 sexually differentially expressed genes [adjusted p value (FDR) < 0.1], including genes involved in immune cell activation (e.g., CEACAM1, FCGR2B, and SLAMF7) and antigen presentation (e.g., AIM2, CD1E, and UBA1) with a higher expression in females than males. Moreover, signaling pathways of immune or inflammatory responses, including interferon (IFN) signaling [z-score = 2.45, -log(p) = 3.88], were found to be more upregulated in female versus male monocytes, based on a set of genes exhibiting sex-biased expression (p < 0.03). The contribution of IFN signaling to the sexual transcriptional differences was further confirmed by direct comparisons of the monocyte sex-biased genes with IFN signature genes (ISGs) that were previously curated in mouse macrophages. ISGs showed a greater overlap with female-biased genes than male-biased genes and a higher overall expression in female than male monocytes, particularly for the genes of antiviral and inflammatory responses to IFN. Given the role of IFN in immune defense and autoimmunity, our results suggest that sexual dimorphism in immune functions may be associated with more priming of innate immune pathways in female than male monocytes. These findings highlight the role of sex on the human immune transcriptome.
Collapse
Affiliation(s)
- Jisun So
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Albert K Tai
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
5
|
TIFAB Regulates USP15-Mediated p53 Signaling during Stressed and Malignant Hematopoiesis. Cell Rep 2021; 30:2776-2790.e6. [PMID: 32101751 PMCID: PMC7384867 DOI: 10.1016/j.celrep.2020.01.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
TRAF-interacting protein with a forkhead-associated domain B (TIFAB) is implicated in myeloid malignancies with deletion of chromosome 5q. Employing a combination of proteomic and genetic approaches, we find that TIFAB regulates ubiquitin-specific peptidase 15 (USP15) ubiquitin hydrolase activity. Expression of TIFAB in hematopoietic stem/progenitor cells (HSPCs) permits USP15 signaling to substrates, including MDM2 and KEAP1, and mitigates p53 expression. Consequently, TIFAB-deficient HSPCs exhibit compromised USP15 signaling and are sensitized to hematopoietic stress by derepression of p53. In MLL-AF9 leukemia, deletion of TIFAB increases p53 signaling and correspondingly decreases leukemic cell function and development of leukemia. Restoring USP15 expression partially rescues the function of TIFAB-deficient MLL-AF9 cells. Conversely, elevated TIFAB represses p53, increases leukemic progenitor function, and correlates with MLL gene expression programs in leukemia patients. Our studies uncover a function of TIFAB as an effector of USP15 activity and rheostat of p53 signaling in stressed and malignant HSPCs. Niederkorn et al. identify TIFAB as a critical node in hematopoietic cells under stressed and oncogenic cell states. Their studies indicate that deregulation of the TIFAB-USP15 complex, as observed in del(5q) myelodysplasia or MLL-rearranged leukemia, modulates p53 activity and has critical functional consequences for stressed and malignant hematopoietic cells.
Collapse
|
6
|
Jiang Y, Li X, Xu H, Gu Y, Shi F, Wang F, Zhang X. Tumour necrosis factor receptor-associated factors: interacting protein with forkhead-associated domain inhibition decreases inflammatory cell infiltration and cardiac remodelling after acute myocardial infarction. Interact Cardiovasc Thorac Surg 2021; 31:85-92. [PMID: 32380527 DOI: 10.1093/icvts/ivaa060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality worldwide. Post-AMI cardiac remodelling is closely related to the prognosis of AMI. The excess inflammatory responses could promote cardiac remodelling. Tumour necrosis factor receptor-associated factor-interacting protein with forkhead-associated domain (TIFA) has been identified as a nuclear factor (NF)-κB activator, which plays a key role in the activation of the NF-κB signalling pathway. The goal of this research was to investigate the expression and the underlying mechanism of TIFA in an AMI mouse model. METHODS The AMI mouse model was induced by ligation of the left coronary artery. TIFA and NF-κB knockdown were established by lentivirus transduction. The expression levels of associated proteins were analysed by a western blot or an enzyme-linked immunosorbent assay. Histological characteristics were evaluated by haematoxylin-eosin staining. RESULTS The TIFA level was elevated in our AMI mouse model. The production of interleukin-1β and tumour necrosis factor-α increased markedly in the mice with AMI. TIFA knockdown inhibited the infiltration of inflammatory cells, production of pro-inflammatory mediators (interleukin-1β and tumour necrosis factor-α), NF-κB activation and cardiac remodelling (matrix metallopeptidase 9) post-AMI. In addition, NF-κB knockdown could also alleviate cardiac remodelling after AMI. CONCLUSIONS The preceding results indicated that TIFA inhibition could ameliorate cardiac remodelling after AMI partly through inactivation of NF-κB. This study provides insights into further research of cardiac remodelling and AMI from bench to clinic.
Collapse
Affiliation(s)
- Yicheng Jiang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xue Li
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hai Xu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yang Gu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Feiya Shi
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Xiwen Zhang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
7
|
Furuyama W, Shifflett K, Pinski AN, Griffin AJ, Feldmann F, Okumura A, Gourdine T, Jankeel A, Lovaglio J, Hanley PW, Thomas T, Clancy CS, Messaoudi I, O’Donnell KL, Marzi A. Rapid protection from COVID-19 in nonhuman primates vaccinated intramuscularly but not intranasally with a single dose of a recombinant vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.19.426885. [PMID: 33501447 PMCID: PMC7836117 DOI: 10.1101/2021.01.19.426885] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ongoing pandemic of Coronavirus disease 2019 (COVID-19) continues to exert a significant burden on health care systems worldwide. With limited treatments available, vaccination remains an effective strategy to counter transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent discussions concerning vaccination strategies have focused on identifying vaccine platforms, number of doses, route of administration, and time to reach peak immunity against SARS-CoV-2. Here, we generated a single dose, fast-acting vesicular stomatitis virus-based vaccine derived from the licensed Ebola virus (EBOV) vaccine rVSV-ZEBOV, expressing the SARS-CoV-2 spike protein and the EBOV glycoprotein (VSV-SARS2-EBOV). Rhesus macaques vaccinated intramuscularly (IM) with a single dose of VSV-SARS2-EBOV were protected within 10 days and did not show signs of COVID-19 pneumonia. In contrast, intranasal (IN) vaccination resulted in limited immunogenicity and enhanced COVID-19 pneumonia compared to control animals. While IM and IN vaccination both induced neutralizing antibody titers, only IM vaccination resulted in a significant cellular immune response. RNA sequencing data bolstered these results by revealing robust activation of the innate and adaptive immune transcriptional signatures in the lungs of IM-vaccinated animals only. Overall, the data demonstrates that VSV-SARS2-EBOV is a potent single-dose COVID-19 vaccine candidate that offers rapid protection based on the protective efficacy observed in our study. ONE SENTENCE SUMMARY VSV vaccine protects NHPs from COVID-19 in 10 days.
Collapse
Affiliation(s)
- Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kyle Shifflett
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Amanda N. Pinski
- Department of Molecular Biology and Biochemistry, University of California - Irvine, Irvine, CA 92697, USA
| | - Amanda J. Griffin
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Tylisha Gourdine
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, University of California - Irvine, Irvine, CA 92697, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Tina Thomas
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Chad S. Clancy
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California - Irvine, Irvine, CA 92697, USA
| | - Kyle L. O’Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
8
|
García-Weber D, Arrieumerlou C. ADP-heptose: a bacterial PAMP detected by the host sensor ALPK1. Cell Mol Life Sci 2021; 78:17-29. [PMID: 32591860 PMCID: PMC11072087 DOI: 10.1007/s00018-020-03577-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/16/2023]
Abstract
The innate immune response constitutes the first line of defense against pathogens. It involves the recognition of pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), the production of inflammatory cytokines and the recruitment of immune cells to infection sites. Recently, ADP-heptose, a soluble intermediate of the lipopolysaccharide biosynthetic pathway in Gram-negative bacteria, has been identified by several research groups as a PAMP. Here, we recapitulate the evidence that led to this identification and discuss the controversy over the immunogenic properties of heptose 1,7-bisphosphate (HBP), another bacterial heptose previously defined as an activator of innate immunity. Then, we describe the mechanism of ADP-heptose sensing by alpha-protein kinase 1 (ALPK1) and its downstream signaling pathway that involves the proteins TIFA and TRAF6 and induces the activation of NF-κB and the secretion of inflammatory cytokines. Finally, we discuss possible delivery mechanisms of ADP-heptose in cells during infection, and propose new lines of thinking to further explore the roles of the ADP-heptose/ALPK1/TIFA axis in infections and its potential implication in the control of intestinal homeostasis.
Collapse
Affiliation(s)
- Diego García-Weber
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France
| | - Cécile Arrieumerlou
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France.
| |
Collapse
|
9
|
Schubert KA, Xu Y, Shao F, Auerbuch V. The Yersinia Type III Secretion System as a Tool for Studying Cytosolic Innate Immune Surveillance. Annu Rev Microbiol 2020; 74:221-245. [PMID: 32660389 DOI: 10.1146/annurev-micro-020518-120221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial pathogens have evolved complex mechanisms to interface with host cells in order to evade host defenses and replicate. However, mammalian innate immune receptors detect the presence of molecules unique to the microbial world or sense the activity of virulence factors, activating antimicrobial and inflammatory pathways. We focus on how studies of the major virulence factor of one group of microbial pathogens, the type III secretion system (T3SS) of human pathogenic Yersinia, have shed light on these important innate immune responses. Yersinia are largely extracellular pathogens, yet they insert T3SS cargo into target host cells that modulate the activity of cytosolic innate immune receptors. This review covers both the host pathways that detect the Yersinia T3SS and the effector proteins used by Yersinia to manipulate innate immune signaling.
Collapse
Affiliation(s)
- Katherine Andrea Schubert
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
| | - Yue Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
| |
Collapse
|
10
|
Niederkorn M, Agarwal P, Starczynowski DT. TIFA and TIFAB: FHA-domain proteins involved in inflammation, hematopoiesis, and disease. Exp Hematol 2020; 90:18-29. [PMID: 32910997 DOI: 10.1016/j.exphem.2020.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
Forkhead-associated (FHA) domain-containing proteins are widely expressed across eubacteria and in eukaryotes. FHA domains contain phosphopeptide recognition motifs, which operate in a variety of phosphorylation-dependent and -independent biological processes, including the DNA damage response, signal transduction, and regulation of the cell cycle. More recently, two FHA domain-containing proteins were discovered in mammalian cells as tumor necrosis factor receptor-associated factor (TRAF)-interacting proteins: TIFA and TIFAB. TIFA and TIFAB are important modifiers of the innate immune signaling through their regulation of TRAF proteins. Recent studies have also revealed distinct roles for TIFA and TIFAB in the context of immune cell function, chronic inflammation, hematopoiesis, and hematologic disorders. Collectively, these studies indicate the important role of TIFA- and TIFAB-dependent signaling in hematopoietic cells and their dysregulation in several human diseases. In this review, we summarize the molecular mechanisms and biological role of these FHA-domain homologues, placing them into the context of human disease.
Collapse
Affiliation(s)
- Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| |
Collapse
|
11
|
Nakamura T, Hashikawa C, Okabe K, Yokote Y, Chirifu M, Toma-Fukai S, Nakamura N, Matsuo M, Kamikariya M, Okamoto Y, Gohda J, Akiyama T, Semba K, Ikemizu S, Otsuka M, Inoue JI, Yamagata Y. Structural analysis of TIFA: Insight into TIFA-dependent signal transduction in innate immunity. Sci Rep 2020; 10:5152. [PMID: 32198460 PMCID: PMC7083832 DOI: 10.1038/s41598-020-61972-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/03/2020] [Indexed: 11/28/2022] Open
Abstract
TRAF-interacting protein with a forkhead-associated (FHA) domain (TIFA), originally identified as an adaptor protein of TRAF6, has recently been shown to be involved in innate immunity, induced by a pathogen-associated molecular pattern (PAMP). ADP-β-D-manno-heptose, a newly identified PAMP, binds to alpha-kinase 1 (ALPK1) and activates its kinase activity to phosphorylate TIFA. Phosphorylation triggers TIFA oligomerisation and formation of a subsequent TIFA-TRAF6 oligomeric complex for ubiquitination of TRAF6, eventually leading to NF-κB activation. However, the structural basis of TIFA-dependent TRAF6 signalling, especially oligomer formation of the TIFA-TRAF6 complex remains unknown. In the present study, we determined the crystal structures of mouse TIFA and two TIFA mutants-Thr9 mutated to either Asp or Glu to mimic the phosphorylation state-to obtain the structural information for oligomer formation of the TIFA-TRAF6 complex. Crystal structures show the dimer formation of mouse TIFA to be similar to that of human TIFA, which was previously reported. This dimeric structure is consistent with the solution structure obtained from small angle X-ray scattering analysis. In addition to the structural analysis, we examined the molecular assembly of TIFA and the TIFA-TRAF6 complex by size-exclusion chromatography, and suggested a model for the TIFA-TRAF6 signalling complex.
Collapse
Affiliation(s)
- Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan.
| | - Chie Hashikawa
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohtaro Okabe
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Yuya Yokote
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Mami Chirifu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sachiko Toma-Fukai
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | | | - Mihoko Matsuo
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | | | - Yoshinari Okamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Shinji Ikemizu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masami Otsuka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun-Ichiro Inoue
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuriko Yamagata
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
12
|
Kwon YC, Kim JJ, Yu JJ, Yun SW, Yoon KL, Lee KY, Kil HR, Kim GB, Han MK, Song MS, Lee HD, Ha KS, Sohn S, Hong YM, Jang GY, Lee JK. Identification of the TIFAB Gene as a Susceptibility Locus for Coronary Artery Aneurysm in Patients with Kawasaki Disease. Pediatr Cardiol 2019; 40:483-488. [PMID: 30267110 DOI: 10.1007/s00246-018-1992-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Kawasaki disease (KD) is a self-limiting systemic vasculitis of unknown etiology. KD is often complicated by coronary artery aneurysms (CAAs), which develop in about 20-25% of untreated children and 3-5% of children treated with intravenous immunoglobulin therapy. To identify the risk loci for CAA susceptibility in patients with KD, we performed a genome-wide association study (GWAS) using our previous Illumina HumanOmni1-Quad BeadChip data (296 KD patients) and a new replication study in an independent sample set (713 KD patients) by grouping KD patients without CAA (control) versus KD patients with extremely large aneurysms (diameter ≥ 5 mm) (case). Among 44 candidate single -nucleotide polymorphisms (SNPs) selected from the initial GWAS data (33 cases vs. 215 controls), a SNP (rs899162) located 7 kb upstream of the TIFAB gene on chromosome five was replicated in an independent sample (12 cases vs. 532 controls). In the combined analysis (45 cases vs. 747 controls), the SNP (rs899162) showed a highly significant association with CAA formation (diameter ≥ 5 mm) in patients with KD (odds ratio = 3.20, 95% confidence interval = 2.02-5.05, Pcombined = 1.95 × 10-7). These results indicate that the TIFAB gene may act as a CAA susceptibility locus in patients with KD.
Collapse
Affiliation(s)
- Young-Chang Kwon
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Jae-Jung Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Jeong Jin Yu
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sin Weon Yun
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, South Korea
| | - Kyung Lim Yoon
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Kyung-Yil Lee
- Department of Pediatrics, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, South Korea
| | - Hong-Ryang Kil
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, South Korea
| | - Gi Beom Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea
| | - Myung-Ki Han
- Department of Pediatrics, Gangneung Asan Hospital, University of Ulsan, Gangneung, South Korea
| | - Min Seob Song
- Department of Pediatrics, Inje University Paik Hospital, Busan, South Korea
| | - Hyoung Doo Lee
- Department of Pediatrics, Pusan National University Hospital, Busan, South Korea
| | - Kee Soo Ha
- Department of Pediatrics, Korea University Hospital, Seoul, South Korea
| | - Sejung Sohn
- Department of Pediatrics, Ewha Womans University Hospital, Seoul, South Korea
| | - Young Mi Hong
- Department of Pediatrics, Ewha Womans University Hospital, Seoul, South Korea
| | - Gi Young Jang
- Department of Pediatrics, Korea University Hospital, Seoul, South Korea
| | - Jong-Keuk Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| | | |
Collapse
|
13
|
McDermott E, Ryan EJ, Tosetto M, Gibson D, Burrage J, Keegan D, Byrne K, Crowe E, Sexton G, Malone K, Harris RA, Kellermayer R, Mill J, Cullen G, Doherty GA, Mulcahy H, Murphy TM. DNA Methylation Profiling in Inflammatory Bowel Disease Provides New Insights into Disease Pathogenesis. J Crohns Colitis 2016; 10:77-86. [PMID: 26419460 PMCID: PMC5013897 DOI: 10.1093/ecco-jcc/jjv176] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases (IBDs) are heterogeneous disorders with complex aetiology. Quantitative genetic studies suggest that only a small proportion of the disease variance observed in IBD is accounted for by genetic variation, indicating a potential role for differential epigenetic regulation in disease aetiology. The aim of this study was to assess genome-wide DNA methylation changes specifically associated with ulcerative colitis (UC), Crohn's disease (CD) and IBD activity. METHODS DNA methylation was quantified in peripheral blood mononuclear cells (PBMCs) from 149 IBD cases (61 UC, 88 CD) and 39 controls using the Infinium HumanMethylation450 BeadChip. Technical and functional validation was performed using pyrosequencing and the real-time polymerase chain reaction. Cross-tissue replication of the top differentially methylated positions (DMPs) was tested in colonic mucosa tissue samples obtained from paediatric IBD cases and controls. RESULTS A total of 3196 probes were differentially methylated between CD cases and controls, while 1481 probes were differentially methylated between UC cases and controls. There was considerable (45%) overlap between UC and CD DMPs. The top-ranked IBD-associated PBMC differentially methylated region (promoter region of TRIM39-RPP2) was also significantly hypomethylated in colonic mucosa from paediatric UC patients. In addition, we confirmed TRAF6 hypermethylation using pyrosequencing and found reduced TRAF6 gene expression in PBMCs of IBD patients. CONCLUSIONS Our data provide new insights into differential epigenetic regulation of genes and molecular pathways, which may contribute to the pathogenesis and activity of IBD.
Collapse
Affiliation(s)
- Edel McDermott
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin, Ireland,School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Elizabeth J. Ryan
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin, Ireland,School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Miriam Tosetto
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin, Ireland
| | - David Gibson
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin, Ireland,School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Joe Burrage
- University of Exeter Medical School, University of Exeter, Exeter, Devon, UK
| | - Denise Keegan
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin, Ireland
| | - Kathryn Byrne
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin, Ireland
| | - Eimear Crowe
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland,Department of Psychiatry, Psychotherapy & Mental Health Research, St Vincent’s University Hospital, Dublin, Ireland
| | - Gillian Sexton
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin, Ireland
| | - Kevin Malone
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland,Department of Psychiatry, Psychotherapy & Mental Health Research, St Vincent’s University Hospital, Dublin, Ireland
| | - R. Alan Harris
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Richard Kellermayer
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Texas Children’s Hospital, Houston, TX, USA
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, Devon, UK,MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Garret Cullen
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin, Ireland,School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Glen A. Doherty
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin, Ireland,School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Hugh Mulcahy
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin, Ireland,School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland,*These author’s contributed equally to this work
| | - Therese M. Murphy
- University of Exeter Medical School, University of Exeter, Exeter, Devon, UK,*These author’s contributed equally to this work
| |
Collapse
|
14
|
Varney ME, Niederkorn M, Konno H, Matsumura T, Gohda J, Yoshida N, Akiyama T, Christie S, Fang J, Miller D, Jerez A, Karsan A, Maciejewski JP, Meetei RA, Inoue JI, Starczynowski DT. Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor-TRAF6 signaling. ACTA ACUST UNITED AC 2015; 212:1967-85. [PMID: 26458771 PMCID: PMC4612089 DOI: 10.1084/jem.20141898] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 09/04/2015] [Indexed: 12/16/2022]
Abstract
Varney et al. report that that deletion of the TRAF-interacting protein TIFAB contributes to an MDS-like phenotype in mice by up-regulating TRAF6 and contributing to hematopoietic dysfunction. TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPCs are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic defect. Gene expression analysis of Tifab KO HSPCs identified dysregulation of immune-related signatures, and hypersensitivity to TLR4 stimulation. TIFAB forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction. Re-expression of TIFAB in del(5q) MDS/AML cells results in attenuated TLR4 signaling and reduced viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPCs by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML.
Collapse
Affiliation(s)
- Melinda E Varney
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45267
| | - Hiroyasu Konno
- Division of Cellular and Molecular Biology, Department of Cancer Biology and Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, the University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takayuki Matsumura
- Division of Cellular and Molecular Biology, Department of Cancer Biology and Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, the University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Jin Gohda
- Division of Cellular and Molecular Biology, Department of Cancer Biology and Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, the University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Nobuaki Yoshida
- Division of Cellular and Molecular Biology, Department of Cancer Biology and Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, the University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Taishin Akiyama
- Division of Cellular and Molecular Biology, Department of Cancer Biology and Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, the University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Susanne Christie
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Jing Fang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - David Miller
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Andres Jerez
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Aly Karsan
- Michael Smith Genome Sciences Centre and Department of Pathology and Laboratory Medicine, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada Michael Smith Genome Sciences Centre and Department of Pathology and Laboratory Medicine, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Ruhikanta A Meetei
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Jun-ichiro Inoue
- Division of Cellular and Molecular Biology, Department of Cancer Biology and Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, the University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
15
|
Schröder JC, Läßig AK, Galetzka D, Peters A, Castle JC, Diederich S, Zechner U, Müller-Forell W, Keilmann A, Bartsch O. A boy with homozygous microdeletion of NEUROG1 presents with a congenital cranial dysinnervation disorder [Moebius syndrome variant]. Behav Brain Funct 2013; 9:7. [PMID: 23419067 PMCID: PMC3599919 DOI: 10.1186/1744-9081-9-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/23/2013] [Indexed: 01/20/2023] Open
Abstract
Background We report on a 6-year-old Turkish boy with profound sensorineural deafness, balance disorder, severe disorder of oral motor function, and mild developmental delay. Further findings included scaphocephaly, plagiocephaly, long palpebral fissures, high narrow palate, low-set posteriorly rotated ears, torticollis, hypoplastic genitalia and faulty foot posture. Parents were consanguineous. Methods and results Computed tomography and magnetic resonance imaging showed bilateral single widened cochlear turn, narrowing of the internal auditory canal, and bilateral truncation of the vestibulo-cochlear nerve. Microarray analysis and next generation sequencing showed a homozygous deletion of chromosome 5q31.1 spanning 115.3 kb and including three genes: NEUROG1 (encoding neurogenin 1), DCNP1 (dendritic cell nuclear protein 1, C5ORF20) and TIFAB (TIFA-related protein). The inability to chew and swallow, deafness and balance disorder represented congenital palsies of cranial nerves V (trigeminal nerve) and VIII (vestibulo-cochlear nerve) and thus a congenital cranial dysinnervation disorder. Conclusions Based on reported phenotypes of neurog1 null mutant mice and other vertebrates, we strongly propose NEUROG1 as the causative gene in this boy. The human NEUROG1 resides within the DFNB60 locus for non-syndromic autosomal recessive deafness on chromosome 5q22-q31, but linkage data have excluded it from being causative in the DFNB60 patients. Given its large size (35 Mb, >100 genes), the 5q22-q31 area could harbor more than one deafness gene. We propose NEUROG1 as a new gene for syndromic autosomal recessive hearing loss and congenital cranial dysinnervation disorder including cranial nerves V and VIII.
Collapse
Affiliation(s)
- Julia C Schröder
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, D-55101, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Matsumura T, Oyama M, Kozuka-Hata H, Ishikawa K, Inoue T, Muta T, Semba K, Inoue JI. Identification of BCAP-(L) as a negative regulator of the TLR signaling-induced production of IL-6 and IL-10 in macrophages by tyrosine phosphoproteomics. Biochem Biophys Res Commun 2010; 400:265-70. [PMID: 20728433 DOI: 10.1016/j.bbrc.2010.08.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/17/2010] [Indexed: 01/08/2023]
Abstract
Toll-like receptor (TLR) signaling in macrophages is essential for anti-pathogen responses such as cytokine production and antigen presentation. Although numerous reports suggest that protein tyrosine kinases (PTKs) are involved in cytokine induction in response to lipopolysaccharides (LPS; TLR4 ligand) in macrophages, the PTK-mediated signal transduction pathway has yet to be analyzed in detail. Here, we carried out a comprehensive and quantitative dynamic tyrosine phosphoproteomic analysis on the TLR4-mediated host defense system in RAW264.7 macrophages using stable isotope labeling by amino acids in cell culture (SILAC). We determined the temporal profiles of 25 proteins based on SILAC-encoded peptide(s). Of these, we focused on the tyrosine phosphorylation of B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) because the function of BCAP remains unknown in TLR signaling in macrophages. Furthermore, Bcap has two distinct transcripts, a full-length (Bcap-(L)) and an alternatively initiated or spliced (Bcap-(S)) mRNA, and little is known about the differential functions of the BCAP-(L) and BCAP-(S) proteins. Our study showed, for the first time, that RNAi-mediated selective depletion of BCAP-(L) enhanced IL-6 and IL-10 production but not TNF-α production in TLR ligand-stimulated macrophages. We propose that BCAP-(L) (but not BCAP-(S)) is a negative regulator of the TLR-mediated host defense system in macrophages.
Collapse
Affiliation(s)
- Takayuki Matsumura
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo 162-0041, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Matsumura T, Kawamura-Tsuzuku J, Yamamoto T, Semba K, Inoue JI. TRAF-interacting protein with a forkhead-associated domain B (TIFAB) is a negative regulator of the TRAF6-induced cellular functions. J Biochem 2009; 146:375-81. [PMID: 19470519 DOI: 10.1093/jb/mvp080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tumour necrosis factor receptor-associated factor (TRAF)-interacting protein with a forkhead-associated domain (TIFA) activates TRAF6 to induce NF-kappaB activation. TIFA-related protein, TIFAB, is highly expressed in the spleen and inhibits TIFA-mediated TRAF6 activation. However, little is known about cell types that express TIFAB and its function in those cells. Here, we show that TIFAB is mainly expressed in B cells rather than T cells in the spleen and that the expression level was much higher in dendritic cells (DCs) and macrophages than that in splenic lymphocytes. TIFAB expression was downregulated when B cells, DCs or macrophages were stimulated by TRAF6-mediated proliferative or maturation signals including those emanating from CD40, sIgM and TLRs. Furthermore, microinjection experiments using NIH3T3 cells revealed that TIFAB inhibited entry into the S phase of the cell cycle. Our results suggest that TIFAB could act as a negative regulator of the TRAF6-induced cellular function such as B cell proliferation and maturation of DCs and macrophages.
Collapse
Affiliation(s)
- Takayuki Matsumura
- Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | | | | | | | | |
Collapse
|
18
|
Inoue JI, Yagi S, Ishikawa K, Azuma S, Ikawa S, Semba K. Identification and characterization of Xenopus laevis homologs of mammalian TRAF6 and its binding protein TIFA. Gene 2005; 358:53-9. [PMID: 16023795 DOI: 10.1016/j.gene.2005.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 05/12/2005] [Indexed: 01/19/2023]
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) transduces signals from members of the TNFR superfamily and the Toll/IL-1R family, leading to activation of transcription factors such as NFkappaB and AP-1. Genetic disruption of the TRAF6 gene in mice results in various developmental abnormalities during embryogenesis, including osteopetrosis, failure of neural tube closure, defective formation of skin appendices, absence of lymph nodes, and absence of mature thymic epithelial cells. To clarify the effect of TRAF6 in development, we previously identified a TRAF-interacting protein with a forkhead-associated domain (TIFA), which binds and activates TRAF6 upon extracellular stimulation. To understand the physiological roles of TRAF6 and TIFA in early development, we studied these genes in Xenopus laevis. Here, we describe identification of X. laevis homologs of mammalian TRAF6 (XTRAF6) and TIFA (XTIFA). As was the case for the mammalian homologs, overexpression of XTRAF6 or XTIFA activated NFkappaB, whereas XTIFA carrying a mutation that abolishes XTRAF6 binding failed to activate NFkappaB, suggesting that XTIFA activates NFkappaB by binding to XTRAF6. XTIFA and XTRAF6 mRNAs were expressed at similar levels in zygotes from the neurula stage and then increased. Whole-mount in situ hybridization revealed that XTRAF6 mRNA was expressed in the head region and neural tube during the neurula stage, and the expression expanded to the pharyngeal apparatus during the tailbud stage. This localization is consistent with the defective neural tube closure and abnormal thymus organogenesis observed in TRAF6-deficient mice. Our results suggest possible cooperation between XTRAF6 and XTIFA during embryogenesis.
Collapse
Affiliation(s)
- Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | | | |
Collapse
|